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Abstract: This paper proposes a design framework that maximizes the robust performance of a closed-
loop system via weight optimization in H∞ loop-shaping control. In line with design objectives,
frequency-dependent optimization problems are formulated in LMI framework to maximize robust
performance at low and high frequencies, and directly improve the robust stability margin at mid
frequencies. The philosophy of the work thus gives the best robust performance that can be achieved
on a particular problem once a level of robust stability margin is demanded. Loop-shaping weights and
controller are simultaneously synthesized from the proposed algorithm.
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1. INTRODUCTION

The H∞ loop-shaping design procedure (LSDP) McFarlane
and Glover [1992] is a well-known robust design methodology
that establishes a good trade-off between the robust stability and
the robust performance of a closed-loop system (see McFarlane
and Glover [1992] for more information). In this design
framework, the achieved robust stability margin is a design
indicator and thus, a designer’s main task is to select “good”
weights that achieve large robust stability margin. A robust
stability margin of 0.3 is typically considered satisfactory in
most control system design as it corresponds to a closed-loop
system’s gain and phase margins greater than or equal to 5.39dB
and 34.92◦, respectively, Glover et al. [2000].

It is however known that the selection of weights is non-trivial
especially for plants with strong coupling Tsai et al. [1990],
McFarlane and Glover [1992], Hyde [1995], Papageorgiou and
Glover [1997], Lanzon [2005], and factors such as the right-half
plane (RHP) poles/zeros of the nominal plant, strength of cross-
coupling for multi-input multi-output (MIMO) systems, roll-off
rate around crossover, expected bandwidth, singular values and
condition numbers of the nominal plant, etc. must be duly
considered when selecting weights. These issues have been
discussed in McFarlane and Glover [1992], Zhou et al. [1996],
Papageorgiou and Glover [1997], Lanzon [2005]. Moreover,
the factors have been combined in Lanzon [2005] into a single
optimization framework that facilitates design via an algorithm
that simultaneously synthesizes weights and a stabilizing con-
troller while maximizing the robust stability margin for a given
performance. Furthermore, smoothness constraints, formulated
on the gradient of weights, have been incorporated as extension
of this work in Osinuga et al. [2010a,b]. This allows fitting by
low-order transfer functions and also facilitates the synthesis
of smooth weights, thereby extending the applicability of the
algorithm to lightly damped or undamped plants without the un-
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Figure 1. Feedback interconnection

desirable lightly-damped ‘approximate’ pole-zero cancelations
in the shaped plant.

There has been a lot of interest in relating the best achievable
performance level in a feedback control system for different
plant characteristics, e.g., relationship between phase property
of the plant and the achievable control performance in H∞
LSDP Hara et al. [2006], performance bounds for the H∞-
optimal control of discrete linear time-invariant stable scalar
plants Peters and Salgado [2009], etc. However, the paradigms
of the optimization problem described above and, in fact, many
other synthesis techniques do not yield a synthesis framework
for the best achievable performance for a given plant because
the objective is solely to maximize the robust stability margin
for a given performance.

In order to answer the question of the achievable performance
of a closed-loop system, an approach that combines perfor-
mance with robust stability objectives at appropriate frequency
regions that are based on design objectives is needed. We
therefore propose an optimization problem that prioritizes per-
formance, stability and robustness at low, mid and high fre-
quencies, respectively. The resulting performance bound from
this optimized approach provides designers with a general feel
of the performance level that can be achieved when a desired
level of robust stability margin is demanded. This framework
is relevant as there are many scenarios where performance
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requirements are so stringent in the design that they have to
be optimized, e.g., performance of modern high-maneuverable
aircrafts and long-range missiles is critical once the stability of
the system is guaranteed Min et al. [2007].

The philosophy of this work casts a frequency-dependent op-
timization problem that improves the robust stability margin
around crossover frequency and, for a guaranteed level of ro-
bust stability margin, maximizes both robust performance at
low frequencies and robustness to unmodeled dynamics and
unpredicted sensor noise, etc. at high frequencies. The re-
sulting solution algorithm simultaneously synthesizes a robust
stabilizing controller and loop-shaping weights in a systematic
framework that is easy for designers to use. The proposed
optimization problem builds on the framework established in
Lanzon [2005], Osinuga et al. [2010a,b].
The rest of the paper is organized as follows: notations that
are central to subsequent sections are defined in Section II and
some preliminaries on H∞ LSDP’s concept and the extended
weight optimization framework of Lanzon [2005], Osinuga
et al. [2010b] are stated in Section III. The optimization prob-
lem for maximizing the robust performance and its solution are
established in Sections IV and V, respectively. An illustrative
example is given in Section VI and the conclusion is stated in
Section VII.

2. NOTATIONS

Let R,R+,R
n
+ respectively denote the set of real numbers,

strictly positive real numbers and column vectors of dimension
(n×1), with each entry belonging toR+. Rn×m and RH n×m

∞ are
the set of real rational and real rational stable transfer function
matrices, respectively, each of dimension (n×m). Functions
that are units in RH∞ are said to belong to GH∞, i.e., f ∈
GH∞⇔ f , f −1 ∈RH∞.

diag
(

a
b

)
is a shorthand notation for

(
a 0
0 b

)
.

Let Λn := {diag(x) : x ∈ Rn
+} be the set of real strictly positive

diagonal matrices of dimension (n× n). Also, let C (P) denote
the set of all stabilizing controllers for a plant P. For matrix A,
the i-th singular value is represented as σi(A) and the condition
number is defined as κ(A) := σ(A)/σ(A), where σ(A) (resp.
σ(A)) is the largest (resp. smallest) singular value. A∗ is the
complex conjugate transpose of matrix A. The robust stability
margin b(Ps,C∞) of the feedback interconnection shown in
Figure 1 is defined as

b(Ps,C∞) :=

∣∣∣∣∣∣
∣∣∣∣∣∣
[

Ps
I

]
(I−C∞Ps)−1

[
−C∞ I

]∣∣∣∣∣∣
∣∣∣∣∣∣−1

∞

(1)

if C∞ ∈ C (P), otherwise 0. The maximum achievable robust
stability margin bopt(Ps) := sup

C∞
b(Ps,C∞) ∈ [0,1]. We denote γ

as b(Ps,C∞)−1 and the pointwise-in-frequency robust stability
margin at a frozen frequency ω is defined as ρω(Ps,C∞) :=
b(Ps( jω),C∞( jω)), where C∞ = W−1

1 CW−1
2 . The following set

is defined for compactness of notation:

Π(α,β,ζ,η) := {W = diag


w1
...

wp

 ∈GH p×p
∞ : α(ω)<σi(W( jω))<

β(ω), κ(W( jω)) < ζ(ω),∣∣∣∣∣∣ d
d(log10ω)

(20 log10 |wi( jω)|)

∣∣∣∣∣∣ < η(ω) ∀ω, i = 1, . . . , p} for some

given continuous frequency functions α, β, ζ, η : R→ R+ that
satisfy β(ω) > α(ω), ζ(ω) > 1 and η(ω) > 0 ∀ω. For W, α and β
delimit the allowable region for the singular values, ζ provides a
bound for the condition number and η, expressed in dB/decade,
provides bound for the gradient of the magnitude response of
the diagonal elements. For a given scaled plant P ∈ Rm×n,
further define
Λ1ω := W1( jω)−∗W1( jω)−1 ∈ Λn and
Λ2ω := W2( jω)∗W2( jω) ∈ Λm.

3. H∞ LSDP AND WEIGHT OPTIMIZATION
FRAMEWORK

Here, the extended weight optimization framework of Lanzon
[2005] and some concepts of the H∞ LSDP are described
for underpinning the concepts and mathematical machinery of
this work. Typically, loop-shaping weights W1 and W2 are
chosen to shape the singular values of the nominal plant P
such that the shaped plant Ps has large gain at low frequencies,
small gain at high frequencies and does not roll off at a high
rate around crossover. We denote ωl and ωu as the boundary
frequencies used to partition the frequency space into three
distinct frequency regions of low, mid and high frequencies,
respectively. A prior knowledge on disturbance characteristics,
modeling uncertainties, sensor noise, etc. is needed to choose
these boundary frequencies. However, a simple rule 1 of thumb
can be made as follows: ωl = 0.1ωB and ωu = 10ωB, where ωB
is the desired bandwidth.

Besides achieving the desired loop-shape, a designer must also
ensure that a number of standard closed-loop design objectives
discussed in McFarlane and Glover [1992], Zhou et al. [1996],
Lanzon [2005] are small in appropriate frequency ranges.
Bounds on the transfer functions representing these objectives
are specified in terms of the singular values of the shaped plant,
the robust stability margin and the singular values and condition
numbers of the weights. The constraints on the singular values
and condition numbers of the loop-shaping weights must there-
fore be enforced at all frequencies so as to constrain the bounds
on these transfer functions at all frequencies.

The extended weight optimization framework of Lanzon [2005]
in Osinuga et al. [2010b] captures the above concepts in a sys-
tematic framework. The algorithm includes smoothness con-
straints on the gradient of the loop-shaping weights in addition
to existing constraints of Lanzon [2005]. The resulting solution
algorithm facilitates the synthesis of smooth weights for lightly-
damped plants without the undesirable ‘approximate’ pole-zero
cancelation of the modes of the nominal plant when the shaped
plant is formed. The optimization problem in Osinuga et al.
[2010b] was posed as follows:

max
W1 ∈Π(w1,w1,k1,g1)
W2 ∈Π(w2,w2,k2,g2)

bopt(Ps)

subject to s(ω) < σi(Ps( jω)) < s(ω) ∀i,ω.

s, s,wi,wi,ki and gi are frequency functions specified by the
designer for loop-shaping weight Wi( jω) (i = 1,2); the region
between s and s represents the permissible region for the de-
sired loop-shape, and is selected based on performance spec-
ification. The above optimization problem seeks to maximize
1 When using this rule, some allowances must be incorporated such that
the desired objectives (in frequency) are not too close to ωl and ωu due to
contrasting design objectives around these boundary frequencies.
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bopt(Ps) and therefore does not depend on any particular con-
troller. Using the definition of b(Ps,C∞) in (1) and perform-
ing several algebraic manipulations, the optimization problem
was formulated at each frequency grid-point ωq, where q =
1,2, . . . ,N and N is selected by the designer and δν := log10ωq−
log10ωq−1 ∀q > 1:

Minimize γ2
ωq

such that ∃C ∈ C (P),Λ1ωq ∈ Λn,Λ2ωq ∈ Λm
satisfying

s(ωq)2Λ1ωq < P∗( jωq)Λ2ωq P( jωq), (2a)

P∗( jωq)Λ2ωq P( jωq) < s(ωq)2Λ1ωq , (2b)[
0 P( jωq)
0 I

]∗ [
Λ2ωq 0

0 Λ1ωq

] [
0 P( jωq)
0 I

]
≤ γ2

ωq

[
I P( jωq)

C( jωq) I

]∗ [
Λ2ωq 0

0 Λ1ωq

]
× . . .

. . .×

[
I P( jωq)

C( jωq) I

]
, (2c)

∃ξ
1ωq

, ξ1ωq : ξ
1ωq

I < Λ1ωq < ξ1ωq I,w1(ωq)−2 < ξ
1ωq

,

ξ1ωq < w1(ωq)−2, ξ1ωq < k1(ωq)2ξ
1ωq

, (2d)

∃ξ
2ωq

, ξ2ωq : ξ
2ωq

I < Λ2ωq < ξ2ωq I,w2(ωq)2 < ξ
2ωq

,

ξ2ωq < w2(ωq)2, ξ2ωq < k2(ωq)2ξ
2ωq

, (2e)

0 <


ln10
10

Λ1ωq−1g1(ωq) δν
(
Λ1ωq −Λ1ωq−1

)
(
Λ1ωq −Λ1ωq−1

) ln10
10

Λ1ωq−1g1(ωq) δν

 , (2f)

0 <


ln10
10

Λ2ωq−1g2(ωq) δν
(
Λ2ωq −Λ2ωq−1

)
(
Λ2ωq −Λ2ωq−1

) ln10
10

Λ2ωq−1g2(ωq) δν

 . (2g)

Note that (2f)-(2g) are only active after the first grid-point
optimization, i.e., q > 1 in this case. The above optimization
problem is quasiconvex when the controller C ∈ C (P) is held
fixed. Diagonal weights are considered in the above optimiza-
tion, which is in line with the observation that diagonal loop-
shaping weights are generally sufficient to shape the singular
values of the nominal plant Hyde [1995]. However, with mi-
nor modifications as discussed in Lanzon [2005], it is easy
to compute non-diagonal weights. Here, (2a)-(2b) delimit the
singular values of the shaped plant Ps within the specified
loop-shape boundaries s(ωq) and s(ωq) and (2c) captures the
cost function that maximizes b(Ps,C∞). In addition, (2d)-(2e)
provide bounds on the singular values and condition numbers
of the synthesized loop-shaping weights while (2f)-(2g) ensure
the smoothness in the magnitude response of Wi by restricting
the gradient at each frequency grid-point ωq w.r.t. ωq−1 within
specified bounds gi(ωq) ∀i = 1,2.

4. FRAMEWORK FOR MAXIMIZING ROBUST
PERFORMANCE

Now, based on the design objectives, a new optimization prob-
lem is formulated to maximize the robust performance using

the framework given in (2a)-(2g) without introducing any form
of conservatism. The objectives are divided into three parts for
the low, mid and high frequency regions as stated below.

(1) ∀ω < ωl: maximize the robust performance which is
captured by the loop-gain of the shaped plant Ps;

(2) ∀ω ∈ [ωl,ωu]: maximize b(Ps,C∞) without restricting the
loop-shape;

(3) ∀ω > ωu: maximize the robustness to high frequency
noises, disturbances and unmodeled dynamics by mini-
mizing the loop-gain of the shaped plant Ps.

The desired level of robust stability margin for (1) and (3) above
is chosen ‘a priori’ and denoted as ε̄ ∈ (0,1).

4.1 Optimization in the low frequency region

In this frequency region, a designer seeks to maximize the
loop-gain in order to obtain small sensitivity function for good
reference tracking capabilities and good output disturbance
rejection. This is captured via the following optimization
problem.
Given ε̄, P and C ∈ C (P), at each ω < ωl, solve:

max
W1 ∈Π(w1,w1,k1,g1)
W2 ∈Π(w2,w2,k2,g2)

s(ω)

subject to
(i) s(ω) < σi (Ps( jω)) ∀i, (ii) ε̄ < ρω (Ps( jω),C∞( jω)).
This problem can be recast into the following pointwise-in-
frequency quasiconvex optimization problem.
Given ε̄, P and C ∈ C (P), at each ωq < ωl, solve:

Minimize s(ωq)−2

such that ∃Λ1ωq ∈ Λn,Λ2ωq ∈ Λm satisfying (2a), (2c)-(2g),
where γωq is fixed at ε̄−1 in (2c).
(2b) is not included in this optimization problem as the loop-
gain is being maximized from below.

4.2 Optimization in the mid frequency region

The robust stability margin indicates the size of the largest H∞-
norm bounded perturbation of the normalized coprime factors
of the shaped plant Ps for which closed-loop stability is guaran-
teed [Vinnicombe, 2001, Theorem 1.20]. Hence, the pointwise-
in-frequency robust stability margin is maximized in this region
without worrying about performance, i.e., maximizing the gain
and phase margins so as to avoid a perturbed plant encircling
the Nyquist point. The roll-off rate of the shaped plant around
the crossover frequency will effectively be constrained as the
robust stability margin is maximized.

Given P and C ∈ C (P), the optimization problem is cast as
follows:

max
W1 ∈Π(w1,w1,k1,g1)
W2 ∈Π(w2,w2,k2,g2)

ρω (Ps( jω),C∞( jω))

at each frequency ω ∈ [ωl,ωu].
The above problem can be recast into the following quasicon-
vex optimization problem at each ωq ∈ [ωl,ωu].
Given P and C ∈ C (P), solve:

Minimize γ2
ωq

such that ∃Λ1ωq ∈ Λn,Λ2ωq ∈ Λm satisfying LMI constraints
(2c)-(2g).
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In this frequency region, LMI constraints (2a)-(2b) are not
included as robust stability is prioritized over nominal perfor-
mance.

4.3 Optimization in the high frequency region

The aim in this frequency region is to minimize the loop-gain
of the compensated system in order to obtain small comple-
mentary sensitivity function for good robustness to high fre-
quency unmodeled dynamics and good high frequency sensor
noise rejection. This is captured via the following optimization
problem.
Given ε̄, P and C ∈ C (P), at each ω > ωu, solve:

min
W1 ∈Π(w1,w1,k1,g1)
W2 ∈Π(w2,w2,k2,g2)

s(ω)

subject to
(i) σi (Ps( jω)) < s(ω) ∀i, (ii) ε̄ < ρω (Ps( jω),C∞( jω)).
This can be similarly cast into the following pointwise-in-
frequency quasiconvex optimization problem.
Given ε̄, P and C ∈ C (P), at each ωq > ωu, solve:

Minimize s(ωq)2

such that ∃Λ1ωq ∈ Λn,Λ2ωq ∈ Λm satisfying LMI constraints
(2b)-(2g) with γωq fixed at ε̄−1 in (2c).
(2a) is not included as the loop-gain is being minimized from
above.

The above formulations maximize performance, stability and
robustness at low, mid and high frequencies, respectively. The
formulations are quasiconvex when the stabilizing controller
C ∈ C (P) is held fixed, and can be easily solved using LMI
routines, for example, ‘gevp’ solver in MATLAB LMI toolbox.
Note that the constraints on the singular values, the condition
numbers and the gradients of the loop-shaping weights are
active at all frequencies.

5. SOLUTION ALGORITHM

Based on the formulations given in the previous section, a
sub-optimal solution algorithm is now proposed. An iterative
algorithm must be used to solve the posed problems since they
are not simultaneously convex in all variables. Moreover, since
there are three optimization problems to be solved, a systematic
procedure must be employed such that there is no discontinuity
or violation of constraints. In fact, the following should be
noted.

(1) Designers typically use W1 and W2 to alter the loop-gain
at low and high frequencies, respectively Skogestad and
Postlethwaite [1998]. We will follow this general design
practice by keeping W2 and W1 fixed in low and high
frequencies, respectively.

(2) Since robust stability can easily be lost near crossover
frequency Vinnicombe [2001], we will solve the mid
frequency optimization problem before solving the low
and high frequency optimization problems. Also, the low
and high frequency optimizations will use the boundary
values obtained in the mid frequency optimization to seed
their search in order to avoid discontinuity and violation
of constraints at the boundaries of the frequency regions.

(3) The magnitude values of the weights at ωl and ωu will
be constrained by the magnitude values of the weights
obtained at these frequencies in the previous iteration

due to contrasting design objectives at these boundary
frequencies, e.g. at ωq = ωl, we maximize ρωq (Ps,C∞)
while at ωq−1, we maximize s(ωq−1) for a fixed ε̄. This
constraint is needed to ensure monotonic improvement in
performance in low frequencies and robustness in high
frequencies.

The following quantities need to be specified as inputs to the
algorithm: a scaled nominal plant P ∈Rm×n, where 2 m ≥ n, ωl
and ωu, wi(ω), wi(ω), ki(ω) and gi(ω) for loop-shaping weight
Wi (i = 1,2). Each frequency grid-point is denoted as ωq, where
q = 1,2, . . . ,nl, . . . ,nu, . . . ,N; ωnl and ωnu also denote ωl and
ωu, respectively. The solution algorithm is now presented as
follows:

(1) Given ε̄, find an initial controller C?
0 as a feasible start-

ing point for the algorithm such that the interconnec-
tion

[
W?

2,0PW?
1,0,W

−1?
1,0 C?

0 W−1?
2,0

]
is internally stable and

b(W?
2,0PW?

1,0,W
−1?
1,0 C?

0 W−1?
2,0 ) ≥ ε̄ for some W?

1,0 ∈ GH∞
and W?

2,0 ∈ GH∞. Set i = 0, where i denotes the iteration
number, and let ε?max,0 = −1.

(2) Increment i by 1.
(3) (a) Solve the following quasiconvex optimization prob-

lem at each frequency grid-point ωq ∈ [ωnl ,ωnu ],
where q = nl,nl + 1, . . . ,nu:

Minimize γ2
ωq,i

such that ∃Λ1ωq ∈ Λn,Λ2ωq ∈ Λm
satisfying
(2c)-(2g) and the following additional constraints:

(i) θ2
i−1Λ1ωnl

< P∗( jωnl )Λ2ωnl
P( jωnl ) when i > 1,

where θi−1 = σ
(
W2,i−1( jωnl )P( jωnl )W1,i−1( jωnl )

)
,

(ii) P∗( jωnu )Λ2ωnu P( jωnu ) < φ2
i−1Λ1ωnu when i > 1,

where φi−1 = σ
(
W2,i−1( jωnu )P( jωnu )W1,i−1( jωnu )

)
.

Denote by Λ?
1ωq

and Λ?
2ωq

the values of Λ1ωq and
Λ2ωq , respectively, that achieve the above minimiza-
tion at each ωq.

(b) Solve the following optimization problem at each
frequency grid-pointωq <ωnl in a backward direction
where q = nl−1,nl−2, . . . ,1 and

∣∣∣W2,i( jωq)
∣∣∣ is pinned

down to
(
Λ?

2ωnl

)1/2
∀ωq (hence, Λ2ωq = Λ?

2ωnl
):

Minimize s(ωq)−2

such that ∃ Λ1ωq ∈ Λn
satisfying
Λ1ωq < s(ωq)−2P∗( jωq)Λ?

2ωnl
P( jωq),

(2c)-(2d) and (2f), where γωq = ε̄−1 and Λ1ωnl
=

Λ?
1ωnl

. Since the optimization is in the back-
ward direction, δν = log10(ωq+1) − log10(ωq), and
Λ1ωq ,Λ1ωq−1 and g1(ωq) are replaced by Λ1ωq+1,Λ1ωq
and g1(ωq+1), respectively.

Denote by Λ?
1ωq

and si(ωq)? the values of Λ1ωq and(
s(ωq)−2

)−1/2
, respectively, that achieve the above

minimization at each ωq.

2 The assumption that the plant has more outputs than inputs incurs no loss
of generality. A dual problem to that shown in Figure 1 where W1 = WT

2 ,
W2 = WT

1 , P = PT and C∞ = CT
∞ would be considered if the plant has strictly

fewer outputs than inputs.
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(c) Solve the following optimization problem at each
frequency grid-point ωq > ωnu in a forward direc-
tion where q = nu + 1,nu + 2, . . . ,N and

∣∣∣W1,i( jωq)
∣∣∣

is pinned down to
(
Λ?

1ωnu

)−1/2
∀ωq (hence, Λ1ωq =

Λ?
1ωnu

):

Minimize s(ωq)2

such that ∃ Λ2ωq ∈ Λm
satisfying
P∗( jωq)Λ2ωq P( jωq) < s(ωq)2Λ?

1ωnu
,

(2c),(2e) and (2g), where γωq = ε̄−1 and Λ2ωnu =

Λ?
2ωnu

.
Denote by Λ?

2ωq
and si(ωq)? the values of Λ2ωq

and
(
s(ωq)2

)1/2
, respectively, that achieve the above

minimization at each ωq.
(4) Construct diagonal transfer function matrices W?

1,i(s) and
W?

2,i(s) in GH∞ by fitting stable minimum phase transfer
functions to each magnitude data on the main diagonal of
(Λ?

1ωq
)−1/2 and (Λ?

2ωq
)1/2, where q = 1,2, . . . ,N.

(5) Compute bopt(W?
2,iPW?

1,i) as detailed in Glover and Mc-
Farlane [1989] and let this value be denoted by ε?max,i.
Furthermore, synthesize a controller C?

∞,i that achieves a
robust stability margin b(W?

2,iPW?
1,i,C

?
∞,i) = ε?max,i usually

using the state-space formula given in [Glover, 1984, The-
orem 6.3]. Set C?

i = W?
1,iC

?
∞,iW

?
2,i.

(6) Evaluate
∣∣∣∣(ε?max,i−ε

?
max,i−1)

∣∣∣∣. If this value is very small,
for instance 0.01, and has remained this small for the last
few iterations, then EXIT; otherwise return to Step 2. The
improvement in the loop-gain at low and high frequencies
can also be used as an indicator to exit the algorithm.

The outputs from the algorithm are (i) the optimized b(Ps,C∞)
obtained in the variable ε?max,i, (ii) the maximized ρωq

(
Ps,C∞,i−1

)
obtained in the variable

(√
γ2
ωq,i

)−1
∀ωq ∈ [ωnl ,ωnu ], (iii)

smooth diagonal loop-shaping weights W?
1,i(s) and W?

2,i(s)
that achieve ε?max,i and (iv) controller C?

∞,i(s) that achieves
b(W?

2,iPW?
1,i,C

?
∞,i) = ε?max,i. Being an ascent algorithm, perfor-

mance and robustness at low and high frequencies, respectively,
are monotonically non-decreasing as i increases.

While the optimization problems at the low and high frequency
regions are solved pointwise-in-frequency, the constraints at
each frequency grid-point ωq ∈ [ωnl ,ωnu ] for the mid frequency
optimization can be packed together into a single constraint
in order to solve the optimization problem in one go. For
the optimization at each grid-point, the number of decision
variables is (m + n + 2iw), where iw = 1 when the optimization
is over only one weight and iw = 2 when the optimization is
over both weights. The number of decision variables therefore
increases with the dimension of the nominal plant. This number
does not however depend on the order of the plant.

6. NUMERICAL EXAMPLE

We consider a MIMO design example for pitch control of a
highly maneuverable airplane (see Balas et al. [1994] for more
information). The model is taken from the HIMAT, a scaled,
remotely piloted flight model with poles and zeros located at

s = −2.2321 ± j3.3779,−0.0442 ± j0.2093 and s = −0.0226,
respectively. For the purpose of illustration of the proposed
algorithm, the design objectives specified in Balas et al. [1994]
are used: disturbance rejection up to 1 rad/sec in the presence
of substantial plant uncertainty above 100 rad/sec and a desired
closed-loop bandwidth of approximately 10 rad/sec.

In view of the above specifications, ωl and ωu are chosen as
12 rad/sec and 160 rad/sec, respectively. ε̄ is fixed at 0.3 for
the optimization problems at low and high frequency regions,
thus allowing unstructured plant perturbation ||∆||∞ < 0.3. The
solution algorithm formulated in the previous section is now
used to simultaneously synthesize weights W1 and W2 and a
stabilizing controller C∞. The synthesized controller using the
H∞ LSDP in Balas et al. [1994] with b(Ps,C∞) of 0.4306 is
used to initialize the algorithm.

W2 is held fixed in low and mid frequencies while W1 is held
fixed in high frequencies. Due to simple design specifications,
the frequency functions wi,wi,ki and gi (i = 1,2) are chosen
as 10−5,105,5 and 60 dB/dec, respectively. Two hundred
equally spaced frequency points on a logarithmic scale between
ω1 = 10−2 rad/sec and ωN = 104 rad/sec are used to formulate
the optimization problems in Step 3 and four iterations were
required for the practical convergence of the algorithm.

For the sake of brevity, we only show the evolution of s(ωq)
at low frequencies and s(ωq) at high frequencies, the corre-
sponding loop-shaping weights and the resulting sensitivity
functions in Figure 2. The first plot in Figure 2 shows that the
loop-gain is maximized at low frequencies and minimized at
high frequencies. Moreover, the plot of the output sensitivity
function (resp. input complementary sensitivity function) is
lower in low (resp. high) frequencies when compared with
the design in Balas et al. [1994]. The robust stability margin
obtained from this design is 0.3548, which is an indicator of a
decent design. Moreover, a minimum ρωq (Ps,C∞) of 0.3680 is
obtained at the mid frequency region before the final controller
synthesis. The order of the synthesized loop shaping weight
W1, as well as W2, is 13. This order can be reduced using model
reduction techniques given in Zhou et al. [1996], if required.
Also, the condition numbers of the weights are less than 5 at all
frequencies, which is typically considered good.

7. CONCLUSION

A design paradigm that answers the question of the best achiev-
able performance level in a feedback system has been intro-
duced via weight optimization in H∞ loop-shaping design
procedure. The proposed paradigm is cast in a systematic
framework that captures the design objectives in low, mid and
high frequencies. Smooth loop-shaping weights and controller
that maximize robust performance for a guaranteed level of
robust stability margin are simultaneously synthesized from the
resulting solution algorithm. The algorithm is easy to use and
it gives designers a feel of what performance is achievable on a
given problem.
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