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Abstract—This paper presents a novel distributed formation
control architecture for innovative tri-rotor drones. The three
rotors of this novel aerial robotic platform can be tilted indepen-
dently to obtain full force and torque vectoring authority, such
that the tri-rotor drone is able to overcome the limitations of
a classic quadrotor UAV that can not change its attitude while
hovering at a stationary position. In the flight control systems
design, a robust feedback linearization controller is first devel-
oped to handle the highly coupled and nonlinear dynamics and a
distributed adaptive formation control tracking protocol is then
designed to control a swarm of tri-rotor UAVs. The 3D position
and 3D attitude of each vehicle can be controlled independently
to follow a desired formation. The effectiveness of the proposed
control strategy is shown via a realistic virtual reality simulation
environment that the networked tri-rotor drones are robust to
aerodynamic disturbances and model uncertainties.

Index Terms—Aerial robotics, adaptive control, multi-agent
systems, unmanned Aerial Vehicle

I. INTRODUCTION

In recent years, distributed cooperative control of multi-
agent systems have received significant attention from both
the practical engineering and academic communities due to
their broad prospect in applications, such as unmanned aerial
vehicles formation, multi-robot cooperation, distributed sensor
networks, etc. The research field includes consensus control
[1], rendezvous control, containment control, and formation
control. Formation control of multi-agent systems is hence a
key active area of research, which has experienced a rapid
growth in the research efforts from the international robotics
community.

Recently, many consensus-based control methods have been
applied to solve formation control problems. Motion trajectory
tracing and formation control of first-order and second-order
multi-robot systems are presented in [2] and [3], respectively.
[4] discusses the formation stability problems for general high-
order swarm systems, and the result is extended to deal with
formation tracking for multiple high-order autonomous agents
by using a two-level consensus approach in [5]. Formation
control of quadrotor swarm systems based on consensus
strategies is achieved in [6] and [7], while distributed coop-
erative control of innovative aerial robotic platforms is still
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Fig. 1. The hardware of the designed tri-rotor UAV

a vigorously active research topic with much progress still
needed.

Aiming at more efficient configurations in terms of size,
autonomy, flight range, and payload capacity, some innovative
vehicle platforms are developed by researchers in recent years
[8]. The proposed tri-rotor UAV (as shown in Fig. 1) has three
rotors arranged in an equilateral triangular configuation and
each rotor is attached to a servo motor that can independently
change the rotating direction of the propeller. Thus, complete
3D thrust and 3D torque vectoring authority is achieved.. This
configuration guarantees the UAV a high level of flexibility and
maneuverability for attitude control and position movement,
such characteristics allow the UAV to fly easier in narrow
space and create possibility to avoid obstacles. Compared to
the quadrotor, this innovative configuration also requires less
hover power and hence provides longer flight time, which
makes it ideal for deployment in various missions.

The dynamics of the proposed tri-rotor UAVs are highly
coupled and nonlinear, which presents a significant challenge
to control system design. In contrast to a quadrotor UAV,
which has zero angular momentum in hover, a tri-rotor UAV
has persistent angular moment, and hence also gyroscopic
dynamics due to the asymmetric configuration of the system
which poses significant control systems complexities.

Motivated by the challenges stated above, the combination
of formation control and the proposed innovative tri-rotor
drone is developed and investigated in this paper. Robust
feedback linearization is used to handle the tri-rotor drone’s
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highly coupled and nonlinear dynamics. It has been success-
fully demonstrated [9] to provide significant robustness to
both model uncertainty and external dynamics. A cooperative
adaptive state feedback formation protocol is also applied to
the networked tri-rotor UAV swarm, which is based on neigh-
boring information without using global information of the
communication graph. It is shown that the proposed strategy
provides a straightforward way to construct fully distributed
controllers that ensure stabilization and synchronization of the
swarm.

Throughout this paper, let In ∈ Rn×n denote the identity
matrix of demension n and 1N ∈ Rn be the vector with all
entries equal to one. diag{ai} represents a diagonal matrix
with diagonal entries ai. The Kronecker product is denoted
by ⊗.

II. PRELIMINARIES ON GRAPH THEORY

Consider a weighted and directed graph G = (V, E ,A) with
a nonempty set of N nodes V = {1, 2, . . . , N}, a set of edges
E ⊂ V × V , and associated adjacency matrix A = [aij ] ∈
RN×N . An edge rooted at node i and ended at node j is
denoted by (i, j), which means information can flow from
node i to node j. aij is the weight of edge (i, j) and aij > 0
if (i, j) ∈ E . Assume that there are no repeated edges and no
self loops. Node j is called a neighbour of node i if (i, j) ∈ E .
A directed graph has or contains a directed spanning tree if
there exists a node, called the root, such that there exists a
directed path from this node to every other nodes.

Lemma 1 ( [10]): If G contains a spanning tree, then zero
is a simple eigenvalue of L with associated right eigenvector
1N , and all the other N −1 eigenvalues have nonnegative real
parts.

Lemma 2 ( [11]): Consider a nonsingular M -matrix
L. There exists a diagonal matrix G such that G =
diag{g1, . . . , gN} > 0 and GL+ LTG > 0

Lemma 3 ( [12]): If a and b are nonnegative real numbers
and p and q are positive real numbers such that 1

p + 1
q = 1,

then ab ≤ ap

p + bq

q , equality holds if and only ap = bq .
The following assumption of graph topology holds through-

out this paper.
Assumption 1: The directed graph G contains a spanning

tree and the root node i can obtain information from the leader
node.

III. MATHEMATICAL MODELING

The configuration of the tri-rotor UAV was first proposed in
our earlier work [13], [14]. In order to develop the dynamic
model of the proposed tri-rotor UAV, the following right
hand coordinate systems shown in Fig. 2 are considered:
(Xe, Ye, Ze) represents the earth coordinate system, which
is assumed to be inertial (i.e. fixed). (Xb, Yb, Zb) denotes
the body coordinate system, where the origin Ob is fixed to
the center of mass of the vehicle. This coordinate system
moves with the vehicle. (Xli, Yli, Zli) with i ∈ {1, 2, 3} is
the local coordinate system of each propeller-motor assembly.
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Fig. 2. Coordinate systems of the tri-rotor UAV

TABLE I
NOTATION OF THE TRI-ROTOR UAV MODEL

Symbol Defination

ωmi Rotational speed of the ith DC motor
αsi Tilting angle of the ith servo motor
kf Thrust-to-speed constant of the propeller
kd Torque-to-speed constant of the propeller
g Gravitational acceleration
m Total mass of the UAV
Ibv Inertia matrix of the UAV
κbv The transitional velocity of the UAV

ub, vb, wb The Cartesian coordinates of the UAV transitional velocity
ωb
v Angular velocity of the UAV

p, q, r The Cartesian coordinates of the UAV angular velocity
ηv Attitude vector of the UAV related to the earth frame
λev Position vector of the UAV (earth frame)
φ Roll angle of the UAV related to the earth frame
θ Pitch angle of the UAV related to the earth frame
ψ Yaw angle of the UAV related to the earth frame
xv The x coordinate position of the UAV in the earth frame
yv The y coordinate position of the UAV in the earth frame
zv The z coordinate position of the UAV in the earth frame
Re

b The rotational matrix from frame b to frame e

It is assumed that the UAV has fast servo dynamics, which
results in instantaneous change of tilting angles.

The dynamic model of the tri-rotor can be described in a
compact form as

κ̇bv = gΘ− S(ωbv)κ
b
v +

kf
m
Hfρ, (1)

ω̇bv = −(Ibv)
−1
S(ωbv)I

b
vω

b
v + (Ibv)

−1
(kfHt − kdHf )ρ, (2)

η̇v = Ψωbv, (3)

λ̇ev = Rebκ
b
v, (4)

where all terms used in the model of the UAV are defined in
Table 1 and

κbv =

ubvb
wb

 , ωbv =

pq
r

 , ηv =

φθ
ψ

 and λev =

xvyv
zv

 .
The remaining matrices are defined as:

Hf =

[
0 −

√
3

2

√
3

2 0 0 0

1 − 1
2 −

1
2 0 0 0

0 0 0 1 1 1

]
, Θ =

[
sin (θ)

− sin (φ) cos (θ)
− cos (φ) cos (θ)

]
,



and

Ht = l

[
0 0 0 0

√
3

2 −
√

3
2

0 0 0 −1 1
2

1
2

1 1 1 0 0 0

]
.

We can choose the state vector as

x = [x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12]
T

= [ub vb wb p q r φ θ ψ xv yv zv]
T
,

and the input and output vectors as

u = ρ =


u1
u2
u3
u4
u5
u6

 =


ω2
m1 sin (αs1)
ω2
m2 sin (αs2)
ω2
m3 sin (αs3)

ω2
m1 cos (αs1)
ω2
m2 cos (αs2)
ω2
m3 cos (αs3)

 , y =


φ
θ
ψ
xv
yv
zv

 =


x7
x8
x9
x10
x11
x12

 .

IV. CONTROL SYSTEM DESIGN

The objective of this section is to design a robust distributed
formation control protocol for swarms of the proposed tri-rotor
UAV. Since the dynamical model of a single tri-rotor UAV is
highly coupled and nonlinear, a robust feedback linearization
technique is first applied to each tri-rotor to obtain simpler
closed-loop dynamics. Then the swarm of identical tri-rotor
UAVs is controlled through a distributed adaptive formation
control protocol which solves the formation tracking problem
for tri-rotor robotic swarms as shown in Fig. 3.

A. Robust Feedback Linearization

The nonlinear dynamics of the tri-rotor UAV can be de-
scribed by

ẋ = F (x) +G (x)u = F (x) +

m∑
i=1

Gi (x)ui, (5)

y = [H1 (x) , . . . ,Hm (x)]
T
, (6)

where x(t) ∈ Rn denotes the state vector, u(t) ∈ Rm is the
control input, y(t) ∈ Rm is the output vector, and F (x),
G1 (x), . . . , Gm (x), H1 (x), . . . , Hm (x) are smooth vector
fields defined on an open subset of Rn.

It can be seen that this system satisfies the well-known
conditions for feedback linearization [15]: The relative de-
gree of Hi is equal to ri for i ∈ {1, . . . ,m} such that
r1 + · · ·+ rm = n, and the decoupling matrix

M(x) =

 LG1
L

r1−1

f H1(x) ... LGmL
r1−1

f H1(x)

...
. . .

...
LG1

Lrm−1
f Hm(x) ... LGmL

rm−1
f Hm(x)

 (7)

is invertible, where L(.) (.) denotes the Lie derivative operator
[15]. It is then possible to find a feedback linearizing control
law of the form

u (x,w) = αc (x) + βc (x)w, (8)

where w(t) is a new control input, and
αc(x) = −M−1(x)

[
Lr1f H1(x) . . . Lrmf Hm(x)

]T
,

βc(x) = M−1(x), such that on application of the control law
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Fig. 3. Control system scheme: Distributed optimal formation control law
and robust feedback linearization combining linear and nonlinear parts

in (8), the nonlinear state-equation (5) reduces into the linear
state-equation

ẋc = Acxc +Bcw, (9)

where Ac and Bc are matrices of the Brunovsky canoni-
cal form [15], and a change of coordinates xc = φc (x)
with φTc (x) =

[
φTc1(x) . . . φTcm(x)

]
and φTci(x) =

[Hi(x) LfHi(x) . . . Lri−1f Hi(x)] .
The robust feedback linearization technique [16], on the

other hand, exactly transforms the nonlinear state-equation
into a linear state-equation that is equal to the Jacobi linear
approximation of the original nonlinear state-equation around
the origin. The nonlinear state-equation (5) is geometrically
transformed into the linear state-equation of any operating
point, not only in a small neighborhood of the origin point.

The robust feedback linearization control law is

u (x, v) = α (x) + β (x) v, (10)

where v(t) is a new control input, and

α (x) = αc (x) + βc (x)LU−1φc (x) , (11)

β (x) = βc (x)R−1, (12)

φr (x) = U−1φc (x) , (13)

L = −M (0) ∂xαc (0) , (14)

R = M−1 (0) , (15)

U = ∂xφc (0) . (16)

After calculating the classic Brunowski form linearizing
input (8) and applying the formulas for the robust feedback
linearization (10)-(16), the system can then be robust feedback
linearized into

ẋr = Arxr +Brv, (17)

where Ar = ∂xF (0) and Br = G (0).
Furthermore, φc and φr are given by

φc = [x7 x8 x9 x10 x11 x12 ẋ7 ẋ8 ẋ9 ẋ10 ẋ11 ẋ12]
T
,

φr = [ẋ10 ẋ11 ẋ12 ẋ7 ẋ8 ẋ9 x7 x8 x9 x10 x11 x12]
T
.

From [16] we know the change of coordinates after robust
feedback linearization is xr = φr (x).



B. Distributed Adaptive Formation Protocol Design
Consider a group of N tri-rotor UAVs. Suppose that each

tri-rotor UAV has the identical linearized dynamics described
by

ẋri = Arxri +Brvi. (18)

It can be easily verified that (Ar, Br) is stabilizable.
The dynamics of the leader node, labeled 0, is given by

ẋ0 = Arx0, (19)

where x0 ∈ Rn is the state. It can be considered as a command
generator, which generates the desired target trajectory. The
leader can be observed from a subset of UAVs in a graph. If
agent i observes the leader, an edge (0, i) is said to exist with
weighting gain ai0 > 0 as a pinned node.

Then the Laplacian matrix L related to G can be partitioned
as L =

[
0 01×N

L2 L1

]
.

The desired formation is specified by the vector h =[
hT1 , h

T
2 , . . . , h

T
N

]T
with hi ∈ Rn being a preset vector known

by the corresponding ith agent. The tri-rotor swarm is said to
achieve formation tracking if for any given bounded initial
states

lim
t→∞

(xri(t)− hi(t)− x0(t)) = 0 ∀i ∈ {1, . . . , N}. (20)

Construct the following fully distributed adaptive formation
control protocol

vi = Fxri + (ci + ρi)Kξi + γi,

ċi = ξTi Γξi ∀i ∈ {1, . . . , N},
(21)

where ξi =
∑N
j=0 aij(t)[(xri − hi)− (xrj − hj)], ci(t) de-

notes the time varying coupling weight associated with the ith
agent with ci(0) ≥ 0, F ∈ Rm×n, K ∈ Rp×n and Γ ∈ Rn×n
are the feedback gain matrices, and ρi and γi are smooth
functions to be determined.

Since the matrix Br given in (18) is of full rank, there al-
ways exists a nonsingular matrix [B̃T , B̄T ]

T
with B̃ ∈ Rm×n

and B̄ ∈ R(n−m)×n such that B̃Br = Im and B̄Br = 0.
Theorem 1: Suppose that Assumption 1 holds. If the fol-

lowing formation feasibility condition is satisfied

B̄[(Ar +BrF )hi − ḣi] = 0 ∀i ∈ {1, . . . , N}, (22)

the formation specified by hi ∈ Rn ∀i ∈ {1, . . . , N} can be
achieved under the distributed adaptive control protocol (21)
with K = −R−1BTr P , Γ = PBrR

−1BTr P , γi = B̃[ḣi −
(Ar + BrF )hi] and ρi = ξTi Pξi, where P > 0 is a solution
to the following Riccati equation:

(Ar +BrF )TP + P (Ar +BrF ) +Q− PBrR−1BTr P = 0
(23)

with Q > 0 and R > 0.
Proof: Let the global consensus error ξ = [ξT1 , . . . , ξ

T
N ]T .

Define zi = xri−hi ∀i ∈ {1, . . . , N} and z = [zT1 , . . . , z
T
N ]T .

Therefore, the global error vector can be written in a compact
form as

ξ =(L1 ⊗ In)z + (L2 ⊗ In)x0

=(L1 ⊗ In)(z − 1⊗ x0).
(24)

Substituting (21) into (18), the following dynamics of ξ and
ci can be obtained

ξ̇ =[IN ⊗ (Ar +BrF ) + L1(C + ρ)⊗BrK]ξ

+ [L1 ⊗ (Ar +BrF )]h− (L1 ⊗ In)ḣ+ (L1 ⊗Br)γ,
ċi =ξTi Γξi ∀i ∈ {1, . . . , N},

(25)

where C = diag{c1, . . . , cN} , ρ = diag{ρ1, . . . , ρN}, and
γ =

[
γT1 , γ

T
2 , . . . , γ

T
N

]T
.

Consider the following Lyapunov function candidate

V1 =

N∑
i=1

1

2
gi(2ci + ρi)ρi +

1

2

N∑
i=1

gi(ci − α)
2 (26)

where G = diag{g1, . . . , gN} is a positive definite matrix such
that GL1 + L1

TG > 0, and α is a positive constant to be
determined later. According to Lemma 1 and the fact that L1

is a nonsingular M -matrix, the existence of such a positive
definite matrix G can be guaranteed from Lemma 2. Because
ci(0) > 0, it follows from ċi(t) ≥ 0 that ci(t) > 0 for any
t > 0. Then, it is easy to conclude that V1 is positive definite.

Thus, the time derivative of V1 along the trajectory of (25)
is obtained as

V̇1 =

N∑
i=1

[gi(ci + ρi)ρ̇i + giρiċi] +

N∑
i=1

gi(ci − α)ċi

=

N∑
i=1

2gi(ci + ρi)ξ
T
i P ξ̇i +

N∑
i=1

gi(ρi + ci − α)ċi

(27)

Note that
N∑
i=1

gi(ρi + ci − α)ċi = ξT [(C + ρ− αI)G⊗ Γ]ξ, (28)

and
N∑
i=1

2gi(ci + ρi)ξ
T
i P ξ̇i = 2ξT [(C + ρ)G⊗ P ]ξ̇

=ξT [(C + ρ)G⊗ [P (Ar +BrF ) + (Ar +BrF )
T
P ]

− (C + ρ)(GL1 + LT1G)(C + ρ)⊗ Γ]ξ

+ 2ξT [(C + ρ)GL1 ⊗ P (Ar +BrF )]h

− 2ξT [(C + ρ)GL1 ⊗ P ]ḣ

+ 2ξT [(C + ρ)GL1 ⊗ PBr]γ
≤ξT [(C + ρ)G⊗ [P (Ar +BrF ) + (Ar +BrF )

T
P ]

− λmin0 (C + ρ)
2 ⊗ Γ]ξ

+ 2ξT [(C + ρ)GL1 ⊗ P (Ar +BrF )]h

− 2ξT [(C + ρ)GL1 ⊗ P ]ḣ

+ 2ξT [(C + ρ)GL1 ⊗ PBr]γ

(29)

where λmin0 represents the minimum of the smallest positive
eigenvalue of GL1 + LT1G.

If condition (22) holds, then for all i ∈ {1, . . . , N}

B̄(Ar +BrF )hi − B̄ḣi + B̄Brγi = 0. (30)



By letting γi = B̃ḣi − B̃(Ar +BrF )hi, it follows that

B̃(Ar +BrF )hi − B̃ḣi + B̃Brγi = 0. (31)

From (30) and (31) and the fact that
[
B̃T , B̄T

]T
is nonsingu-

lar, one gets

(Ar +BrF )hi − ḣi +Brγi = 0, (32)

which means that

[IN ⊗ (Ar +BrF )]h−(IN⊗IN )ḣ+(IN ⊗Br) γ = 0. (33)

Pre-multiplying the both sides of (33) by (C + ρ)GL1 ⊗ P
yields[

(C + ρ)GL1 ⊗ P (Ar +BrF )
]
h−

[
(C + ρ)GL1 ⊗ P

]
ḣ

+
[
(C + ρ)GL1 ⊗ PBr

]
γ = 0.

(34)

Therefore, we obtain

V̇1 ≤ξT
[
(C + ρ)G⊗ [P (Ar +BrF ) + (Ar +BrF )

T
P

+ Γ]− (λ
min
0 (C + ρ)

2
+ αG)⊗ Γ

]
ξ.

(35)

From Lemma 3, we have

− ξT (λ
min

0 (C + ρ)
2

+ αG)⊗ Γ]ξ

≤− 2ξT [
√
λmin0 αG(C + ρ)⊗ Γ]ξ.

(36)

Selecting α ≥ maxi∈{1,...,N}gi
λmin
0

and substituting (36) into (35)
yields

V̇1 ≤ ξT
[
(C+ρ)G⊗ [P (Ar+BrF )+(Ar +BrF )

T
P−Γ]

]
ξ.

(37)
Define ζ = (

√
(C + ρ)G ⊗ I)ξ. Therefore, it follows from

(37) that

V̇1 ≤ζT
[
IN ⊗ [P (Ar +BrF ) + (Ar +BrF )

T
P

− PBrR−1BrTP ]
]
ζ

≤0

(38)

where the last inequality comes immediately from the Riccati
equation (23). Since V1(t) ≥ 0 and V̇1(t) ≤ 0, V1(t) is
bounded. V̇1 ≡ 0 implies ζ ≡ 0, which in turn implies that
ξ ≡ 0. By using LaSalle’s invariance principle, we have the
formation tracking error ξ asymptotically converges to zero.
Therefore, the distributed formation tracking of tri-rotor UAVs
is achieved.

Remark 1: It should be noted that the formation control
problem reduces to a consensus problem when hi = 0
∀i ∈ {1, . . . , N}, such that the protocol shown in [17] can
be viewed as a special case of the result in the current paper.

Remark 2: The proposed distributed adaptive formation
tracking protocol in this paper is different from that in [18],
where it is necessary to calculate the minimum positive eigen-
value of the Laplacian matrix of the communication topology.
Our distributed cooperative controller allows each drone only
to access the information from its neighbors such that the
proposed controller is fully distributed regardless of global
information.
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Fig. 5. 3D trajectories of the tri-rotor swarm

V. SIMULATION RESULTS

The numerical simulation is carried out in this section in
order to validate the theoretical results.

The simulation environment has been designed and imple-
mented in Simscape Multibody™ and Simulink® for more
realistic results as this provides a 3D graphical display of
physical devices. Simscape Multibody™ is used to develop
the dynamic model of the tri-rotor UAV based on physical
components and the designed control system is implemented
in Simulink®. The actuator delay and aerodynamic parameters
are measured via experimentation.

The directed interaction topology among the six vehicles
is shown in Fig. 4, where the leader agent 0 provides the
formation reference signal. Recall that hi ∈ Rn is the
formation offset vector with respect to the formation reference
x0 ∈ Rn. The 3D attitude and 3D position of each UAV are
chosen independently. The control parameters K and Γ can
be chosen by the procedure in Theorem 1. Smooth functions
ρi and γi can then be determined subsequently. The proposed
control strategy is valid regardless of the leader is static or
time-varying.

On using robust control law (10) with distributed adaptive
formation control protocol (21), the trajectory of each tri-rotor
UAV is given by Fig. 5. The attitude tracking performance with
respect to roll, pitch and yaw angles and the position tracking
of hovering are shown in Fig. 6. The 3D visualization of
distributed formation of the tri-rotor UAV swarm are illustrated
in Fig. 7. From all these figures, it can be seen that the tri-rotor
swarm forms an expected formation after 15s. It is concluded



 

Fig. 6. Attitude and position response of the tri-rotor swarm.

(a) (b)

(c) (d)

Fig. 7. 3D shots of the tri-rotor swarm system. (a) t = 0 s. (b) t = 5 s. (c)
t = 10 s. (d) t = 20 s.

that the desired formation and attitude tracking of the UAV
swarm is achieved independently, and the designed control
system preserves good robustness properties when subjected to
simulated aerodynamic disturbances and model uncertainties.

VI. CONCLUSION

In this paper, we have solved a formation tracking problem
of a networked tri-rotor UAV swarm by using a distributed
adaptive formation control protocol. It has been shown that the
proposed tri-rotor UAV swarm is able to track a desired for-
mation whilst independently tracking different attitudes, which
lays the foundation for some more complex collaborative tasks
to be explored.

Future work will take state estimation and obstacle avoid-
ance into consideration, and robust methods such as [19]–
[21] will be exploited in the design of the distributed control
protocol.
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