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Abstract: Bicoprime factorisations can be considered a generalisation of the well known
coprime factorisations. This paper deals with the possible applications of such factorisations
in control theory. The concept of minimal dimension bicoprime factorisations is introduced and
shown to be especially beneficial in the case of normal rank deficient and redundant control
systems. Some methods of obtaining a bicoprime factorisation for a plant are given based on
state-space data, right or left coprime factorisations and left or right standard factorisations.
Finally, bicoprime factor uncertainty is characterised and shown to have an interesting structure
closely resembling the standard four-block uncertainty.
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1. INTRODUCTION

Coprime factorisations over RH∞ have been extensively
studied by the control community. They have many ap-
plications in control theory, forming the basis of many
important results. For example, distance measures such
as the gap, graph and ν-gap metrics can be posed as
normalised coprime factor model matching problems as
demonstrated in Georgiou and Smith (1990); Vidyasagar
(1984) and Vinnicombe (2001). Additionally, solutions to
the H∞ loopshaping robust stabilisation problem use nor-
malised coprime factorisations of the plant (Glover and
McFarlane, 1989). Coprime factorisations have also been
used to validate controllers for internal stability and robust
performance using closed loop data (Dehghani et al., 2009;
Patra and Lanzon, 2012).

Bicoprime factorisations (BCFs) were first introduced by
Vidyasagar (2011) a as a generalisation of standard left
or right coprime factorisations. This fact will be exem-
plified with the derivation of bicoprime (BC) factor sta-
bility results in Section 4. Briefly studied in the late
1980’s, some results were derived including stability of
the feedback interconnection of a plant given as a BC
treble and a controller expressed as either a left coprime
factorisation (LCF) or right coprime factorisation (RCF)
(Desoer and Gündeş, 1988; Gündeş and Desoer, 1990).
This was achieved by transforming the given BCF into
a RCF or LCF and using existing results. However, those
early results are far from a comprehensive study of the
subject matter.

? This work was financially supported by the UK Engineering and
Physical Sciences Research Council (EPSRC) through a Doctoral
Training Award (DTA).
a This is a reprint of the 1985 original published by M.I.T. Press.

Two motivating points for the study of BCFs given in
Vidyasagar (2011) are as follows. First, they naturally
emerge in closed loop transfer matrices. Indeed, most
proofs in this paper use this fact to establish their results.
Second, any minimal state-space realisation of a plant
is a BCF over R. This follows directly from the well
known Popov-Belevitch-Haututs tests. In fact, a number
of factorisations can be related to BCFs over different
spaces. Other examples include spectral and Wiener-Hopf
factorisations which can be considered as BCFs over RL∞
with some extra impositions on the factors. Further to
these points, it can also be argued that BCFs, being a
generalised version of RCFs and LCFs, provide a link
between the two, unifying any results. The duality of LCFs
and RCFs has been well established for some time now,
with BCFs demonstrating how this duality arises.

BCFs received some attention in the study of decentralized
control. Ünyelioğlu et al. (2000) shows that BC factors
can be used to characterise fixed zeros in decentralized
control and by extent deduce the existence of a decentral-
ized stabilising controller for a given plant. Additionally,
Baski et al. (1999) presents methods for the decentralized
stabilisation of plants using BCFs.

Another possible application for BCFs that emerges from
the results of this paper is in the area of redundant control
systems. Using more actuators or sensors than needed for
the purposes of fault tolerance can lead to a rank deficient
system. The use of BCFs can be beneficial to the study of
such systems. Using a BCF stability test leads to reduced
dimension stability matrices. It will be shown by example
that in some instances the stability of a closed loop transfer
matrix can be established by the invertibility in RH∞ of a
single SISO transfer function or equivalently if it has any
right half plane zeros.
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There is a considerable amount of mathematical richness
associated with BCFs that so far remains untapped by
the control community. Moreover, most results pertaining
to BCFs exhibit a considerable amount of mathematical
symmetry which makes them a very appealing subject of
study. As mentioned above BCFs are a generalised version
of coprime factorisations. This leads to more complex
mathematical results than in the classical case. However,
this complexity should not serve as a deterrent as the po-
tential advancements to control theory necessitate further
investigation.

2. PRELIMINARIES

This section defines the notation that will be used through-
out this paper and recalls some standard, well-known
results, mostly related to stability and coprime factorisa-
tions.

2.1 Notation

R Set of proper real-rational transfer matrices
RH∞ Set of proper real-rational stable transfer

matrices
GH∞ {Q ∈ RH∞ : Q−1 ∈ RH∞}
r (A) Rank of the matrix A ∈ Cm×n

nr (P ) Normal rank of the transfer matrix P ∈ R
diag (·) Block diagonal matrix starting from the

top left
adiag (·) Block anti-diagonal matrix starting from

the top right
A† Pseudo-inverse of A ∈ Cm×n

A∗ Complex conjugate transpose of A ∈ Cm×n

s̄ Complex conjugate of s ∈ C
C<0 {s : s ∈ C,<(s) < 0}
C≤0 {s : s ∈ C,<(s) ≤ 0}
C>0 {s : s ∈ C,<(s) > 0}
C≥0 {s : s ∈ C,<(s) ≥ 0}
Fl(H,∆) Lower LFT of H with respect to ∆
Fu(H,∆) Upper LFT of H with respect to ∆

2.2 Stability

P

C

r1 e1 y1

e2y2 r2

Fig. 1. Standard feedback interconnection of P and C.

The feedback interconnection of a plant P ∈ R and
controller C ∈ R, shown in Figure 1 and denoted by [P,C],
is well posed if all transfer matrices from (r1, r2) to (e1, e2)
are well-defined and proper. A necessary and sufficient
condition for this to be true is det(I − PC)(∞) 6= 0
(Zhou et al., 1996, Lemma 5.1). The transfer matrix from
(−r2, r1) to (y1, e1) is denoted by H(P,C).

Lemma 1. (Zhou et al. (1996) Lemma 5.3). The feedback
interconnection of a plant P ∈ R and controller C ∈ R is
internally stable if and only if[

I −C
−P I

]−1

∈ RH∞

or equivalently

H(P,C) =

[
P
I

]
(I − CP )

−1
[−C I] ∈ RH∞.

Lemma 2. Let A =
[
A11 A12

A21 A22

]
∈ RH∞ and suppose that

A22 ∈ GH∞. Then

A ∈ GH∞ ⇔ A11 −A12A
−1
22 A21 ∈ GH∞.

Proof. From the Schur complement decomposition

A =

[
I A12A

−1
22

0 I

] [
A11 −A12A

−1
22 A21 0

0 A22

] [
I 0

A−1
22 A21 I

]
.

Since by supposition A22 ∈ GH∞,[
I A12A

−1
22

0 I

]
,

[
I 0

A−1
22 A21 I

]
∈ GH∞

and the result follows. 2

2.3 Coprime factorisations

Definition 1. (Zhou et al. (1996) Definition 5.3). The pair
{N,M} is right coprime (RC) in RH∞ if N,M ∈ RH∞
and there exist Yr, Zr ∈ RH∞ such that ZrM +YrN = I.
Furthermore, the pair is a RCF of a plant P over RH∞ if
M is square, detM(∞) 6= 0 and P = NM−1.

Definition 2. (Zhou et al. (1996) Definition 5.3). The pair
{L,M} is left coprime (LC) in RH∞ if M,L ∈ RH∞
and there exist Yl, Zl ∈ RH∞ such that MZl + LYl = I.
Furthermore, the pair is a LCF of a plant P over RH∞ if
M is square, detM(∞) 6= 0 and P = M−1L.

Definition 3. The set of all RC (resp. LC) pairs in RH∞
is defined as Cr (resp. Cl). Similarly, the set of all RCFs
(resp. LCFs) of a plant P over RH∞ is defined as Cr(P )
(resp. Cl(P )).

Definition 4. Let {N,M} ∈ Cr and {L,M} ∈ Cl. The
associated Bézout factor sets are defined as b

C † [ MN ] = {{Yr, Zr} : Yr, Zr ∈ RH∞, ZrM + YrN = I},
C † [ M L ] = {{Yl, Zl} : Yl, Zl ∈ RH∞,MZl + LYl = I}.

Some well known coprime factor stability results are listed
in following lemma.

Lemma 3. (Zhou et al. (1996) Lemma 5.2). Let {N,M} ∈
Cr(P ), {L, M̃} ∈ Cl(P ), {U, V } ∈ Cr(C) and {W, Ṽ } ∈
Cl(C). Then the following statements are equivalent.

(1) [P,C] is internally stable

(2) M̃V − LU ∈ GH∞
(3) Ṽ M −WN ∈ GH∞

(4)

[
M U
N V

]
∈ GH∞

(5)

[
M̃ −L
−W Ṽ

]
∈ GH∞

3. BICOPRIME FACTORISATIONS

In their original definition, BCFs of a plant were presented
as a quad of objects in RH∞.

b The use of the pseudo-inverse symbol (†) is appropriate in the
above definition since [Zr Yr] is the left inverse of [M∗ N∗]∗ and
[Z∗

l Y ∗
l ]∗ is the right inverse of [M L].



Definition 5. (Vidyasagar (2011) Definition 4.3.1).
The quad {N,M,L,K} is BC in RH∞ if {L,M} ∈ Cl,
{N,M} ∈ Cr and the additive term K ∈ RH∞. The set
of all BC quads in RH∞ is defined as B. Furthermore,
the quad is a BCF of a plant P over RH∞ if M is square,
detM(∞) 6= 0 and P = NM−1L+K. The set of all BCFs
of a plant P is defined as B(P ).

In most instances in this paper, the additive term is
assumed to be zero as it is not a necessary part of the
factorisation and complicates results. This is also the
approach taken in Desoer and Gündeş (1988) and Gündeş
and Desoer (1990).

Lemma 4. Let {N,M,L,K} ∈ B and Q,R, S, T ∈ RH∞.
Then {N−QM,M−LSN,L−MR,K+T} ∈ B if [Q,LS]
and [SN,R] are internally stable.

Proof.

{N −QM,M − LSN} ∈ Cr

⇔ ∃Ỹr, Z̃r ∈ RH∞ : Z̃r(M − LSN) + Ỹr(N −QM) = I

⇔ ∃Ỹr, Z̃r ∈ RH∞ :
[
Z̃r Ỹr

] [ I −LS
−Q I

] [
M
N

]
= I

⇔ ∃Ỹr, Z̃r ∈ RH∞ :
[
Z̃r Ỹr

] [ I −LS
−Q I

]
∈ C † [ MN ]

⇐
[
I −LS
−Q I

]
∈ GH∞

⇔ [Q,LS] is internally stable.

An alternative proof is provided for the LC pair.

{L−MR,M − LSN} ∈ Cl

⇔ C † [ M−LSN L−MR ] 6= ∅
⇔ C †

(
[ M L ]

[
I −R
−SN I

])
6= ∅

⇐
[

I −R
−SN I

]
∈ GH∞

⇔ [R,SN ] is internally stable.

Finally, since K + T ∈ RH∞ the conclusion follows. 2

In contrast to classical RCFs and LCFs, the BC factors of
a plant can, by their definition, have different dimensions.
This necessitates the following definition.

Definition 6. The internal dimension of {N,M,L,K} ∈
B is defined as the number of rows/columns of M . The
set of all BCFs of a plant P of internal dimension n is
defined as Bn(P ).

Lemma 5. Suppose that {N,M,L, 0} ∈ Br(P ), then the
BCFs internal dimension r can be arbitrarily large and
satisfies nr (P ) ≤ r.

Proof.
(r arbitrarily large)
Let {N,M,L, 0} ∈ B(P ) and define

N̂ := [N 0] , M̂ := diag (M, I) , L̂ := [L∗ 0]
∗
.

Furthermore, let {Yl, Zl} ∈ C † [ M L ] and {Yr, Zr} ∈
C † [ MN ]. Then([

Z∗l 0 Y ∗l
0 I 0

] [
M̂∗

L̂∗

])∗
= I and

[
Zr 0 Yr
0 I 0

] [
M̂

N̂

]
= I,

which confirms that {N̂ , M̂ , L̂, 0} ∈ B(P ). A BCF of P
with arbitrary internal dimension r has therefore been

constructed, which leads to the conclusion that there is
no upper bound to the internal dimension of a plant BCF.

(nr (P ) ≤ r)
Suppose that {N,M,L, 0} ∈ Br(P ) where r < nr (P ).
Then nr

(
NM−1L

)
≤ r < nr (P ) which is a contradiction

since P = NM−1L. Hence, r must be greater than or equal
to the normal rank of the plant. 2

3.1 Obtaining a BCF

Two simple methods for obtaining a BCF of a plant will
now be presented. The first is based directly on state space
data while the second uses a LCF or RCF of the plant.

Lemma 6. Let a plant P ∈ Rp×q have the stabilisable and
detectable state space realisation P = C (sI −A)

−1
B +

D, where A ∈ Rn×n and the dimensions of B, C and
D are compatible and dictated by those of the system.
Furthermore define

M := (sI − Â)−1(sI −A), L := (sI − Â)−1B.

where Â ∈ Rn×n is Hurwitz. Then {C,M,L,D} ∈ Bn(P ).

Proof. The fact that P = CM−1L + D is trivial. The
rest of the proof follows directly from the PBH tests and
the fact that the state-space representation in stabilis-
able and detectable. First note that since Â is Hurwitz,
det (sI − Â) 6= 0 for all s ∈ C≥0. Then, for all s ∈ C≥0,

r ([M L]) = r
(

(sI − Â)−1 [sI −A B]
)

= r ([sI −A B])

which from the stabilisability of (A,B) has full row rank
in C≥0. At the limiting case

lim
s→∞

(
(sI − Â)−1 [sI −A B]

)
= [I 0]

which again has full row rank. This proves that [M L]
has a right inverse for all s ∈ C≥0 ∪ {∞} which implies
{L,M} ∈ Cl. The fact that {C,M} ∈ Cr follows by a
similar argument based on the detectability of (C,A). 2

Lemma 7. Let P ∈ Rp×q, {N,M} ∈ Cr(P ) and {L,M} ∈
Cl(P ). Then for any Q ∈ GH∞ of compatible dimensions
{N,QM,Q, 0} ∈ Bq(P ) and {Q,MQ,L, 0} ∈ Bp(P ).

3.2 Minimal Dimension BCFs

Definition 7. A BCF of a plant is said to be of minimal
dimension if it has the minimum possible internal dimen-
sion. The set of all minimal dimension BCFs of a plant P
is defined as B∗(P ).

As shown in the previous section, a lower bound for the
minimal dimension of a BCF is given by the normal rank of
the plant. As a consequence of Lemma 7, an upper bound
for the minimal dimension of a BCF is given by the number
of inputs or outputs for tall or fat plants respectively.

Obtaining a minimal dimension BCF of a plant involves
first finding a factorisation based on its normal rank. One
such factorisation is the left standard factorisation (LSF)
given in Youla (1961, def. 5), which is analogous to full
rank factorisation (Piziak and Odell, 1999) of constant
matrices.

Definition 8. Every plant P ∈ Rp×q with normal rank r
has a left standard factorisation P = W+W− where



• W+ has dimensions p×r and is analytic together with
its left inverse in C>0.
• W+ and its inverse have no singularities on jR.
• W− has dimensions r×q and is analytic together with

its right inverse in C<0.

This definition deviates slightly from the source material
of Youla (1961), combining the plant’s two unstable factors
into one. A right standard factorisation (RSF) can also be
defined where the properties of the factors are exchanged.

From a LSF or RSF of a plant in combination with RCF
and LCF, a BCF of a plant with internal dimension equal
to its normal rank can be constructed as follows.

(1) Obtain plant LSF P = W+W−;
(2) Generate RCF of W+ = NM−1

+ ;

(3) Generate LCF of W− = M−1
− L;

(4) BCF of P given by {N,M−M+, L, 0}.
One problem with the above procedure is the fact that
the factors of a LSF or RSF are not necessarily proper
which means that formulae such as those given in Nett
et al. (1984) or Vidyasagar (1988) cannot be used to ob-
tain coprime factorisations. Fortunately, Oară and Sabău
(2009) provide methods using descriptor theory to gen-
erate the required factorisations for improper systems.
Another more inhibitive problem is the fact that there
is no closed form solution for obtaining a LSF or RSF of
a plant, despite knowing that such a factorisation always
exists (as shown in Youla, 1961).

An appealing feature of minimal dimension BCFs is the
fact that both N and L are invertible. Furthermore, there
exist two subsets of B∗(P ) for every plant in which either
N or L has a stable inverse. This follows from the above
procedure by noting that N has no C≥0 transmission zeros
and has full column normal rank which together imply that
it has a stable left inverse. c

4. BCF STABILITY RESULTS

The first stability result pertaining to BCFs links the
stability of a plant to the C≥0 transmission zeros of its
BC factors. d

Lemma 8. Let {N,M,L,K} ∈ B(P ), then

P ∈ RH∞ ⇔M ∈ GH∞.

Proof. This follows from Vidyasagar (2011, Theorem
4.3.12) which states that p ∈ C≥0 is a pole of P if and
only if it is a transmission zero of M . 2

Using the above theorem it will now be shown that closed
loop transfer matrices naturally give rise to BCFs. Let G
and K̃ be the right and inverse left graph symbols of the
plant and controller respectively, as defined in Vinnicombe
(2001) and Lanzon and Papageorgiou (2009). Then

H(P,C) =

[
P
I

]
(I − CP )

−1
[−C I]

= G(K̃G)−1K̃.

c Note that this inverse is not necessarily proper.
d A similar result holds for LCFs and RCFs.

Lemma 9. Let G and K̃ be the right and inverse left
graph symbols of a plant and controller respectively. Then
{G, K̃G, K̃, 0} ∈ B(H(P,C)).

Proof. The proof follows by noting that there exists a left
inverse of G and a right inverse of K̃ both in RH∞. 2

From Lemma 8 and Lemma 9 it can be concluded that
H(P,C) ∈ RH∞ ⇔ K̃G ∈ GH∞. Interestingly, this leads
to statement (2) of Lemma 3. Similarly, statement (3) of
the same lemma is a simple dual consequence on noting
that H(P,C) = I − K(G̃K)−1G̃ where G̃ and K are
the inverse left and right graph symbols of the plant and
controller respectively. e

The following theorem deals with the internal stability of
a standard feedback interconnection in terms of plant and
controller BCFs.

Theorem 10. Consider the standard feedback interconnec-
tion of a plant P ∈ R and controller C ∈ R. Let
{N,M,L, 0} ∈ B(P ) and {U, V,W, 0} ∈ B(C). Then

[P,C] is internally stable⇔
[

M −LU
−WN V

]
∈ GH∞.

Proof. For simplicity, first define M̃ := adiag (M,V ),

Ñ := diag (U,N) and L̃ := diag (L,W ) and note that

{Ñ , M̃ , L̃, 0} ∈ B. Then

[P,C] is internally stable

⇔
[
I −C
−P I

]−1

∈ RH∞

⇔ (I − ÑM̃−1L̃)−1 ∈ RH∞

⇔ I + Ñ(M̃ − L̃Ñ)−1L̃ ∈ RH∞.

Using the fact that {Ñ , M̃ , L̃, 0} ∈ B and Lemma 4

implies that {Ñ , M̃ − L̃Ñ , L̃, I} ∈ B. Then from Lemma
8 it follows that [P,C] is internally stable if and only

if M̃ − L̃Ñ ∈ GH∞. The proof is concluded by post
multiplying with the matrix [ 0 I

I 0 ] ∈ GH∞. 2

The above theorem is a generalised version of the well
known coprime factor results given in Lemma 3. An easy
way of observing this is by considering the case where N =
U = I which forces {L,M} ∈ Cl(P ) and {W,V } ∈ Cl(C).
The result of Theorem 10 is then transformed to Lemma
3 statement (5). Similarly, forcing L = W = −I leads to
statement (4) of the same lemma. The rest of the lemma
statements then follow using simple linear algebra.

When the plant or controller is known to be stable, the
following two simplified lemmas can be used to establish
the stability of the feedback interconnection.

Lemma 11. Consider the standard feedback interconnec-
tion of a plant P ∈ R and controller C ∈ RH∞ and let
{N,M,L, 0} ∈ B(P ). Then

[P,C] is internally stable⇔M − LCN ∈ GH∞.

Proof. Let {U, V,W, 0} ∈ B(C). The proof follows by
noting that C ∈ RH∞ ⇔ V ∈ GH∞ (by Lemma 8) and
then applying Lemma 2 to the result of Theorem 10. 2

e This follows from Vinnicombe (2001, Remark 1.2) and some
algebra.



Lemma 12. Consider the standard feedback interconnec-
tion of a plant P ∈ RH∞ and controller C ∈ R and let
{U, V,W, 0} ∈ B(C). Then

[P,C] is internally stable⇔ V −WPU ∈ GH∞.

Proof. Let {N,M,L, 0} ∈ B(P ). The proof follows by
noting that P ∈ RH∞ ⇔ M ∈ GH∞ (by Lemma 8) and
then applying Lemma 2 to the result of Theorem 10. 2

4.1 Inclusion of the Additive Term

In most of the results in the previous section it is assumed
that the BCF under consideration has no additive term.
However, this restricts the set for which the stability
results presented apply.

The following theorem considers the case where the plant
BCF is allowed to have an additive component.

Theorem 13. Consider the standard feedback interconnec-
tion of a plant P ∈ R and controller C ∈ R. Let
{N,M,L,K} ∈ B(P ) and {U, V,W, 0} ∈ B(C). Then

[P,C] is internally stable⇔
[

M −LU
−WN V−WKU

]
∈ GH∞.

Proof. The proof follows by inflating the plant fac-
tors to accommodate K, followed by some elementary
row/column operations and application of Lemma 2.

A dual result to Theorem 13 can be trivially obtained for
the case {N,M,L, 0} ∈ B(P ) and {U, V,W,X} ∈ B(C).

4.2 Numerical Example

A numerical example will now be provided to demonstrate
the stability results presented in the previous sections.

Consider the feedback interconnection of a plant P ∈ R
and controller C ∈ RH∞ given by

P =

[
2

(s+2)(s−1)
4

s+2
2(s+1)

(s+2)(s−1)
4(s+1)
(s+2)

]
, C = −

[
s+2
s+1

s+2
4(s+1)

s+2
s+1

s+2
4(s+1)

]
,

both of which are rank deficient with nr (P ) = 1 and
nr (C) = 1. f Furthermore, define

N :=
[

2
s̄+1

4(s̄−1)
s̄+1

]∗
, M := s−1

s+1 , L :=
[

1
s+2

s+1
s+2

]
,

U := [1 1]
∗
, V := − s+1

s+2 , W :=
[
1 1

4

]
and note that {N,M,L, 0} ∈ B∗(P ) and {U, V,W, 0} ∈
B∗(C). Then the stability criterion in Theorem 10 gives[

M −LU
−WN V

]−1

=

[
s+1
2s+1 − s+2

2s+1

− s+2
2s+1 −

(s+2)(s−1)
(s+1)(2s+1)

]
∈ RH∞,

hence it can be concluded that [P,C] is internally stable.
Since C ∈ RH∞, Lemma 11 can also be used to establish
the stability of [P,C], leading to a simpler and more
interesting condition

M − LCN =
2s+ 1

s+ 1
∈ GH∞

again demonstrating that [P,C] is internally stable. The
stability of a MIMO feedback interconnection has therefore

f Such rank deficient systems frequently occur in networked control
systems, see for example Wang et al. (2015).

L
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M−1
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Fig. 2. Perturbed plant block diagram with BC factor
uncertainty.

been established by a simple SISO test in this example
when using Lemma 11 due to the normal rank deficiency.

Even though the above is a special case where both the
plant and controller are rank deficient and the controller
is stable, it exemplifies the possible benefits of using BCFs,
especially in the context of redundant or networked control
systems.

5. BCF UNCERTAINTY

The case of a plant with additive perturbations to its BC
factors will now be considered. It will be shown that this
type of uncertainty encapsulates features from both LCF
and RCF perturbations.

Let P ∈ R and {N,M,L, 0} ∈ B(P ). A perturbed plant
can be defined as

P∆ := (N + ∆N ) (M + ∆M )
−1

(L+ ∆L),

which corresponds to the block diagram form shown in
Figure 2.

From both the definition of P∆ and its block diagram
representation, it is apparent that BCF perturbations
include features from RCF and LCF perturbations as
presented in Zhou et al. (1996).

Let z := (z∗2 z∗1)
∗

and w := (w∗1 w∗2)
∗
. Then a generalised

plant H : (w∗ u∗)
∗ 7→ (z∗ y∗)

∗
and uncertainty matrix

∆ : z 7→ w can be defined as

H :=

 M−1 0 M−1L
0 0 I

NM−1 I P

 and ∆ :=

[
−∆M ∆L

∆N 0

]
respectively, satisfying P∆ = Fu(H,∆).

By inspection of the above definitions it is evident that
ignoring the additive part of the factorisation leads to an
uncertainty matrix that is naturally structured since its
(2,2) block is zero. Such structured uncertainty can cause
difficulties in deriving associated robust analysis results
(Lanzon and Papageorgiou, 2009; Lanzon et al., 2012).

Including the previously omitted additive term provides an
immediate solution to this problem. Let {N,M,L,K} ∈
B(P ), then the resulting perturbed plant is given by

P∆ = (N + ∆N ) (M + ∆M )
−1

(L+ ∆L) + (K + ∆K)

and the new unstructured uncertainty matrix by

∆ =

[
−∆M ∆L

∆N ∆K

]
.

Figure 3 shows the block diagram for the augmented
perturbed plant. It is interesting to note how general this
augmented BCF uncertainty structure is when compared
to the standard uncertainty structures commonly studied
in robust control.



L

∆L

M−1

∆M

∆K

K

N

∆N

u

w2

y

z1
-z2

w1

Fig. 3. Augmented perturbed plant block diagram with
BC factor uncertainty.

As with any uncertainty structure, it is possible to define
a robust stability condition or robust stability margin
(Lanzon and Papageorgiou, 2009; Lanzon et al., 2012).
This can then be used as an optimisation cost function
for controller synthesis.

Theorem 14. Consider the standard feedback interconnec-
tion of a plant P ∈ R and controller C ∈ R. Let
{N,M,L,K} ∈ B(P ) and {U, V,W, 0} ∈ B(C). Define
∆ ∈ RH∞ as above and

P∆ := (N + ∆N ) (M + ∆M )
−1

(L+ ∆L) + (K + ∆K).

Furthermore, suppose that [P,C] is internally stable and
{N + ∆N ,M + ∆M , L + ∆L,K + ∆K} ∈ B(P∆). g

Then [P∆, C] is internally stable for all ∆ ∈ {∆ ∈
RH∞, ‖∆‖∞ < γ} if and only if∥∥∥∥∥

[
I 0
0 U

] [
M −LU
−WN V −WKU

]−1 [
I 0
0 W

]∥∥∥∥∥
∞

≤ 1

γ
.

Proof. Proof will not be given here due to space limita-
tions, but will be published elsewhere.

6. CONCLUSION

Bicoprime factorisations have been introduced and shown
to be a generalised version of the well known left and
right coprime factorisations. Stability results pertaining to
BCFs were presented. Potential benefits include the study
of redundant and networked control systems. Uncertainty
on BC factors was presented and shown to have a structure
that encompasses both RCF and LCF uncertainty and
several different standard uncertainty structures.

The work presented in this paper naturally leads to a
multitude of questions about BCFs and their possible ap-
plications in control theory. This paper aims to stimulate
interest in this neglected field of robust control theory.
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