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a b s t r a c t

In this paper we introduce the notion of a discrete-time negative imaginary system andwe investigate its
relations with discrete-time positive real system theory. In the framework presented here, discrete-time
negative imaginary systems are defined in terms of a sign condition that must be satisfied in a domain
of analyticity of the transfer function, in analogy with the case of discrete-time positive real functions, as
well as analogously to the continuous-time case. This means in particular that we do not need to restrict
our notions and definitions to systems with rational transfer functions. We also provide a discrete-time
counterpart of the different notions that have appeared so far in the literature within the framework of
strictly positive real and in the more recent theory of strictly negative imaginary systems, and to show
how these notions are characterized and linked to each other. Stability analysis results for the feedback
interconnection of discrete-time negative imaginary systems are also derived.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The theory of positive real (PR) systems dates back to the early
1930s (Brune, 1931), and is regarded as one of the cornerstones
of systems and control theory, and in particular of passivity
theory. For a summary of the historic and recent contributions
in this area, we refer the reader to the important monographs
(Anderson & Vongpanitlerd, 1973; Brogliato, Lozano, Maschke,
& Egeland, 2007). A promising new development in the area
has been the introduction of the notion of negative imaginary
(NI) systems, see Lanzon and Petersen (2008), Mabrok, Kallapur,
Petersen, and Lanzon (2014) and Xiong, Petersen, and Lanzon
(2010) and the references therein. The definition of negative
imaginary systems imposes a weaker restriction on the relative
degree of the transfer function with respect to the one for positive
real systems, and does not prohibit the case of all unstable
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transmission zeros. In the past few years, a rich stream of literature
flourished on negative imaginary systems, including extensions
to infinite dimensional systems (Opmeer, 2011), Hamiltonian
systems (van der Schaft, 2011), descriptor systems (Xiong, Lanzon,
& Petersen, 2016), lossless negative imaginary systems (Xiong,
Petersen, & Lanzon, 2012) and mixtures of negative imaginary
and small-gain properties (Patra & Lanzon, 2011) to mention
only a few. The theory developed in these contributions has
been proved to be useful in a range of applications including
modelling and control of undamped or lightly damped flexible
structures with co-located position sensors and force actuators
(Bhikkaji, Moheimani, & Petersen, 2012; Petersen & Lanzon, 2010),
nano-positioning control due to piezoelectric transducers and
capacitive sensors (e.g. Bhikkaji & Moheimani, 2009; Mabrok,
Kallapur, Petersen, & Lanzon, 2014; Mahmood, Moheimani, &
Bhikkaji, 2011) and multi-agent networked systems (e.g. Cai &
Hagen, 2010; Wang, Lanzon, & Petersen, 2015a; Wang, Lanzon &
Petersen, 2015b). This theory provides a very general technique
for finding an appropriate state-feedback controller and this is
particularly useful when the underlying model is repeatedly
derived by system identification techniques (see e.g. Zorzi, 2014;
Zorzi & Chiuso, 2015; Zorzi & Sepulchre, 2016 and references
therein).

An important gap in the current literature – that the present pa-
per attempts to fill – is the lack of a definition of negative imaginary
(and strictly negative imaginary) transfer function for discrete-
time systems. Furthermore, so far Ferrante and Ntogramatzidis
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(2013) and Ferrante, Lanzon, and Ntogramatzidis (2016) have been
the only contributionswhich attempted to address the general case
of a definition of negative imaginary system for non necessarily ra-
tional transfer functions and then recover, in the symmetric ratio-
nal case, the standard definition given in the foundational paper
(Lanzon & Petersen, 2008).

The main contribution of this paper is to introduce the notion
of discrete-time negative imaginary systems for the first time.
This definition is given in the general non-rational setting and
then is specialized for rational transfer functions, and expressed
in terms of a sign constraint on the unit circle. We also introduce
different notions of strictly negative imaginary discrete-time
transfer functions that parallel the continuous-time definitions
given so far. Finally, the relations between discrete-time and
continuous-time negative imaginary systems are elucidated. We
also provide a discrete-time negative imaginary lemma which
yields a complete state-space characterization of discrete-time
negative imaginary systems and a stability analysis result for
the feedback interconnection of discrete-time negative imaginary
systems.

Notice that negative imaginary system theory has already been
proven to be very useful in the continuous-time; hence developing
a discrete-time counterpart of this theory is particularly significant
and promising in view of the pervasive role of digital control in
modern applications.

Notation. Given a matrix A, the symbol A⊤ denotes the transpose
of A and A∗ denotes the complex conjugate transpose of A. We
denote by σ(A) the set of singular values of the matrix A and by
σ(A) the smallest of such singular values. The usual notations of
≥0 and >0 are used to denote positive semidefiniteness and
positive definiteness of Hermitian matrices, respectively. Let G :

C −→ Cm×m be analytic or harmonic in a certain region Ω of C,
then G is said to have full normal rank if there exists z ∈ Ω such
that det[G(z)] ≠ 0.

2. Discrete-time positive real functions

In this section, for the sake of completenesswe briefly recall the
most important notions and results of discrete-time positive real
systems. The definition of discrete-time positive real function was
introduced for the first time in the literature by Hitz and Anderson
in Hitz and Anderson (1969), and is recalled below.

Definition 2.1 (Hitz & Anderson, 1969). The function F : C −→

Cm×m is discrete-time positive real (PR) if
• F(z) is analytic in {z ∈ C : |z| > 1};
• F(z) is real when z is real and positive;
• F(z)∗ + F(z) ≥ 0 for all |z| > 1.

Similarly to what happens in the continuous-time for rational
functions, discrete-time positive realness can be characterized in
terms of conditions involving properties of the restriction of the
matrix function to the unit circle.

Theorem 2.1 (Hitz & Anderson, 1969, Lemma 2). Let F : C −→

Cm×m be a discrete-time, real, rational, proper transfer function. Then,
F(z) is PR if and only if
• F(z) has no poles in {z ∈ C : |z| > 1};
• F(ei θ )∗ + F(ei θ ) ≥ 0 for all θ ∈ [0, 2π) except for the values of

θ for which z = ei θ is a pole of F(z);
• If z0 = ei θ0 , with θ0 ∈ [0, 2π), is a pole of F(z), then it is a simple

pole and the normalized residual matrix

K0
def
=

1
z0

lim
z→z0

(z − z0) F(z)

is Hermitian and positive semidefinite.
We now present a definition of discrete-time strictly positive
real systems. We warn the reader that many different definitions
have been proposed for this concept that can indeed be distin-
guished via several grades of strength, see e.g. Brogliato et al.
(2007) and Khalil (2002). In this paper, we shall only need two of
such grades, that will be referred to as strongly and weakly strictly
positive realness.

Definition 2.2. Let F : C −→ Cm×m be a discrete-time, real,
proper transfer function. Then, F(z) is discrete-time strongly strictly
positive real (SSPR) if for some δ ∈ (0, 1), the transfer function
F(δz) is PR and F(z) + F(1/z)⊤ has full normal rank.

The following result shows that in the case of rational functions
the property of SSPR is equivalent to an analyticity condition and a
sign condition restricted to the unit circle.

Theorem 2.2. Let F : C −→ Cm×m be a discrete-time, real, rational,
proper transfer function. Then, F(z) is SSPR if and only if

• F(z) has all its poles in a disk of radius ρ ∈ [0, 1);
• F(ei θ ) + F(ei θ )∗ > 0 for all θ ∈ [0, 2π).

Proof. Necessity of the first condition is obvious. Necessity of the
second immediately follows from the fact the unit circle is in the
interior of the domain of analyticity and by the full normal rank
assumption. As for sufficiency, since the unit circle is compact,
condition F(ei θ ) + F(ei θ )∗ > 0 for all θ ∈ [0, 2π) implies
coercivity, i.e. there exists σ0 > 0 such that F(ei θ )+ F(ei θ )∗ > σ0 I
for all θ ∈ [0, 2π). Therefore, there exists ρ ∈ [0, 1) such that
F(ρei θ ) + F(ρei θ )∗ > 0 for all θ ∈ [0, 2π), so that F1(z)

def
= F(ρz)

is PR. �

Remark 2.1. The conditions of Theorem2.2 aremuch simpler than
those of its continuous-time counterpart (see e.g. Brogliato et al.,
2007, Theorem 2.47 and Khalil, 2002, Lemma 6.1) because positiv-
ity on the unit circle T implies coercivity in view of the compact-
ness of the unit circle T (as opposed to the fact that the imaginary
axis is not compact). As we shall see later, this is not the case for
discrete-time negative imaginary (NI) systems for which the rele-
vant boundary curve is the intersection between T and the open
upper half complex plane. Therefore, the relevant boundary curve
is not closed as the zero and infinity discrete frequencies are not in
this curve. This fact complicates the derivations and the results in
the NI case.

The next result is the discrete-time counterpart of the so-called
positive real lemma, a cornerstone of modern control theory that
has generated an endless stream of literature.

Lemma 2.1 (Discrete-Time Positive Real Lemma, Hitz & Anderson,
1969, Lemma 3). Let F : C −→ Cm×m be a discrete-time, real,
rational, proper transfer function with no poles in |z| > 1 and simple

poles only on |z| = 1. Let


A B
C D


be a minimal realization of

F(z). Then F(z) is discrete-time positive real if and only if there exist
a real matrix X = X⊤ > 0 and real matrices L and W such that

X − A⊤ X A = L⊤ L, (1)

C⊤
− A⊤ X B = L⊤ W , (2)

D⊤
+ D − B⊤ X B = W⊤ W . (3)
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3. Discrete-time negative imaginary functions

We now introduce the following standing assumption that will
be used throughout the rest of the paper.

Assumption 3.1. We henceforth restrict our attention to only
symmetric transfer functions.

As discussed in Ferrante and Ntogramatzidis (2013), the case
of symmetric transfer function is the most important one, because
it encompasses both the scalar case, and the case of a transfer
function of a reciprocal m-port electrical network.2 To the best
of our knowledge, all the negative imaginary transfer functions
considered or studied in the literature so far are symmetric (see
e.g. the transfer functions from a force actuator to a corresponding
co-located position sensor – for instance, a piezoelectric sensor –
in a lightly damped or undamped structure), even though the real,
rational definitions of negative imaginary systems in Lanzon and
Petersen (2008), Mabrok et al. (2014) and Xiong et al. (2010) allow
for non-symmetric transfer functions.

We now present a definition of negative imaginary functions in
the discrete-time case.

Definition 3.1. Let G : C −→ Cm×m be a discrete-time,
real transfer function. We say that G(z) is discrete-time negative
imaginary (NI) if
(i) G(z) is analytic in {z ∈ C : |z| > 1};
(ii) i [G(z) − G(z)∗] ≥ 0 for all z ∈ C such that |z| > 1 and

Im(z) > 0;
(iii) i [G(z) − G(z)∗] = 0 for all z ∈ C such that |z| > 1 and

Im(z) = 0;
(iv) i [G(z) − G(z)∗] ≤ 0 for all z ∈ C such that |z| > 1 and

Im(z) < 0.

The conditions (ii)–(iv) in Definition 3.1 are a skew imaginary
condition on the open set Ω = {z ∈ C : |z| > 1}.

Remark 3.1. Note that if the real transfer function G : C −→

Cm×m satisfies the conditions in Definition 3.1, then G(z) is
symmetric, i.e., G(z) = G(z)⊤ for all z ∈ C such that |z| > 1. This
can be seen as follows: sinceG(z) is real, if z ∈ R thenG(z) ∈ R. Let
z ∈ R and |z| > 1. From (iii), we get G(z) = G(z)⊤. Therefore, each
entry ∆ij(z) of the matrix valued function ∆(z) def

= G(z) − G(z)⊤
is a function which is analytic in {z ∈ C : |z| > 1} and is
zero for any real z in the domain of analyticity. Then, in view of
the principle of identity of analytic functions (see e.g. Corollary to
Theorem 10.18 in Rudin, 1987, page 209) ∆ij(z) = 0 in the entire
domain of analyticity so that G(z) = G(z)⊤ for all z in the domain
of analyticity, i.e., |z| > 1.

Conditions (iii)–(iv) in Definition 3.1 are redundant in the
rational case, as the following result establishes.

Lemma 3.1. Let G : C −→ Cm×m be a discrete-time, real, rational
transfer function. If G(z) satisfies (i)–(ii) of Definition 3.1, then it also
satisfies (iii)–(iv).

Proof. If G(z) satisfies (ii), then i

G(z)⊤ − G(z)


≥ 0 for all z ∈ C

such that |z| > 1 and Im(z) > 0, since G(z)∗ = G(z)⊤. Defining
w

def
= z, such condition can be re-written as i [G(w)∗ − G(w)] ≥ 0

for all w ∈ C such that |w| > 1 and Im(w) < 0, which is exactly
(iv) of Definition 3.1. Finally, since (ii) and (iv) hold, then (iii) must
also hold by continuity. �

2 We recall that the only way to obtain a non-symmetric transfer function of an
m-port electrical network is to employ gyrators, whose physical implementation
requires the use of active components but that cannot be physically implemented
with arbitrary precision.
We now prove the counterpart of Theorem 2.1 for the case of
discrete-time symmetric negative imaginary functions. This result
provides a characterization of rational NI systems in terms of a
domain of analyticity and conditions referred to the unit circle.
First, however, we recall that given a real rational function G(z)
and a simple pole p ∈ C of G(z), we have a unique decomposition
G(z) = G1(z)+A/(z−p), where G1(z) is a rational function which
is analytic in an open set containing p and the (non-zero) matrix A
is the residue corresponding to the pole p. If p is a double pole of
G(z), we have the unique decomposition G(z) = G1(z) + A1/(z −

p)+A2/(z −p)2, where thematrix A1 is the residue corresponding
to the pole p. In this case, by analogy, we define the (non-zero)
matrix A2 to be the quadratic residue corresponding to the pole
p. If G(z) has a pole at infinity, it can be uniquely decomposed as
G(z) = G1(z)+ P(z), where G1(z) is a rational proper function and
P(z) =

k
i=1 Ai z i is a homogeneous polynomial in z. We refer to

Ai as the ith coefficient in the expansion at infinity of G(z).

Lemma 3.2. Let G : C −→ Cm×m be a discrete-time, real, rational,
proper transfer function. Then, G(z) is NI if and only if

(i) G(z) has no poles in |z| > 1;
(ii) i [G(eiθ ) − G(eiθ )∗] ≥ 0 for all θ ∈ (0, π) except for the values

of θ for which z = ei θ is a pole of G(z);
(iii) if z0 = ei θ0 , with θ0 ∈ (0, π), is a pole of G(z), then it is a simple

pole and the normalized residual matrix

K0
def
=

1
z0

lim
z→z0

(z − z0) i G(z) (4)

is Hermitian and positive semidefinite;
(iv) if z0 = 1 is a pole of G(z), then it is at most a double pole.

Moreover, its residue A1 and its quadratic residue A2 (when the
pole is simple it is assumed that A2 = 0) are Hermitian matrices
satisfying A2 ≥ 0 and A1 ≥ A2;

(v) if z0 = −1 is a pole of G(z), then it is at most a double pole.
Moreover, its residue A1 and its quadratic residue A2 (when the
pole is simple it is assumed that A2 = 0) are Hermitian matrices
satisfying A2 ≤ 0 and A1 ≥ −A2.

Proof. The idea of the proof is the following: we introduce a
bilinear transform and show that it maps continuous-time NI
systems into discrete-time NI systems. Then we show that the
conditions of Lemma 3.2 are mapped by the bilinear transform
into the necessary and sufficient conditions derived in Ferrante and
Ntogramatzidis (2013, Lemma3.1) for a continuous-time system to
be NI. Let G(z) be discrete-time real, symmetric and rational, and
define

Gc(s)
def
= G


1 + s
1 − s


.

Consider the bilinear transform

z =
1 + s
1 − s

,

and let z = σ + iω. It is found that

s =
z − 1
z + 1

=
σ 2

+ ω2
− 1

(σ + 1)2 + ω2
+ 2 i

ω

(σ + 1)2 + ω2
. (5)

Firstly, G(z) is NI if and only if Gc(s) is NI as a continuous-time
transfer function. Indeed, in view of (5), G(z) is analytic in |z| > 1
if and only if Gc(s) is analytic in Re{s} > 0. The rest of the proof
of this part follows directly from the definitions, using the fact that
Im{z} > 0 (resp. Im{z} < 0 and Im{z} = 0) is equivalent toω > 0
(resp. ω < 0 and ω = 0), which in turn is equivalent to Im{s} > 0
(resp. Im{s} < 0 and Im{s} = 0).

Secondly, the following facts are easy to check:
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• G(z) has no poles in |z| > 1 if and only if Gc(s) has no poles in
Re{s} > 0;

• Let z0
def
= ei θ0 with θ0 ∈ (0, π). Using (5) we see that

s0
def
=

z0 − 1
z0 + 1

=
ej θ0 − 1
ej θ0 + 1

= i
sin θ0

1 + cos θ0
,

which shows that z0 is a pole ofG(z) if and only if iω0, withω0
def
=

sin θ0
1+cos θ0

> 0, is a purely imaginary pole of Gc(s). Moreover,
i [G(ei θ ) − G(ei θ )∗] ≥ 0 for all θ ∈ (0, π) such that ei θ is
not a pole of G(z) if and only if i [Gc(iω) − Gc(iω)∗] ≥ 0 for
all ω ∈ (0, ∞) such that iω is not a pole of G(z);

• Let z0
def
= ei θ0 with θ0 ∈ (0, π). Then z0, with θ0 ∈ (0, π),

is a pole of G if and only if iω0, with ω0
def
=

sin θ0
1+cos θ0

> 0, is
a purely imaginary pole of Gc . Moreover, they are poles with
the same multiplicity. Finally, z0 is a simple pole of G(z) with
residue being the matrix K if and only if iω0 is a simple pole of
Gc(s) with residue being the matrix H def

=
e−i θ0

1+cos θ0
K . Notice that

the normalized residual matrix K0 of G(z), as defined in (4), is
positive semi-definite if and only if i

z0
K is positive semi-definite

and, hence, if and only if i H is positive semi-definite.
• z0 = 1 is a pole of G(z) if and only if s0 = 0 is a pole of Gc .

This fact follows straightforwardly from (5). Moreover, they are
poles with the same multiplicity. If this multiplicity is strictly
greater than 2, then G(z) is trivially not NI. If this multiplicity
is at most 2, then the residue As1 and the quadratic residue
As2 corresponding to s0 are related to the residue A1 and the
quadratic residue A2 corresponding to z0 by: As2 =

1
4A2 and

As1 =
1
2 (A1 − A2), since

G(z) = G1(z) +
A1

z − 1
+

A2

(z − 1)2
,

where G1(z) is analytic in an open set containing z0 = 1, and

Gc(s) = Gc,1(s) +
A1

1+s
1−s − 1

+
A2

1+s
1−s − 1

2

=


Gc,1(s) −

A1

2
+

A2

4


+

A1 − A2

2 s
+

A2

4 s2

=


Gc,1(s) −

A1

2
+

A2

4


+

As1

s
+

A2s

s2
,

where Gc,1(s) −
A1
2 +

A2
4 is analytic in an open set containing

s0 = 0.
• z0 = −1 is a pole of G(z) if and only if ∞ is a pole of Gc .

Moreover, they are poles with the same multiplicity. If this
multiplicity is strictly greater than 2, then G(z) is trivially not
NI. In the case in which this multiplicity is at most 2, the first
coefficient As1 and the second coefficient As2 in the expansion
at infinity of Gc(s) are connected to the residue A1 and the
quadratic residue A2 corresponding to z0 by: As2 =

1
4A2 and

As1 = −
1
2 (A1 + A2) since

G(z) = G1(z) +
A1

z + 1
+

A2

(z + 1)2
,

where G1(z) is analytic in an open set containing z0 = −1, and

Gc(s) = Gc,1(s) +
A1

1+s
1−s + 1

+
A2

1+s
1−s + 1

2

=


Gc,1(s) +

A1

2
+

A2

4


−

A1 + A2

2
s +

A2

4
s2

=


Gc,1(s) +

A1

2
+

A2

4


+ A1s s + A2s s2,

where Gc,1(s) +
A1
2 +

A2
4 is rational and proper.
Now, we apply (Ferrante & Ntogramatzidis, 2013, Lemma 3.1)
in both directions and get the desired result. �

Remark 3.2. In Definition 3.1 we need to assume symmetry of the
transfer function matrix in order to introduce the notion of a NI
system as a property that is defined in the domain of analyticity:
this definition is the analogue to the classic definition of PR systems
and has the important advantage of considering a general setting
that does not require rationality assumptions. Note, however, that
if one is only interested in the rational case, it is possible to consider
conditions (i)–(v) of Lemma 3.2 as the definition of rational NI
transfer functions and this clearly does not require any symmetry
assumption. This is indeed the route taken in the first papers on
continuous-time NI systems, see Lanzon and Petersen (2008) and
Petersen and Lanzon (2010). A similar observation can made for
the definition of strictly negative imaginary systems given below.

The reader can check that, as long as one considers only rational
transfer functions, all the results derived in this paper can be
generalized to the case of non-symmetric transfer functions.

We now define the notions of strictly negative imaginary
systems in discrete-time.

Definition 3.2. Let G : C −→ Cm×m be a discrete-time,
real transfer function. Then, G(z) is discrete-time strongly strictly
negative imaginary (SSNI) if for some δ ∈ (0, 1), the transfer
function G(δz) is NI and i[G(z) − G(1/z)⊤] has full normal rank.

Now, we show that SSNI as defined in Definition 3.2 can be
equivalently checked via conditions on the domain of analyticity.

Lemma 3.3. Let G : C −→ Cm×m be a discrete-time, real transfer
function. Then, G(z) is SSNI if and only if there exists δ ∈ (0, 1) such
that

(i) G(z) is analytic in {z ∈ C : |z| > δ};
(ii) i [G(z) − G(z)∗] > 0 for all z ∈ C such that |z| > δ and

Im(z) > 0;
(iii) i [G(z) − G(z)∗] = 0 for all z ∈ C such that |z| > δ and

Im(z) = 0;
(iv) i [G(z) − G(z)∗] < 0 for all z ∈ C such that |z| > δ and

Im(z) < 0.

Proof. Definition 3.2 trivially gives equivalence to the existence
of δ ∈ (0, 1) such that conditions (i)–(iv) are satisfied with non-
strict inequalities in (ii) and (iv) on i [G(z) − G(z)∗]. We hence
only need to show that the fact that G is SSNI implies that the
inequalities in (ii) and (iv) are indeed strict. We prove only that
(ii) is strict since (iv) follows by symmetry. Let G be analytic in
Cδ

def
= {z ∈ C : |z| > δ} and assume by contradiction that there

exist z0 ∈ {z ∈ C : |z| > δ and Im{z} > 0} and a nonzero vector
v such that v∗(i [G(z0) − G(z0)∗])v = 0. Since G is analytic in Cδ ,
the function h(z) def

= v∗(i [G(z) − G(z)∗])v is harmonic in the same
domain. Consider a real number M > 1 such that M > |z0| and a
real number δ1 such that δ < δ1 < |z0|, so that z0 is in the interior of
the compact setC def

= {z ∈ C : δ1 ≤ |z| ≤ M, Im{z} ≥ 0}, which is
contained inCδ . Since h(z) is non-negative inC and h(z0) = 0, then
h(z) restricted toC attains its minimum at a point z0 in the interior
of C. Hence, h(z) is identically zero in C and hence, in particular,
it is identically zero in the (upper half of the unit circle and, by
symmetry, in the whole of the) unit circle. This is a contradiction,
since i [G(z)−G(1/z)⊤] – that coincides with h(z) in the unit circle
– is required to have full normal rank by Definition 3.2. �

We now specialize Lemma 3.3 to the unit disc. However, first
we need a preliminary lemma.
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Lemma 3.4. Let g : C −→ C be a scalar discrete-time, real,
rational, proper transfer function. Assume that g(z) is a SSNI function.
If g(1) = 0 then the multiplicity of the zero in 1 of g(z) is equal to 1.
Similarly, if g(−1) = 0 then themultiplicity of the zero in−1 of g(z)
is equal to 1.

Proof. Since g(z) is a SSNI function, it has no poles in 1 andwe can
expand g(z) at 1 as

g(z) =

∞
k=h

rk(z − 1)k,

where h is the multiplicity of the zero in 1 of g(z), rh ≠ 0, and
lim supk→∞ |rk|1/k is finite so that there exists a constant c such
that |rk|1/k < c for all k ≥ h. Let z = 1 + εeiθ , with ε > 0 and
0 < θ < π . We have

p(z) def
= i[g(z) − g(z)∗] = εh

[−2rh sin(hθ) + δ]

with δ
def
= ε−h 

∞

k=h+1 −2rkεk sin(kθ). For ε such that |cε| < 1, we
have

|δ| ≤

∞
k=h+1

|2rkεk−h sin(kθ)| ≤ ε
2|c|h+1

1 − cε

which is arbitrarily small for a sufficiently small ε. We can then
choose ε such that |δ| < |2rh|. Assume, by contradiction, that
h > 1 and define θ1

def
= π/(2h) and θ2

def
= 3π/(2h) (notice

that, if h > 1, both θ1 and θ2 are in (0, π)). Then we have that
p(εeiθ1) = εh

[−2rh + δ] and p(εeiθ2) = εh
[2rh + δ] have opposite

signs which is a contradiction because g(z) is a SSNI function so
that p(εeiθ ) is positive for any pair ε > 0 and 0 < θ < π . The
proof for −1 is similar. �

Theorem 3.1. Let G : C −→ Cm×m be a discrete-time, real, rational,
proper transfer function. Then G(z) is SSNI if and only if
(i) G(z) has all its poles strictly inside the unit circle;
(ii) i [G(eiθ ) − G(eiθ )∗] > 0 for all θ ∈ (0, π);
(iii)

Q0
def
= lim

θ→0+

1
sin θ

i[G(eiθ ) − G(eiθ )∗] > 0

(iv)

Qπ
def
= lim

θ→π−

1
sin θ

i[G(eiθ ) − G(eiθ )∗] > 0

Proof. Necessity of (i) and (ii) is trivial from Lemma 3.3. We now
prove necessity of (iii) (necessity of (iv) is similar). Assume thatG is
SSNI. Then clearly the limit Q0 defined in (iii) exists and is positive
semi-definite. Assume by contradiction that Q0 is singular and let
v ∈ kerQ0. Let g ′(z) def

= v⊤G(z)v and g(z) def
= g ′(z)− g ′(1). Clearly,

g(z) is a rational proper SSNI function with a zero in 1 and such
that

lim
θ→0+

1
sin θ

i [g(eiθ ) − g(eiθ )∗] = 0. (6)

By expanding g(z) around 1 as

g(z) =

∞
k=h

rk(z − 1)k

we see that (6) implies that h > 1, which is a contradiction in view
of Lemma 3.4.

As for sufficiency, assume that G(s) is real symmetric and
rational and that it satisfies (i), (ii), (iii) and (iv). We now show that
we can choose ρ < 1 in such a way that

i [G(ρeiθ ) − G(ρeiθ )∗] > 0 ∀θ ∈ (0, π). (7)
In view of condition (ii), we have that for all π > θ2 > θ1 > 0
there exists ρ < 1 such that

i [G(ρeiθ ) − G(ρeiθ )∗] > 0 ∀θ ∈ [θ1, θ2], (8)

so that it is sufficient to show that given an arbitrarily small θ1 and
an arbitrarily large θ2,

i [G(ρeiθ ) − G(ρeiθ )∗] > 0 ∀θ ∈ (0, θ1) (9)

and

i [G(ρeiθ ) − G(ρeiθ )∗] > 0, ∀θ ∈ (θ2, π). (10)

As for (9), let δ
def
= ρeiθ − 1 with θ ∈ (0, θ1) and consider the

following expansion of G(δ):

G(δ) = D0 + δD1 + δ2D2 + · · ·

which clearly converges for a sufficiently small δ (if we considered
a minimal realization G(z) = C(zI − A)−1B + D, we would have
D0

def
= D − C(I − A)−1B and Di

def
= −C(I − A)−i−1B for i > 1). Since

G(z) is real symmetric by our standing assumption, we have Di =

D⊤

i . Moreover,Q0
def
= limθ→0+(1/ sin θ)i [G(eiθ )−G(eiθ )∗] = −2D1,

so that by (iv), we have D1 < 0. A direct calculation gives

i [G(ρeiθ ) − G(ρeiθ )∗] = −ρ sin(θ) 2D1 + i
∞
j=2

[δj
− (δ∗)j]Dj.

Now we observe that

i
∞
j=2

[δj
− (δ∗)j]Dj = −2 ρ sin θ

∞
j=2

j−1
k=0

[δk (δ∗)j−1−k
]Dj,

so thati ∞
j=3

[δj
− (δ∗)j]Dj

 ≤ 2 ρ sin θ

∞
j=2

j|δ|j−1
∥Dj∥

= 2 ρ sin θ |δ|

∞
j=2

j|δ|j−2
∥Dj∥

≤ 2 ρ sin θ |δ|σ

for a certain σ which remains bounded as |δ| tends to zero. Since,
by choosing a sufficiently small δ we can make −D1 > σ |δ|I , we
have (9). The proof of (10) is similar. �

In analogywith the continuous-time case (Ferrante et al., 2016),
we introduce the following definition of a weaker notion of strictly
negative imaginary systems.

Definition 3.3. The discrete-time, real, rational, proper transfer
function G : C −→ Cm×m is discrete-time weakly strictly negative
imaginary (WSNI) if it satisfies conditions (i) and (ii) of Theorem3.1.

The next lemma shows that the definition of WSNI character-
izes properties on the outside of the unit disk too.

Lemma 3.5. Let G : C −→ Cm×m be a discrete-time, real, rational,
proper transfer function. Then, G(z) is WSNI if and only if there exists
δ ∈ (0, 1) such that

(i) G(z) is analytic in {z ∈ C : |z| > δ};
(ii) i [G(z) − G(z)∗] > 0 for all z ∈ C such that |z| ≥ 1 and

Im(z) > 0;
(iii) i [G(z) − G(z)∗] = 0 for all z ∈ C such that |z| ≥ 1 and

Im(z) = 0;
(iv) i [G(z) − G(z)∗] < 0 for all z ∈ C such that |z| ≥ 1 and

Im(z) < 0.
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Proof. Sufficiency is trivial by restricting on {z ∈ C : |z| = 1}.
Necessity can be proven as follows: if G is WSNI, then (i) is
satisfied and G is NI (from Lemma 3.2). If G is NI, then (ii)–(iv)
in Definition 3.1 are satisfied. Strict inequalities in conditions (ii)
and (iv) outside the unit circle are then obtained via an argument
similar to that given in the proof of Lemma 3.3. Appending the
{z ∈ C : |z| = 1} properties of G to the conditions (ii)–(iv) in
Definition 3.1 (since G is WSNI) yields (ii)–(iv) above since G fulfils
(i) above. �

The following lemma relates the strong classes with the weak
classes with the non-strict classes of negative imaginary systems.

Lemma 3.6. The set of SSNI systems is contained in the set of WSNI
systems which is in turn contained in the set of NI systems.

Proof. Trivial from the definitions. �

The following lemma relates a NI system with a PR system.

Lemma 3.7. Let G : C −→ Cm×m be a discrete-time, symmetric,
real, rational, proper transfer function with no poles at z = −1. Then,
G(z) is NI if and only if

F(z) =
z − 1
z + 1

[G(z) − G(−1)] (11)

is PR.

Proof. (Only if). The set of poles of F(z) is contained in the set of
poles of G(z) (in fact, in (11) the pole in −1 of z−1

z+1 is cancelled by
the zero in −1 of [G(z) − G(−1)]). Since G(z) is a symmetric, real,
rational, proper, NI transfer function, F(z) is analytic in |z| > 1. Let
θ0 ∈ (0, π), and assume that z = ei θ0 is not a pole of G(z). Then,
z = ei θ0 is not a pole of F(z), and a simple calculation gives

F(ei θ0) + F(ei θ0)∗ =
sin θ0

1 + cos θ0
i

G(ei θ0) − G(ei θ0)∗


≥ 0

in view of Lemma 3.2.
Let us now assume that z = ei θ0 , with θ0 ∈ (0, π), is a pole of

G(z). From Lemma 3.2, it is a simple pole, and from (11) it is also a
simple pole of F(z). We can write

G(z) = G1(z) +
A

z − ei θ0
,

where G1(z) is a rational function which is analytic in an open set
containing z = ei θ0 and the matrix A is non-zero. Then,

K0 = e−i θ0 lim
z→ei θ0

(z − ei θ0) i G(z)

= e−i θ0 lim
z→ei θ0

(z − ei θ0) i

G1(z) +

A
z − ei θ0


= i e−i θ0 A

is Hermitian and positive semidefinite. The normalized residue of
F(z) in ei θ0 is given by

e−i θ0 lim
z→ei θ0

(z − ei θ0) F(z)

= e−i θ0 lim
z→ei θ0

z − 1
z + 1


(z − ei θ0)G(z) − (z − ei θ0)G(−1)


= e−i θ0

ei θ0 − 1
ei θ0 + 1

A =
sin θ0

1 + cos θ0
i e−i θ0A ≥ 0.

Let us now consider the case θ0 = 0, i.e., z0 = ei θ0 = 1. If G(z) has
no poles at z0 = 1, neither does F(z). In this case, F(1) = 0, which
gives F(1) + F(1)∗ = 0 ≥ 0. If G(z) has a simple pole at z0 = 1,
then F(z) has no poles at z0 = 1. In this case, G(z) = G1(z) +

A
z−1 ,

where G1(z) is a rational function which is analytic in an open set
containing z0 = 1, and where A ≥ 0 from (iv) in Lemma 3.2
(because the quadratic residual is zero). Thus,

F(z) =
z − 1
z + 1


G1(z) +

A
z − 1

− G(−1)


,

so that F(1) = A/2, and F(1) + F(1)∗ = A ≥ 0. Now, consider
the case in which G(z) has a double pole at z0 = 1. In this case, we
can write G(z) = G1(z) +

A1
z−1 +

A2
(z−1)2

, where G1(z) is a rational
functionwhich is analytic in an open set containing z0 = 1,A1 ≥ A2
and A2 ≥ 0. In this case,

F(z) =
z − 1
z + 1


G1(z) +

A1

z − 1
+

A2

(z − 1)2
− G(−1)


=


z − 1
z + 1

G1(z) +
A1

z + 1
−

z − 1
z + 1

G(−1) −
A2

2 (z + 1)


+

A2

2 (z − 1)
.

SinceG1(z) is analytic in an open set containing z0 = 1, z−1
z+1 G1(z)+

A1
z+1 −

z−1
z+1 G(−1)−

A2
2 (z+1) is also analytic in an open set containing

z0 = 1. Thus, F(z) has a simple pole at z0 = 1, and the
corresponding residue A2/2 is positive semidefinite (notice that in
this case the residue and the normalized residue coincide because
z0 = 1).

Let us finally consider the case θ0 = π , i.e., z0 = ei θ0 = −1.
We know that G(−1) is finite and hence F(−1) is finite as well.
Moreover, F(ei θ0) + F(ei θ0)∗ is positive semidefinite for all θ0 ∈

(0, π) that is not a pole of G(z). Therefore, by continuity, we have
F(−1) + F(−1)∗ ≥ 0.
(If). Let F be given by (11). Since F(z) is symmetric, real, rational,
proper, discrete-time positive real and G(−1) = G(−1)⊤, it is
sufficient to show that

G0(z)
def
=

z + 1
z − 1

F(z)

is NI because G0(z) is NI if and only if G(z) = G0(z) + G(−1) is NI.
We observe thatG0(z) is proper, symmetric, real, rational, discrete-
time and analytic in |z| > 1. Also, F(z) and G0(z) have the same
poles, with the possible exception of a pole at z = 1. Notice that
F(z) does not have a pole at z = −1 due to its construction in (11).
Let z0 = ei θ0 with θ0 ∈ (0, π). Assume z0 is not a pole of F(z). Then,
it is not a pole of G0(z). We find

G0(ei θ0) =
ei θ0 + 1
ei θ0 − 1

F(ei θ0) = −
i sin θ0

1 − cos θ0
F(ei θ0),

so that

i [G0(ei θ0) − G0(ei θ0)∗] =
sin θ0

1 − cos θ0
[F(ei θ0) + F(ei θ0)∗] ≥ 0,

because F(ei θ0) + F(ei θ0)∗ ≥ 0. We now assume that z0 = ei θ0
with θ0 ∈ (0, π) is a pole of F(z). Then, it is also a pole of G0(z).
Since F(z) is PR, z0 is a simple pole. Thus, z0 is also a simple pole of
G0(z). Moreover, the matrix K0 = e−i θ0 limz→ei θ0 (z − ei θ0) F(z) is
positive semidefinite, see Theorem 2.1. This then implies that

e−i θ0 lim
z→z0

(z − ei θ0) i G0(z) = e−i θ0 lim
z→z0

i
z + 1
z − 1

(z − ei θ0) F(z)

= i
ei θ0 + 1
ei θ0 − 1

K0

=
sin θ0

1 − cos θ0
K0 ≥ 0.

When z = 1, F(z) can either have nopoles or a simple pole. Assume
z = 1 is not a pole. Then, G0(z) = G1(z) +

2 F(1)
z−1 where G1(z) is
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analytic in a region near z = 1. Then, K0 = limz→1(z − 1)G0(z) =

2 F(1) = F(1) + F(1)⊤ (due to F(z) being symmetric), which is
non-negative in view of Theorem 2.1.

Assume now that z = 1 is a simple pole of F(z). We can write
F(z) = F1(z) +

A
z−1 , where F1(z) is analytic near z = 1 and

0 ≤ A ≤ 2 F1(1) (via Theorem 2.1, since A ≥ 0 directly from the
theorem statement and 0 ≤ F(eiθ )+F(eiθ )∗ = F1(eiθ )+F1(eiθ )∗−A
implies A ≤ 2 F1(1) in the limit as θ → 0 due to continuity and
F1(1) being symmetric).

Hence,

G0(z) =
z + 1
z − 1

F(z) =
z + 1
z − 1

F1(z) +
z + 1

(z − 1)2
A

= G2(z) +
2 F1(1) + A

z − 1
+

2 A
(z − 1)2

,

where G2(z) is analytic in the neighbourhood of z = 1. Thus,
the residue and the quadratic residue are A1 = A + 2 F1(1) and
A2 = 2 A, and the condition that ensures that F(z) is PR now
guarantees that A2 ≥ 0 and A1 ≥ A2, so that G0(z) is NI. �

Lemma 3.8. Let G : C −→ Cm×m be a discrete-time, real, rational,
proper, NI transfer function with no poles at z = −1. Then
• G(∞) = G(∞)⊤;
• G(−1) exists and G(−1) = G(−1)⊤.

Furthermore, let


A B
C D


be a minimal state-space realization of

G(z). Then,
• C (I + A)−1 B = B⊤ (I + A⊤)−1 C⊤;
• F(z) =

z−1
z+1 [G(z) − G(−1)] has a state-space realization

A B
C (A − I)(A + I)−1 C (A + I)−1 B


which is minimal when A has no eigenvalues at 1.

Proof. SinceG(z) is symmetric, i.e.G(z) = G(z)⊤ for all |z| > 1,we
obtain G(∞) = G(∞)⊤ via a limiting argument. Since G(z) has no
poles at z = −1, it follows that G(−1) exists. Now, G(z) = G(z)⊤
for all |z| > 1 implies that G(−1) = G(−1)⊤ via continuity and a
limiting argument.

From G(−1) = G(−1)⊤ and D = D⊤, it immediately follows
that C (I + A)−1 B = B⊤ (I + A⊤)−1 C⊤.

Let us now consider a state-space realization of F(z). A
realization of the transfer function matrix z−1

z+1 I is given by
−I I

−2 I I


, while a realization of the term G(z) − G(−1) =

C (z I − A)−1
+ C (A + I)−1 B is given by


A B
C C (A + I)−1 B


.

Thus, a realization for F(z) is given by −I C C (A + I)−1 B
0 A B

−2 I C C (A + I)−1 B

 .

Changing state coordinates via

T =


I C (I + A)−1

0 I


yields

F(z) =

 −I 0 0
0 A B

− 2 I C

I − 2 (I + A)−1


C (A + I)−1 B


=

 −I 0 0
0 A B

− 2 I C (A − I)(I + A)−1 C (A + I)−1 B

 .
This realization is not minimal because it is easily seen that it is
not completely reachable. Eliminating the non-reachable part one
obtains

F(z) =


A B

C (A − I)(A + I)−1 C (A + I)−1 B


,

which is minimal if det(A − I) ≠ 0. �

Remark 3.3. We have derived the condition G(−1) = G(−1)⊤ as
a consequence of the symmetry of G(z). However, if we consider,
in the spirit of Remark 3.2, the possibly non-symmetric case,
then condition G(−1) = G(−1)⊤ still holds. More precisely,
assuming that rational NI systems are defined by conditions (i)–(v)
of Lemma 3.2 (and that symmetry is not assumed), we have that
if −1 is not a pole of G(z) then G(−1) = G(−1)⊤. In fact, since
by condition (ii) of Lemma 3.2, i [G(eiθ ) − G(eiθ )∗] ≥ 0 for all θ ∈

(0, π) (except for the values of θ forwhich z = ei θ is a pole ofG(z)),
we can use continuity and conclude that i [G(−1) − G(−1)∗] ≥ 0,
but G(−1) is real so that i [G(−1) − G(−1)⊤] is positive semi-
definite. The diagonal entries of i [G(−1)−G(−1)⊤] are zero so that
wenecessarily haveG(−1)−G(−1)⊤ = 0. Similarly, assuming that
rational NI systems are defined by conditions (i)–(v) of Lemma 3.2
(and that symmetry is not assumed), we have that if 1 is not a pole
of G(z) then G(1) = G(1)⊤.

In this non-symmetric setting, it is easy to check that the result
analogue to Lemma 3.7 is that G(z)without poles in−1 is NI if and
only if F(z) defined by (11) is PR and G(−1) = G(−1)⊤.

We are now in a position to give a discrete-time negative imag-
inary lemma that gives a complete state-space characterization of
NI systems. Different grades of strength of continuous-time neg-
ative imaginary lemmas are given in Lanzon and Petersen (2008),
Lanzon, Song, Patra, and Petersen (2011) and Song, Lanzon, Patra,
and Petersen (2012).

Theorem 3.2. Let


A B
C D


be a minimal state-space realization

of a discrete-time, symmetric, real, rational, proper transfer function
G(z). Suppose det(I + A) ≠ 0 and det(I − A) ≠ 0. Then, G(z) is NI if
and only if there exists a real matrix X = X⊤ > 0 such that

X − A⊤X A ≥ 0 and C = −B⊤(A⊤
− I)−1X (A + I). (12)

Proof. First, note that

A (A − I)−1
= I + (A − I)−1. (13)

Now, in view of Lemma 3.7, G(z) is NI if and only if F(z) =
z−1
z+1 [G(z) − G(−1)] is PR. By Lemma 3.8, this is equivalent to

A B
C (A − I)(A + I)−1 C (A + I)−1 B


being PR. Using Lemma 2.1, the latter conditions are equivalent to
existence of X > 0 and L,W such that

X − A⊤ X A = L⊤ L, (14)

(A⊤
+ I)−1(A⊤

− I) C⊤
− A⊤ X B = L⊤ W , (15)

C (A + I)−1 B + B⊤ (A⊤
+ I)−1 C⊤

− B⊤ X B = W⊤ W . (16)

Eq. (15) can be written as

C = (W⊤L + B⊤X A)(A − I)−1(A + I),

which can be substituted into (16) to give

B⊤X [I + (A − I)−1
] B + B⊤

[I + (A⊤
− I)−1

] X B
− B⊤X B

= W⊤W − W⊤L (A − I)−1B − B⊤(A⊤
− I)−1L⊤W
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in view of (13). This equation can also be written as

B⊤X (A − I)−1B + B⊤(A⊤
− I)−1X B + B⊤X B

+ B⊤(A⊤
− I)−1L⊤L(A − I)−1B

= [W − L(A − I)−1B]⊤[W − L(A − I)−1B].

Substituting the term L⊤L of (14) into the latter yields

B⊤X (A − I)−1B + B⊤(A⊤
− I)−1X B + B⊤X B

+ B⊤(A⊤
− I)−1X (A − I)−1B

− B⊤(A⊤
− I)−1A⊤ X A (A − I)−1B

= [W − L(A − I)−1B]⊤[W − L(A − I)−1B].

Using (13), it is easily seen that the left hand-side of this equation
is equal to zero, so that W = L (A − I)−1B. This means that G(z) is
NI if and only if there exists X > 0 such that X − A⊤X A ≥ 0 and
C = [B⊤(A⊤

− I)−1(X − A⊤X A) + B⊤X A](A − I)−1(A + I).
Now, using (13), G(z) is NI if and only if there exists X > 0 such

that X − A⊤X A ≥ 0 and C (A + I)−1
= −B⊤(A⊤

− I)−1X . �

The conditions given in Theorem 3.2 and Corollary 3.1 are non-
strict linear matrix inequalities in the Lyapunov variable X or Y
which yield a set of convex conditions that can be solved via
commercially available software. The conditions are necessary and
sufficient. If one were to tighten the non-strict inequality to a
strict inequality, a subset of negative imaginary systems would be
obtained, see Lanzon et al. (2011) for detailed discussions on this
in the continuous-time setting.

Corollary 3.1. Let the suppositions of Theorem 3.2 hold. Then G(z) is
NI if and only if there exists Y = Y⊤ > 0 such that Y − AY A⊤

≥ 0
and B = −(A − I)Y (A⊤

+ I)−1C⊤.
Proof. The result follows by letting Y = X−1 and noting that

X − A⊤X A ≥ 0 is equivalent to

X A⊤

A X−1


≥ 0, which is in turn

equivalent to X−1
− AX−1A⊤

≥ 0. �

We next show that G(1) and G(−1) can be ordered for discrete-
time negative imaginary systems.

Lemma 3.9. Let G : C −→ Cm×m be a discrete-time, real, rational,
proper, NI (resp. WSNI) transfer function with no poles at +1 and−1.
Then

G(1) − G(−1) ≥ 0 (resp. > 0).

Proof. Using Theorem 3.2 and a minimal realization for G(z), we
find

G(1) − G(−1) = C (I − A)−1 B + D − C(−I − A)−1 B − D
= C


(I − A)−1

+ (I + A)−1 B

= 2 C (I + A)−1(I − A)−1 B
= −2 B⊤(A⊤

− I)−1 X (I − A)−1 B
= 2 B⊤(I − A)−⊤X(I − A)−1 B ≥ 0.

This concludes the proof when G is NI.
Now, we focus on G beingWSNI. The strict inequality result will

be proven via a contra-positive argument. Suppose there exists an
x ∈ Rm such that [G(1) − G(−1)]x = 0. Then B⊤(I − A)−⊤X(I −

A)−1 Bx = 0 which implies that Bx = 0 as X > 0. This then implies
that G(eiθ )x = Dx ∀θ ∈ (0, π), i.e.,
G(eiθ ) − D


x = 0, ∀θ ∈ (0, π).

Since G is WSNI, i [G(eiθ ) − G(eiθ )∗] is positive definite for all θ ∈

(0, π) so that if, for θ0 ∈ (0, π), x is such that x∗

i

G(eiθ0) −

G(eiθ0)∗

x = 0, we can conclude that x = 0. Now recall that

D = D⊤. Hence, x∗

i

G(eiθ0) − G(eiθ0)∗


x = i x∗


G(eiθ0) − D


−

G(eiθ0) − D
∗x = 0. Hence x = 0, so that [G(1) − G(−1)] must

be nonsingular. This completes the proof. �
4. Feedback interconnections and internal stability

The following result shows under what circumstances are
NI, WSNI and SSNI properties preserved when such systems
are interconnected in feedback. Given complex matrices S1, S2
and complex vectors y1, y2, u1, u2, α, β of compatible dimension
satisfying


y1
α


= S1


u1
β


and


β
y2


= S2


α
u2


, let S1 ⋆ S2 denote

the Redheffer star product which maps

u1
u2


to


y1
y2


. Furthermore,

let Fℓ(S1, S
(1,1)
2 ) (resp. Fu(S2, S

(2,2)
1 )) denote the lower (resp. upper)

linear fractional transformation. Finally, let [P,Q ] denote the
positive feedback interconnection between systems P and Q .

Lemma 4.1. Let S1 : C → Cm1×m1 be NI (resp. WSNI or SSNI)
and S2 : C → Cm2×m2 be NI (resp. WSNI or SSNI). Let 0 <
a, b ≤ min{m1,m2} and suppose the feedback interconnection
corresponding to the Redheffer Star product S1 ⋆ S2 be internally
stable.3 Then S1 ⋆ S2 is NI (resp. WSNI or SSNI).

Furthermore, if

• a = b = m2 < m1, then S1 ⋆ S2 = Fℓ(S1, S2);
• a = b = m1 < m2, then S1 ⋆ S2 = Fu(S2, S1);
• a = b = m2 = m1/2, S1 =


P Ia
Ia 0


and S2 = Q , then

S1 ⋆ S2 = P + Q ;
• a = b = m2 = m1/2, S1 =


0 Ia
Ia P


and S2 = Q , then

S1 ⋆ S2 = Q (Ia − PQ )−1;
• 2a = 2b = m1 = m2, S1 =


0 Ia
Ia P


and S2 =


Q Ia
Ia 0


, then

S1 ⋆ S2 =


−P Ia
Ia −Q

−1
=


Q (Ia − PQ )−1 (Ia − QP)−1

(Ia − PQ )−1 P(Ia − QP)−1


which

corresponds to the positive feedback interconnection [P,Q ].

Proof. Given S1(z), S2(z) and complex vectors y1, y2, u1, u2, α, β

of compatible dimension satisfying

y1
α


= S1(z)


u1
β


and


β
y2


=

S2(z)


α
u2


, it follows that


y1
y2


= S1(z) ⋆ S2(z)


u1
u2


. Then, for all

u1
β


∈ Cm1 ,


α
u2


∈ Cm2 :

[u∗

1 u∗

2]

i ([S1(z) ⋆ S2(z)] − [S1(z) ⋆ S2(z)]∗)

 
u1
u2


= i [u∗

1 u∗

2]


y1
y2


− i [y∗

1 y∗

2]


u1
u2


= i [u∗

1 β∗
]


y1
α


− i [y∗

1 α∗
]


u1
β


+ i [α∗ u∗

2]


β
y2


− i [β∗ y∗

2]


α
u2


= [u∗

1 β∗
]

i(S1(z) − S1(z)∗)

 
u1
β


+ [α∗ u∗

2]

i(S2(z) − S2(z)∗)

 
α
u2


.

Since the Redheffer star interconnection is internally stable, the
three respective results (NI, WSNI, SSNI) then follow by applying
Definition 3.1, Lemma 3.3 or Lemma 3.5 respectively on the
corresponding domains of z ∈ C for S1(z) and S2(z).

The five cases where a, b, S1 and S2 are restricted are trivial
consequences of a Redheffer calculation. �

3 This is the standardmeaning of ‘‘internal stability’’, i.e. add two extra exogenous
input signals to the internal signals and ensure that all output signals and all internal
signals are energy-bounded for any energy-bounded exogenous input excitation.
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Example 4.1. This example shows that it is not possible tomix and
match properties of S1 and S2 for the strict results in Lemma 4.1 to
hold.

Let S1 =


1 0
0 1

 
1
0


( 1 0 ) 0


which is clearly NI and let S2 = z−1

which is clearly SSNI (and hence also WSNI and hence also NI).
Then S1 ⋆ S2 =


1 + z−1 0

0 1


which is only NI (and not WSNI nor

SSNI).

The following stability theorem here applies to real, rational,
proper systems but invokes only the interconnection of NI and
WSNI systems. It is the discrete-time counterpart of Theorem 5 in
Lanzon and Petersen (2008).

Theorem 4.1. Let P : C → Cm×m be a discrete-time, real, rational,
proper, NI system with no poles at +1 and −1, and let Q : C →

Cm×m be a discrete-time, real, rational, proper, WSNI system. Suppose
P(−1)Q (−1) = 0 and Q (−1) ≥ 0. Then

[P,Q ]is internally stable ⇔ λ̄ (P(1)Q (1)) < 1.

Proof. The proof trivially follows by applying (Lanzon & Petersen,
2008, Theorem 5) or (Xiong et al., 2010, Theorem 1) on the systems
M(s) = P( 1+s

1−s ) and N(s) = Q ( 1+s
1−s ) obtained through the bilinear

transformation z =
1+s
1−s . �

5. Concluding remarks

In this paper we presented a definition of negative imaginary
systems for discrete-time systems that hinges entirely on prop-
erties of the transfer function matrix and not on a real, ratio-
nal, proper, finite-dimensional realization. We have drawn a full
picture which illustrates the relationship that exists, in the
discrete-time, between the notions of positive real and negative
imaginary systems, as well as strictly positive real and strictly neg-
ative imaginary systems. Indeed, as it happens for the classical
theory of positive real systems, even for negative imaginary sys-
tems our definitions can be viewed as a single definition referred
to different analyticity domains. In fact, we can define a function
G : C −→ Cm×m analytic in the open set Ω = {z ∈ C : |z| > 1},
to be skew-imaginary if

• i [G(z) − G(z)∗] ≥ 0 for all z ∈ Ω such that Im{z} > 0;
• i [G(z) − G(z)∗] = 0 for all z ∈ Ω such that Im{z} = 0;
• i [G(z) − G(z)∗] ≤ 0 for all z ∈ Ω such that Im{z} < 0.

Then, it is clear that a function is NI if it is analytic in Ω and
skew-imaginary there.

Finally, we have derived stability analysis results for the
interconnections of NI and WSNI systems.
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