
STABILIZATION OF CONDITIONAL UNCERTAIN

NEGATIVE-IMAGINARY SYSTEMS USING RICCATI EQUATION

APPROACH∗

MOHAMED A. MABROK, ABHIJIT G. KALLAPUR, IAN R. PETERSEN† AND

ALEXANDER LANZON‡

Abstract. In this paper, we derive a negative imaginary and a strict negative imaginary lemma
based on Riccati equations. The resulting negative imaginary lemma is used to solve a controller
synthesis problem. For a given uncertain system, a static controller is constructed to force the system
to satisfy the negative imaginary property. As a result, the closed-loop system can be guaranteed to be
robustly stable against any strict negative imaginary uncertainty, such as in the case of unmodeled
spill-over dynamics in a lightly damped flexible structure. A numerical example is presented to
illustrate the usefulness of the proposed results.
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1. Introduction. Negative imaginary (NI) systems theory has many engineering
applications. Such classes of systems include DC machines [2], electrical active filter
circuits [9], lightly damped structures [4, 3, 7, 10, 5]. When force actuators and
position sensors (such as piezoelectric sensors) are collocated on a flexible structure,
the input/output map is NI. Stability results for interconnected systems with an
NI frequency response have been applied to the decentralized control of large vehicle
platoons in [1]. In [8] the authors show how the class of linear systems having negative
imaginary transfer matrices is a direct extension of the class of linear Hamiltonian
input-output systems. Also, an extension for negative imaginary systems to infinite-
dimensional systems has been studied in [6].

NI systems theory was introduced by Lanzon and Petersen in [4]. In the SISO
case, such systems are defined by considering the properties of the imaginary part
of the frequency response G(jω) = D + C(jωI − A)−1B, requiring the condition,
j (G(jω) − G(jω)∗) ≥ 0 for all ω ∈ (0,∞).

In general, NI systems are stable systems having a phase lag between 0 and −π

for all ω > 0. That is, their Nyquist plot lies below the real axis when the frequency
varies in the open interval (0,∞) (for strictly negative-imaginary systems, the Nyquist
plot should not touch the real axis except at zero frequency and/or at infinity).

In this paper, we are concerned with the robust stabilization problem of uncertain
systems when full state feedback is available, where the uncertainty is strict negative
imaginary (SNI) and satisfies the condition λ∆(0) < 1. Here, λ(.) denotes the max-
imum eigenvalue and ∆(.) is the uncertainty in the system model. We present a
systematic method for designing a controller to force the closed-loop system to satisfy
the NI property based on the Riccati equation approach. This controller has some
advantages, since we guarantee its robust stability against SNI uncertainty. Also, by
making the closed-loop system satisfy the NI property, we can choose a suitable SNI
controller [7] to guarantee the stability and required closed-loop performance.

∗This work was supported by the Australian Research Council.
†School of Engineering and Information Technology, University of New South Wales at the

Australian Defence Force Academy Canberra ACT 2600, Australia. abdallamath@gmail.com,
abhijit.kallapur@gmail.com, i.r.petersen@gmail.com.

‡Control Systems Centre, School of Electrical and Electronic Engineering, University of Manch-
ester, Manchester M13 9PL, United Kingdom. Alexander.Lanzon@manchester.ac.uk.

1



2

This paper is further organized as follows: Section 2 introduces the concept of
negative imaginary systems. and provides some technical results that will be used in
deriving the main results in the paper. In section 3, a negative imaginary and a strict
negative imaginary lemma based on Riccati equations have been introduced and a
controller synthesis problem is addressed. Section 4 provides a numerical example to
support the results.

2. Preliminaries. In this section, we introduce the definition for NI systems
and present the NI Lemma. Also, we introduce some technical results which will be
used in deriving the main results of this paper.

To establish the main results of this paper, we consider a generalized definition
for NI systems which allows for poles at the origin as follows:

Definition 2.1. A square transfer function matrix G(s) is NI if all the following
conditions are satisfied:

1. G(s) has no pole in Re[s] > 0.
2. For all ω ≥ 0 such that jω is not a pole of G(s), j (G(jω) − G(jω)∗) ≥ 0.
3. If s = jω0, ω0 > 0 is a pole of G(s) then it is a simple pole. Furthermore,

if s = jω0, ω0 > 0 is a pole of G(s), the residual matrix K = lim
s−→jω0

(s −

jω0)jG(s) is positive semidefinite Hermitian. If s = 0 is a pole of G(s),
then it is either a simple pole or a double pole. If it is double pole, then,
lim

s−→0
s2G(s) ≥ 0.

Definition 2.2. A square transfer function matrix G(s) is SNI if the following
conditions are satisfied:

1. G(s) has no pole in Re[s] ≥ 0.
2. For all ω > 0, j (G(jω) − G(jω)∗) > 0.

Consider the following LTI system,

ẋ(t) = Ax(t) + Bu(t), (2.1)

y(t) = Cx(t) + Du(t), (2.2)

where, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, and D ∈ Rm×m.

Lemma 2.3. Let

[

A B

C D

]

be a minimal realization of the transfer function

matrix G(s) for the system in (2.1)-(2.2). Then, G(s) is NI if and only if D = DT

and there exist matrices P = PT ≥ 0, W ∈ Rm×m, and L ∈ Rm×n such that the
following LMI is satisfied:

[

PA + AT P PB − AT CT

BT P − CA −(CB + BT CT )

]

=

[

−LT L −LT W

−WT L −WT W

]

≤ 0. (2.3)

The following lemma gives spectral conditions for a transfer functions which will
be used in deriving the SNI lemma.

Lemma 2.4. Let G(s) =

[

A B

C D

]

be a minimal realization. Given A have no

pure imaginary eigenvalues, ω0 > 0 and λ ∈ C is not an eigenvalue of CB+BT CT

2
> 0.

Then, λ is an eigenvalue of H(jω0) = 1

2
jω0(G(jω0) − G(jω0)

∗) if and only if jω0 is
an eigenvalue of the matrix

Nλ =

[

A + BR−1

λ CA BR−1

λ BT

−AT CT R−1

λ CA −AT − AT CT R−1

λ BT

]

,
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where Rλ = 2λI − CB − BT CT .

Now, consider the following theorem that defines an SNI system based on the
spectrum of its corresponding Hamiltonian matrix.

Theorem 2.5. Let G(s) =

[

A B

C D

]

be a minimal realization and CB +

BT CT > 0. Then, G(s) is SNI if and only if
1. A is a Hurwitz matrix, and D = DT ,
2. the Hamiltonian matrix

N0 =

[

A + BQ−1CA BQ−1BT

−AT CT Q−1CA −AT − AT CT Q−1BT

]

has no positive pure imaginary eigenvalues. Here, Q=−(CB + BT CT ).

3. Main results. In this section, we use algebraic Riccati equations to give a
new representation for the NI and SNI lemmas. Then we will use the NI lemma to
derive a static controller such that the closed-loop system satisfies the NI property.

Theorem 3.1. Let G(s) =

[

A B

C D

]

be a minimal realization with CB +

BT CT > 0. Then G(s) is NI if and only if D = DT and there exists a matrix P ≥ 0
such that P is a solution to the following algebraic Riccati equation

PA0 + AT
0 P + PBR−1BT P + Q = 0, (3.1)

where

A0 = A − BR−1CA,

R = CB + BT CT , and

Q = AT CT R−1CA.

Theorem 3.2. Let G(s) =

[

A B

C D

]

be a minimal realization and CB +

BT CT > 0. Then G(s) is SNI if and only if
1. A has no jω-axis eigenvalues and D = DT ,
2. there exists a matrix P > 0 such that P is a solution to the following algebraic

Riccati equation

PA0 + AT
0 P + PBR−1BT P + Q = 0, (3.2)

where all the eigenvalues of the matrix A0 + BR−1BT P lie in the open left
half of the complex plane or at the origin.

3.1. Synthesis Result. In order to present the synthesis result, consider the
following state space representation for a linear uncertain system

·

x = Ax + B1w + B2u,

z = C1x,

w = ∆(s)z, (3.3)

where, A ∈ Rn×n, B1 ∈ Rn×m, B2 ∈ Rn×r, C1 ∈ Rm×n, and ∆(s) represents the
uncertainty matrix. Also, suppose that K is a static controller such that u = Kx,



4

then the closed-loop interconnection of the system (3.3) with the static controller K

is given by;

·

x = (A + B2K)x + B1w,

z = C1x,

w = ∆(s)z. (3.4)

Our aim is to construct the controller K such that the corresponding closed-loop
system (3.4) satisfies the NI property.

Consider the following transformation (Schur transformation)

Af = UT (A − B2(C1B2)
−1C1A)U =

[

A11 A12

0 A22

]

, (3.5)

Bf = UT (B2(C1B2)
−1

− B1R
−1) =

[

Bf1

Bf2

]

, (3.6)

B̃1 = UT B1 =

[

B11

B22

]

. (3.7)

The transformation (3.5) can be completed such that A11 is a stable matrix (with
a zero eigenvalue) and A22 is an anti-stable matrix.

Theorem 3.3. Consider an uncertain system model as in (3.3) with C1B2 in-
vertible and R = C1B1 + BT

1 CT
1 > 0. Then there exists a controller K such that the

closed-loop system in (3.4) is NI if there exist matrices T ≥ 0 and S ≥ 0 such that

−A22T − TAT
22 + Bf2RBT

f2 = 0, (3.8)

−A22S − SAT
22 + B22R

−1BT
22 = 0 (3.9)

and S − T < 0. Here, A22 is the anti-stable block of the matrix Af defined in (3.5).
Furthermore, the controller gain matrix is

K = (C1B2)
−1(BT

1 P − C1A − R(BT
2 CT

1 )−1BT
2 P ), (3.10)

where P = UPfUT and Pf is a solution to the algebraic Riccati equation

PfAf + AT
f Pf − PfBfRBT

f Pf + Pf B̃1R
−1B̃T

1 Pf = 0. (3.11)

Remark 1. In the case of no anti-stable modes in the matrix A−B2(C1B2)
−1C1A,

the controller matrix is

K = −(C1B2)
−1C1A.

Note 1. One possible step-wise approach to choosing a control strategy would be:
• Given an uncertain system of the form (3.3), make sure it satisfies the re-

quirement of Theorem 3.3.
• Find the corresponding static controller such that the closed-loop system is NI

as given in Theorem 3.3 or Remark 1.
• Find a suitable SNI controller, such as an integral resonant controller to

guarantee the robustness, stability and performance requirements of the closed-
loop system [7].
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Fig. 4.1. Plot of the imaginary part of the closed-loop system.

4. Illustrative Example. In this section, we provide a numerical example in
order to validate our results.

Consider the following uncertain system of the general form (3.3) where,

A =





−1 0 −1
1 1 −1
−5 1 1



 ;B1 =





−1
1
0



 ;B2 =





0
4
2



 ;C1 =
[

0 2 −3
]

. (4.1)

This system satisfies Theorem 3.3. Applying Schur decomposition to the matrix

(A − B2(C1B2)
−1C1A) in (3.5) gives Af =





−2.8557 −3.5104 −39.4820
0 0 2.8020
0 0 10.8557



 .

The solution to Lyapunov equations (3.8) and (3.9)gives T = 0.0156 and S =
0.0120 which implies that X = −0.0036. It follows from Theorem 3.3 that Pf =




0 0 0
0 0 0
0 0 275.5235



 ≥ 0. This implies that the controller gain matrix (3.10) is given

by K =
[

140.2792 −14.2713 −55.5191
]

, where, P = UPfUT ≥ 0 and U =




−0.2864 −0.2395 −0.9277
−0.7972 0.5967 0.0921
−0.5315 −0.7659 0.3618



 is the Schur transformation matrix. According to

Theorem 3.3, the closed-loop feedback system (3.4) from w to z is NI. To illustrate
this we plot the imaginary part of the transfer function matrix of the closed-loop
system from w to z in Fig. 4.1.

5. Conclusion. In this paper, the algebraic Riccati equation approach was used
to derive a negative imaginary (NI) lemma and a strict negative imaginary (SNI)
lemma. The NI lemma was employed to solve a negative imaginary controller synthesis
problem for an uncertain system. A static controller was chosen to force the plant to
satisfy the negative imaginary property under certain assumptions. This controller
can be used to guarantee the robustness stability of the closed-loop system with strict
negative imaginary uncertainty.
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