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Abstract— This paper proposes a H-infinity-PID cascade control 

technique for the control of an open-loop unstable system, the ball 

and beam system. This property of being open-loop unstable 

makes this system ideal for investigating the performance of 

different control techniques. A 5th order nonlinear model of the 

ball and beam plant is derived to include the actuation 

mechanism. A H-infinity-PID controller is proposed and applied 

to the system using a cascade structure. The control goal is to 

drive the ball to any desired position on the beam. A check for 

robustness of the closed loop is also performed using frequency 

domain methods. The results show that the proposed controller 

robustly stabilizes the system and equally achieves the setpoint 

tracking goal. The control voltage which is the control input is 

also found to be within practicable limits. 

Index Terms--PID, cascade, H-infinity, ball and beam, H-infinity-

PID control, robust control, loop-shaping.  

I. INTRODUCTION  

The ball and beam system (BBS) is an underactuated 

mechanical system, with two degrees of freedom. The system 

setup is made up of a beam which pivots in the vertical plane 

due to a Torque applied at the pivot, and a ball which is free to 

roll up and down the beam [1]. It has a very important property; 

it is open-loop unstable. That is, if there is no feedback control, 

the ball will roll off the beam when there is a small change in 

the beam angle. Aircraft, helicopters, underwater vehicles, 

mobile robots, and walking robots are real-life examples of 

systems that exhibit similar behaviour. Thus, research into 

such systems has a wide range of applications and control 

engineers have continued to study various control strategies 

such as PID, LQR, State feedback, etc. for the BBS. As 

reported in [2], out of over 11000 controllers in industry, most 

make use of PID feedback. This is probably due to its 

simplicity and the distinct effects of each of the three PID 

terms. However, PID controllers are typically not designed to 

be sensitive to system parameter variations although they 

possess some internal robustness. Hence, some authors have 

combined PID and other control techniques as in [3], which 

showed that fuzzy-PID yielded better performance than a PD 

controller only. Again, an optimal PID-PI cascade controller 

was proposed in [4] where a PID controller is related to a state 

feedback controller with integral action, and this ‘optimal’ PID 

controller is applied to the outer loop, while the inner loop is 

controlled using a PI controller, yielding better performance. 

In the references mentioned, and others on PID control of the 

BBS found in literature, it can be observed that there has been 

very few studies into the application of H-infinity synthesis to 

the BBS. Also, the research into the BBS has made use of 

mostly 2nd order and 4th order models which hardly take the 

actuation mechanism into account. In this paper, a 5th order 

model is derived which accounts for the actuator thereby 

enhancing practicability. Next, a robust controller is 

synthesized using the loop-shaping design method based on H-

infinity synthesis [5] and applied in a cascade control scheme 

for the BBS.   

II. SYSTEM MODELLING 

The BBS setup considered and modelled in this study is the 

one composed of a beam which pivots in the vertical plane due 

to a Torque 𝜏 at the center/point of rotation; and a ball which 

rolls up and down the beam [1]. The nonlinear equations of 

motion of the rolling ball on beam, as derived in [6] and [7], 

using Lagrangian techniques, are given as: 
 

(
𝐽B

𝑅2 + 𝑚) �̈� − 𝑚𝑟�̇�2 + 𝑚𝑔 sin 𝜃 = 0.          (1) 
 

(𝐽 + 𝑚𝑟2)�̈� + 2𝑚𝑟�̇��̇� + 𝑚𝑔𝑟 cos 𝜃 = 𝜏.     (2) 
 

The parameter descriptions and values are as follows: Mass of 

ball m = 0.111Kg, Radius of Ball, R = 0.015m, Beam moment 

of Inertia, J = 0.0172Kg.m2, Ball moment of Inertia, JB = 

9.99×10-6Kg.m2, and Length of Beam, l = 1m. Equations (1) 

and (2) together form the nonlinear model of the Ball and beam 

system with the Torque 𝜏 as input and the ball position r as the 

output. This model does not include an actuator; hence a DC 

Motor is modelled next as the actuator of the system. Consider 

the armature circuit modelled in Fig 1. Applying, Kirchoff’s 

voltage law [8]; we have that, 
 

𝐿
𝑑𝑖A

𝑑𝑡
+ 𝑖A𝑅A + 𝐾B𝐾G�̇� = 𝑉IN,     {𝑉B = 𝐾B𝐾G�̇�}     (3) 
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The parameter descriptions and values are: Armature 

Resistance, RA = 11.9 Ohms, Armature Inductance, LA = 0.3H, 

Voltage and Torque Constants, KT = KB = 0.0148V.rad-1s-1, 

Gear ratio, KG = 70, with �̇� as the shaft velocity [9]. 

 

 

 
 

Figure 1. DC motor with input voltage VIN (volts), resistance RA (Ohms), 

inductance LA (Henry), current iA (Amperes) and the back-
electromotive force VB (volts). 

 

The Torque generated is proportional to the armature current 

and is given by,  

𝜏 = 𝐾G𝐾T𝑖A.        (4) 
 

Substituting (4) into (2), equation (2) becomes, 
 

(𝐽 + 𝑚𝑟2)�̈� + 2𝑚𝑟�̇��̇� + 𝑚𝑔𝑟 cos 𝜃 = 𝐾G𝐾T𝑖A.      (5) 
 

Equations (1), (3) and (5) together form the full nonlinear 

model for the BBS with the input as a Voltage VIN and the 

output as the ball position r. Defining the state variables of the 

systems as, 𝑥 = [𝑥1 𝑥2  𝑥3  𝑥4  𝑥5]
𝑇 = [𝑟   𝑟  ̇ 𝜃   𝜃 ̇  𝑖A]𝑇, the 

nonlinear BBS can be represented as, 

 

     

[
 
 
 
 
𝑥1̇

𝑥2

𝑥3

𝑥4

𝑥5̇

̇
̇
̇

]
 
 
 
 

=

[
 
 
 
 
 

𝑥2

𝐵1𝑥1𝑥4
2 − 𝐵1𝑔 sin 𝑥3

𝑥4
𝐾G𝐾T𝑥5−2𝑚𝑥1𝑥2𝑥4−𝑚𝑔𝑥1 cos 𝑥3

𝐽+𝑚𝑥1
2

−𝑅A𝑥5−𝐾B𝐾G𝑥4

𝐿A ]
 
 
 
 
 

+   

[
 
 
 
 
 
0
0
0
0
1

𝐿𝐴]
 
 
 
 
 

𝑉𝐼𝑁     (6) 

where 𝐵1 =
𝑚

𝐽B
𝑅2+𝑚

.  

III. PRELIMINARIES 

The proposed control strategy involves two linear control 

schemes. The nonlinear model in (6) was therefore linearized 

using the Jacobian method presented in [10]. The Jacobian 

matrix of (6) with respect to the state variable 𝑥 that is, 
𝜕𝑓(𝑥,𝑉IN)

𝜕𝑥
 

is given by, 
 

[
 
 
 
 
 

0 1 0 0 0
𝐵1𝑥4

2 0 −𝐵1𝑔 cos 𝑥3 2𝐵1𝑥1𝑥4 0
0 0 0 1 0

𝜕𝑓4

𝜕𝑥1

−2𝑚𝑥1𝑥4

𝐽+𝑚𝑥1
2

𝑚𝑔𝑥1 sin 𝑥3

𝐽+𝑚𝑥1
2

−2𝑚𝑥1𝑥2

𝐽+𝑚𝑥1
2

𝐾T𝐾G

𝐽+𝑚𝑥1
2

0 0 0
−𝐾B𝐾G

𝐿A

−𝑅A

𝐿A ]
 
 
 
 
 

   (7) 

 

where, 
𝜕𝑓4

𝜕𝑥1
 is given as,   

(𝐽+𝑚𝑥1
2)(−2𝑚𝑥2𝑥4−𝑚𝑔 cos𝑥3)−((𝐾G𝐾T𝑥5−2𝑚𝑥1𝑥2𝑥4−𝑚𝑔𝑥1 cos 𝑥3)(2𝑚𝑥1))

(𝐽+𝑚𝑥1
2)2

 

 

Also, the Jacobian of (6) with respect to the control input VIN 

is given in (8).  

𝜕𝑓(𝑥,𝑉IN)

𝜕𝑉IN
=

[
 
 
 
 
 
0
0
0
0
1

𝐿A]
 
 
 
 
 

                  (8) 

 

The ball operating point was selected as 𝑟0 = 𝑥10
=

0.25m, and the operating point for the beam angle was chosen 

as 𝜃0 = 𝑥30
= 0 rad, the ball velocity 𝑟0̇ = 𝑥20

= 0, and the 

beam velocity 𝜃0̇ = 𝑥40
= 0rad. Substituting these operating 

points into (2), the Torque required to hold this equilibrium is 

0.27N. Substituting this Torque value into (4), the operating 

current 𝑖A, is 0.26A. Hence, substituting all these parameters 

into (7) and (8), the linearized BBS in state space is given by 

(9) and (10 below;  

[
 
 
 
 
𝑥1̇

𝑥2̇

𝑥3̇

𝑥4̇

𝑥5̇]
 
 
 
 

=

[
 
 
 
 

0 1 0 0 0
0 0 −7 0 0
0 0 0 1 0

−44.82 0 0 0 42.92
0 0 0 −3.45 −39.67]

 
 
 
 

 

[
 
 
 
 
𝑥1

𝑥2

𝑥3

𝑥4

𝑥5]
 
 
 
 

 

+  

[
 
 
 
 

0
0
0
0

3.33]
 
 
 
 

𝑉IN             (9) 

 

And since the ball position 𝑟 = 𝑥1 is the output, the C matrix 

is given as, 

𝑦 = [1 0 0 0 0]                   (10) 

 

An open-loop analysis [11] was performed on the system to 

ascertain its conditions without control. The poles which are 

the eigenvalues of the A matrix in (10) are, λp = -35.4894,  

-5.9104, 3.5548, (-0.9108+3.9825j), (-0.9108-3.9825j) where 

p = 1,…,5 respectively. It is clear that the system is unstable 

without control since there is a pole in the right-half plane (λ3 

= 3.5548). The design of the control is given next.  

IV. CONTROL DESIGN 

The block diagram which depicts the control is given in 

Fig.2. below: 

 
Figure 2. Cascade Control Scheme for H-infinity-PID controller.  

 

In Fig. 2, CB is the robust stabilizing controller from H-infinity 

synthesis, CM is the PID controller, θD and θ are the desired and 

actual motor angle respectively, 𝑟D and 𝑟 are the desired and 

actual ball positions respectively, 𝑒M and 𝑒B are the errors in 

the motor angle and ball position respectively, and 𝑢 is the 

control voltage.  
 



A. PID Controller Design: Inner (DC motor) loop 

A PID controller as described in [11] takes the form of (11) 
where 𝑘P, 𝑘I, 𝑘D are the proportional, integral and derivative 
gains respectively, and 𝑒 is the error between the set point and 
the measured output.  

𝑢(𝑡) = 𝑘P𝑒(𝑡) + 𝑘I ∫ 𝑒(𝑡)𝑑𝑡 + 𝑘D
𝑑(𝑒(𝑡))

𝑑𝑡

𝑡

0
     (11) 

Denoting the previously chosen operating points as 

[𝑥10
, 𝑥20

, 𝑥30
, 𝑥40

, 𝑥50
] = [𝑟0, 0, 0, 0, 𝑖A0

] and substituting 

symbolically into (7), without using real values, the following 
A matrix is obtained in terms of the linearized parameters, 

[
 
 
 
 
 
 

0 1 0 0 0
0 0 −𝐵1𝑔 0 0
0 0 0 1 0

−𝒎.𝒈.𝑱+𝒎𝟐.𝒈.𝒓𝟎
𝟐−𝟐𝒎.𝒓𝟎.𝑲𝐆.𝑲𝐓.𝒊𝐀𝟎

(𝑱+𝒎.𝒓𝟎
𝟐)𝟐

𝟎 𝟎 𝟎
𝑲𝐓𝑲𝐆

𝑱+𝒎.𝒓𝟎
𝟐

0 0 0
−𝐾B𝐾G

𝐿A

−𝑅A

𝐿A ]
 
 
 
 
 
 

   

        (12) 

From the 4th row of (12), neglecting the term which is the 
coefficient of the 𝑟 state, and taking it as a parametric 
uncertainty, the relation between the acceleration and the 
current is, 

�̈� = (
𝐾T𝐾G

𝐽+𝑚𝛿1
2) 𝑖       (13) 

Taking Laplace transform and rearranging, the transfer function 
from the current to the motor angle is, 

𝜃(𝑠)

𝐼(𝑠)
=

𝐾T𝐾G

𝐽+𝑚𝛿1
2

𝑠2                     (14) 

Similarly, from the 5th row of (9) and (12), neglecting the term 

which is the coefficient of the �̇� state as an uncertainty, the 
relation between the input voltage and current is,  

𝑑𝑖

𝑑𝑡
= −(

𝑅A

𝐿A
) 𝑖 +

1

𝐿A
𝑉IN      (15) 

Taking Laplace transform of (15), the transfer function from the 
voltage to current is,  

𝐼(𝑠)

𝑉IN(𝑠)
=

1

𝐿A

𝑠+
𝑅A
𝐿A

      (16) 

Combining (14) and (16), the transfer function for the DC 
motor is, 

𝑃Motor =
𝜃(𝑠)

𝑉IN(𝑠)
=

𝐾T𝐾G

𝐿A(𝐽+𝑚𝛿1
2)

𝑠3+(
𝑅A
𝐿A

)𝑠2
=

143.1

𝑠3+39.67𝑠2     (17) 

The PID controller was designed using pole placement to meet 
a settling time of 0.3s and an overshoot of 5% for the 
servomotor. The standard 2nd order equation is given as,  

𝑌(𝑠)

𝑅𝑒𝑓(𝑠)
=

𝜔n
2

𝑠2+2𝜁𝜔n𝑠+𝜔n
2      (18) 

where 𝜁 and 𝜔n are the damping ratio and natural frequency 
respectively. Using equations and relations from [11], the 
damping ratio 𝜁 and natural frequency 𝜔n which correspond to 

5% overshoot and 0.3s settling time were computed and 
obtained as, 𝜁 = 0.707 and 𝜔n = 18.86rads−1 respectively. 
Substituting these values in (18), the required characteristics 
equation was obtained as, 

𝑂𝑢𝑡𝑝𝑢𝑡

𝐼𝑛𝑝𝑢𝑡
=

355.66

𝑠2+26.67𝑠+355.66
        (19) 

The poles of (19) are -13.34 ± 13.34j which correspond to a 
time constant of 0.075s and a settling time of roughly 0.3s. The 
PID controller was then chosen as,  

𝑉IN(𝑠) = 𝑘P(𝜃D(𝑠) − 𝜃(𝑠)) +
𝑘I

𝑠
(𝜃D(𝑠) − 𝜃(𝑠)) − 𝑘D𝑠𝜃(𝑠)   

          (20) 

Substituting (20) in (17), the closed loop transfer function is,  

 
𝜃(𝑠)

𝜃D(𝑠)
=

143.1𝑘P𝑠+143.1𝑘I

𝑠4+39.67𝑠3+143.1𝑘D𝑠2+143.1𝑘P𝑠+143.1𝑘I
       (21) 

Since (21) is 4th order, two poles at s = -16 and s = -23 were 
added to the desired characteristic equation in (19) to yield,  

𝜃(𝑠)

𝜃D(𝑠)
=

355.66

𝑠4+70𝑠3+17602+23700𝑠+130980
      (22) 

Hence, equating the coefficients of the denominator of the 
desired in (22) to those of the denominator of the closed loop 
transfer function in (21), the PID gains are obtained as, 𝑘P =
165.62, 𝑘I = 915.30, and 𝑘D = 12.30. 

B. H-infinity loop Shaping Controller Design: Outer loop 

The H-infinity loop-shaping controller was designed in 
three steps. The first is loop-shaping where weights are used to 
shape the plant to meet desired specifications. Next is to 
synthesize a H-infinity controller which robustly stabilizes the 
coprime factors of the shaped plant as described in [12]. The 
final step is the combination of the H-infinity controller and the 
loop-shaping weights resulting in a robust stabilizing controller 
which is implemented as depicted in Fig. 3. 

 

Figure 3. Loop-shaping controller design 

In Fig. 3 above, Ps = PballWlead is the shaped plant and 
𝐶B = 𝑊lead𝐶∞ is the resultant robust stabilizing controller. The 

controller denoted as 𝐶∞ was synthesized with ncfsyn() 
Matlab function [12], using a pre-compensator weight Wlead 
and the transfer function of the ball, Pball – obtained from the 
2nd row of (12) and is given by: 

𝑃ball =
𝑅(𝑠)

𝜃(𝑠)
=

7

𝑠2    (23) 

The weight was selected as follows. The open-loop bode plot 
of (23) given in Fig. 4 shows that the system has low bandwidth 
of about 2.5rads-1 and the phase is 0 dB (low) at all frequencies. 
To increase phase, a lead compensator in form of (24) was used 
to shape the plant.  



𝑊lead = 𝑘
1+𝑇L𝑠

1+𝛼𝑇L𝑠
                       (24) 

where 
1

𝛼𝑇L
 and 

1

𝑇L
 are corner frequencies and k is the gain. 

 

Figure 4. Open-loop response of the rolling ball on beam, 𝑃ball  

Recall that the required 5% overshoot corresponds to damping 
ratio of 0.7. The phase margin is related to the damping ratio by 
the relation [11], 

𝜁 =
𝑃.𝑀.

100
        (25) 

Thus, a damping ratio of 0.7 requires a phase advance 𝜑 of 700. 
The desired settling time for the outer loop is 3.5s so that the 
inner loop is much faster. A settling time of 3.5s will require 
bandwidth of between 5 and 6 rads-1, and a center frequency 𝑤a 
of 4 rads-1. The constant 𝛼 in (24) is given by,  

𝛼 =
1−sin 𝜑

1+sin 𝜑
= 0.0311       (26) 

The term 𝑇L =
1

𝑤𝑎√𝛼
= 1.4172. Substituting 𝑇L and 𝛼 into (24), 

the resultant weight is,  

𝑊lead = 𝑘
1.4172𝑠+1

0.0441𝑠+1
      (27) 

With k = 0.25, the bode plot of the shaped plant 𝑃s = 𝑃ball𝑊lead 
shown in Fig. 5 has a bandwidth of 3.2rads-1 which means the 
system will be reasonably fast, there is a phase advance of about 
700 as desired, and the low-frequency gain is high enough in 
order to achieve setpoint tracking. Thus, the selected weight in 
(27) with k = 0.25 was used with the ball transfer function in 
(23) to synthesize a H-infinity controller 𝐶∞using the 
ncfsyn() matlab function. The robust stabilizing controller 
𝐶B = 𝑊lead𝐶∞ is then applied to the outer-loop as described by 
the cascade scheme in Fig. 2.  

 

Figure 5. Bode plot of shaped plant 𝑃𝑠 when k = 0.25 is the gain of 𝑊lead 

Fig. 6 also shows that for the loop-shape design, the actual 
forward loop-shape 𝐿2 = 𝑃ball𝐶B is very close to the desired 
shaped plant 𝑃𝑠. The low-frequency gain is high up till about 
0.1 rads-1 so setpoint tracking and disturbance rejection is 
expected. The roll-off at the cross over is less than 20 dB per 
decade for stability, the roll-off rate at high frequencies is about 
40dB per decade so noise attenuation is expected and 
bandwidth is about 3.8rads-1 so the system will be reasonably 
fast. In addition, the robust stability margin 𝜀max obtained from 
the H-infinity synthesis was 0.6 implying that the controller will 
reject about 60% uncertainties in the coprime factors of the 
plant for the outer loop. This also means the weight is good 
enough and the H-infinity controller does not need to do much 
to meet the required performance.  

 

Figure 6. Bode plot of actual loop shape L1 versus shaped plant 𝑃𝑠 

The controller was implemented and simulated in Simulink. 
The integral gain of the PID controller was slightly adjusted to 
yield better results. The results are reported next. 

V. RESULTS AND DISCUSSION 

The simulation results show that the H-infinity-PID 

controller stabilizes the ball on the beam and ensures setpoint 

tracking on both the nonlinear and linearized BBS. From Fig. 

7, the performance is seen to degrade slightly for the nonlinear 

plant where there is about 7% overshoot. The controller also 

ensures disturbance rejection in both the linearized and 

nonlinear BBS when there is a distortion in the ball position 

due to sharp change in the beam angle.  

 
Figure 7. Ball response on linear (top) and nonlinear (bottom) BBS 

 

The settling time is reasonable at 4.5s as seen in Fig. 7 above 

and the control voltages lie between +12 and -12v even though 

there is some saturation as shown in Fig. 8. Since most typical 



actuators use 12 Volts DC motors, Fig. 8 above means that the 

proposed control scheme is practicable. 

 
Figure 8. Control inputs for linear (top) and nonlinear (buttom) BBS 

 

In order to analyse the forward loop of the entire cascade 

scheme depicted in Fig. 2, the closed loop transfer function of 

the inner-loop of Fig. 2 was computed as 𝑻𝐌 =
𝑷𝐌𝐨𝐭𝐨𝐫𝑪𝐌

𝟏+𝑷𝐌𝐨𝐭𝐨𝐫𝑪𝐌
. 

Thus, the forward-loop for the entire cascade structure is given 

as 𝐿2 = 𝑃ball𝑇M𝐶B and its bode plot is given in Fig. 9.  

 
Figure 9. Bode plot of forward-loop of the entire cascade scheme 

 

Fig. 9 shows that the forward-loop of the entire control scheme 

is able to achieve a phase margin of about 620 and a gain 

margin of about 16.4dB. These high values imply high 

robustness to uncertainties meaning that the overall cascade 

control is good.  

VI. CONCLUSION 

The results of this paper have shown that the proposed H-
infinity-PID controller stabilizes the ball on the beam and 

ensures setpoint tracking, even in the presence of some 
parametric uncertainties due to neglected terms during 
modelling. The results have also shown that the proposed 
controller yielded acceptable performance metrics such as 
settling time, overshoot and control voltages. The control also 
yielded high robustness as seen from a robust stability margin 
of 0.6 from the H-infinity synthesis. However, as per H-infinity 
methods, such high values signify high robustness at the 
expense of performance. Again, due to model differences, the 
controller performance is seen to degrade slightly in the 
nonlinear plant. And this is expected since the control method 
proposed in this paper is linear.  
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