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Abstract: In this paper, novel test methods are proposed to check whether a new stabilizing controller
improves robust performance or not when the existing controller is replaced by this new controller in the
closed-loop. For the proposed tests, the plant dynamics is assumed to be unknown whereas the existing
and new controller transfer function matrices are known to the designer. The proposed tests are based
on closed-loop data and can be used for both the SISO and MIMO systems. The test methods in this
paper build on the experimental set-up of Dehghani et al. (2009), however, the proposed results in this
paper for robust performance improvement test cannot be obtained from the test results of Dehghani et
al. (2009).
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1. INTRODUCTION

In robust adaptive control and iterative identification and con-
trol redesign techniques, a control systems engineer starts to
identify the plant model based on the closed-loop data to design
more attractive controller so that the robustness of the closed-
loop system is improved while the existing known controller
is replaced by the new designed controller Hjalmarsson et
al. (1998), Gevers et al. (2003), Gevers (2000). The plant
model identification and controller redesign method progresses
iteratively until a satisfactory level of robustness is achieved
Gevers (2002), Gevers (2000), Schrama and Van Den Hof
(1992), Bitmead (1993). This method needs a ‘safe’ controller
change, however, it is not always possible to ensure the robust
performance improvement a priori Dehghani et al. (2009),
Gevers (2002), Anderson and Gevers (1998), Lecchini et al.
(2006), Lanzon et al. (2006), Dehghani et al. (2007), Bitmead
(1993), Anderson (2004), Dehghani et al. (2007). Insertion of a
destabilizing controller in the closed-loop is avoided at all costs
and hence, for ‘safe adaptive control’ it is always very important
to check that the newly designed controller that seems to be
attractive before inserting into the closed-loop system is guar-
anteed to at least stabilize the unknown plant Hjalmarsson et al.
(1998), Hildebrand et al. (2005), Anderson (2004), Callafon
and Van Den Hof (1997), Kammer et al. (2000). A novel set of
experiments were recently proposed in Dehghani et al. (2009)
to test internal stability of an apparently attractive controller
based on data-only experiments which do not require the full
frequency spectrum which prevent the possibility of inserting a
destabilizing controller in the closed-loop system.

Although guaranteeing internal stability of a newly designed
controller on the unknown physical plant is a necessary pre-
requisite to a good robust adaptive algorithm, it is not suffi-
cient as it is important to ensure monotonic robust performance
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improvement when the designer has one or a set of attractive
stabilizing controllers at hand. In this scenario, although the
available controllers are all stabilizing, the following is an
important question: which of these stabilizing controllers will
improve performance when the existing controller is replaced
by the newly chosen stabilizing controller? The present paper
gives answer to this question by proposing novel test methods
based on closed-loop data. For the tests, the physical plant is
assumed to be unknown whereas all the controllers are known
to the designer.

The proposed tests build on the experimental set-up proposed
in Dehghani et al. (2009) where the tested controller is im-
plemented in coprime factorization form. In this paper, we use
the same experimental set-up as in Dehghani et al. (2009) to
propose new additional test methods to ascertain robust perfor-
mance improvement of the closed-loop system.

2. NOTATIONS AND DEFINITIONS

Let R denote the set of all real rational transfer function ma-
trices and RH

m×n
∞ be the set of all real rational stable transfer

function matrices with m rows and n columns. Let a transfer
function matrix G ∈ R, then L2-adjoint system G∗(s) denotes
G(−s)T . Let R and C denote the fields of real and complex
numbers respectively. Also let C− and C̄−, respectively, denote
the open and closed left-half planes. Let A∗ and ρ(A) denote
the complex conjugate transpose and spectral radius of a matrix
A, respectively. Let σ̄(A) and σ(A), respectively, denote the
largest and smallest singular value of matrix A. Let ‖P‖∞ denote
the H∞-norm of P ∈ RH ∞. The number wno(.) indicates the
winding number of a scalar transfer function evaluated on a
standard D−contour indented to the right around any imaginary
axis poles Vinnicombe (2000). Consider the standard feedback

interconnection of systems as shown in Figure 1. From

[

ω

d

]
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to

[
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]

, the transfer function matrix is H(P,C) =

[

P
I

]
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Fig. 1. Feedback interconnection of systems

Definition 1. (Vinnicombe (2000)) The interconnection [P,C]
as depicted in Figure 1 is well-posed if H(P,C) exists, and
furthermore [P,C] is said to be internally stable if it is well-
posed and H(P,C) ∈ RH ∞.

Let P = NM−1 be a right coprime factorization (rcf) of P ∈ R

and C = Ṽ−1Ũ be a left-coprime factorization (lcf) of C ∈ R.

Definition 2. (Vinnicombe (2000)) Given P,C ∈R. Let {N,M}
be a rcf of P and {Ũ ,Ṽ} be a lcf of C. Then G :=
[

N
M

]

and K̃ :=
[

−Ũ Ṽ
]

where G is referred to as the right

graph symbol of P, and K̃ is the inverse left graph symbol of C.

If the coprime factors are normalized, the graph symbols G and
K̃ are normalized to satisfy G∗G = I and K̃K̃∗ = I.

Definition 3. (McGowan and Kuc (1982)) The unwrapped
phase of a transfer function is denoted by unwarg and refers
to the phase of the frequency response when it is in the form of
a continuous function of frequency.

3. INTERNAL STABILITY TEST FOR CONTROLLERS
AND THE EXPERIMENTAL SET-UP

In this section, the test methods of Dehghani et al. (2009) are
described briefly for checking internal stability of an attractive
new controller on the unknown plant. The same experimental
set-up described in this section will also be used for testing
robust performance improvement which is the main concern
and key proposition of this paper. For testing, the controller
C is implemented in ‘observer-form’, depicted in Figure 2(a)
Vinnicombe (2000), where a left coprime factorization of the
controller C = Ṽ−1Ũ and the factor Ṽ−1 is implemented in
forward path and Ũ is placed in feedback path of the closed-
loop system.
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Fig. 2. Controller implementation

If a controller is not already implemented in this observer form,
but simply implemented as in Figure 1, then one could use the
injection of exogenous signals ω and d before and after the
controller, as shown in Figure 2(b), to produce an equivalent
observer form implementation- see Dehghani et al. (2009) for
details.

Theorem 1. (Vinnicombe (2000)) Given P ∈ R and C ∈ R

connected in a feedback interconnection as shown in Figure
1. Define graph symbols G and K̃ for P and C as given in
Definition 2. Then the followings are equivalent:

(1) [P,C] is internally stable;

(2) (K̃G)−1 ∈ RH ∞;
(3) det(K̃G)( jω) 6= 0 ∀ω and wno det(K̃G) = 0.

This theorem underpinned the development in Dehghani et
al. (2009). Interestingly the proposed tests are performed on
the existing closed-loop (which is already internally stable),
and a new candidate controller whose stabilizability will be
checked is implemented in its stable coprime factorization form
as shown in Figure 3 as post-filtration of signals u and y.
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Fig. 3. Experimental set-up

For these tests, the existing controller transfer function matrix
is assumed to be known to the designer and has a left coprime

factorization framework C0 = Ṽ−1
0 Ũ0. This controller is realized

in observer form as described in Figure 2(a) or its equivalent
implementation of Figure 2(b). Since Ũ1,Ṽ1 ∈ RH ∞, the map
from signal r to z is always stable (even when C1 is desta-
bilizing) as the existing closed-loop system is assumed to be
internally stable system and hence this set-up allows for safe
experiments before inserting the new controller into the closed-
loop. The plant transfer function P is assumed to be unknown
but available for data collection onto the physical closed-loop.

Theorem 2. (Dehghani et al. (2009) Lanzon et al. (2006))
Given controllers C0,C1 ∈ R and assume [P,C0] is internally

stable on a physical plant P ∈ R. Let C0 = Ṽ−1
0 Ũ0 and C1 =

Ṽ−1
1 Ũ1 be left coprime factorizations over RH ∞. Using the

stable mapping T : r 7→ z in Figure 3(a) or Figure 3(b), then the
following statements are equivalent:

(1) [P,C1] is internally stable;

(2) T−1 ∈ RH ∞;
(3) det T ( jω) 6= 0 ∀ω and wno det T = 0;
(4) det T ( jω) 6= 0 ∀ω and unwrag det T ( j∞) = unwarg det

T ( j0)

where unwarg(.) denotes the unwrapped phase of a scalar
transfer function as in Definition 3.

The proof of this theorem is given in Dehghani et al. (2009).
Because of P being unknown to the designer, T is also not
known to the designer. Using graph symbols for P,C0 and C1,
T can formally be written as T = (K̃1G)(K̃0G)−1 from which it
is easy to see that T is always stable since [P,C0] is internally
stable (via Theorem 1). Hence the input-output map T from
r to z is always stable even if C1 is a destabilizing controller
for the closed-loop system. In Dehghani et al. (2009), using
the experimental set-up shown in Figure 3(a) or Figure 3(b) the
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input-output data from r to z are collected and based on these
closed-loop data, the internal stability condition for [P,C1] is
checked. For checking Condition 4 of Theorem 2, two separate
experiments have been proposed in Dehghani et al. (2009).
The first experiment provided an easily measurable necessary
condition for internal stability. The second experiment required
more experimental effort and provided a necessary and suf-
ficient condition for internal stability. The first experiment is
repeated here because these results will be used to develop the
main results of this paper.

For the closed-loop data-based stability tests, the following two
assumptions were made: Assumption 1: The factors Ṽ0 and Ṽ1

are chosen such that Ṽ0( j∞) = Ṽ1( j∞) = I. Assumption 2: The
transfer functions PC0 and PC1 are strictly proper.

Assumption 1 is without loss of generality and Assumption 2 is
very mild and can be easily satisfied in practise.

Theorem 3. (Dehghani et al. (2009) Lanzon et al. (2006))
Let the suppositions of Theorem 2 and Assumptions 1 and 2
hold. Let ei denote a reference signal where a step is applied
at the i-th input while the other inputs are kept as 0. Perform n
experiments with reference signal r(t) = ei(t), i = 1, . . . ,n and
let z̄i be the steady state output of the map T : r 7→ z recorded
in each experiment. Define Z̄ = [z̄1, . . . , z̄n]. Then [P,C1] is
internally stable implies det Z̄ > 0. Thus if det Z̄ ≤ 0, stability
of [P,C1] is not internally stable.

This is a falsification test and this theorem was proved by using
the final value theorem (see Dehghani et al. (2009) for detail).

Note that, Z̄ = [z̄, . . . , z̄n] = lims→0 s
[

T (s) 1
s

]

= T ( j0). Hence

det T ( j0) = det Z̄. The following formal relation (see Lemma
11 in Dehghani et al. (2009)) underpins the main results of this
paper. Since

T = (K̃1G)(K̃0G)−1 (1)

then T ′ = T − I =
[

−(Ũ1 −Ũ0) (Ṽ1 −Ṽ0)
]

[

P(I −C0P)−1

(I −C0P)−1

]

Ṽ−1
0

= (K̃1 − K̃0)G(K̃0G)−1 (2)

From (1), we can rewrite T = Ṽ1(I −C1P)(I −C0P)−1Ṽ−1
0 .

Then by Assumptions 1 and 2, it is evident that at high fre-
quency T tends to I, i.e. from (2), T ′ is strictly proper. This
trick simplifies the experiment significantly and indicates that
experiments need not be performed on the whole frequency
range to characterize the closed-loop system T , but only up to
some finite frequency (i.e. bandwidth) ω0.

4. TEST FOR ROBUST PERFORMANCE IMPROVEMENT

Once the stability conditions are satisfied, an immediate sub-
sequent important question is raised: Does this stabilizing con-
troller improve robust performance of the closed-loop system
or not? In this section, new experiments are proposed to answer
this last question. We will use the same experimental set-up
shown in Figure 3(a) and Figure 3(b) to test for robust perfor-
mance improvement.

We now define the robust stability margin Vinnicombe (2000),
Lanzon and Papageorgiou (2009) for the interconnected sys-
tems shown in Figure 1 as follows:

b(P,C) =






∥

∥

∥

∥

[

P

I

]

(I −CP)−1
[

−C I
]

∥

∥

∥

∥

−1

∞

when [P,C] is

internally stable,

0 otherwise.

(3)

Using normalized graph symbols, we can rewrite b(P,C)
when [P,C] is internally stable as b(P,C) = ‖G(K̃G)−1K̃‖−1

∞ =
‖(K̃G)−1‖−1

∞ . Hence the generalized robust stability margin
b(P,C) can now be equivalently represented as b(P,C) =
infω σ

(

K̃G( jω)
)

when [P,C] is internally stable. Define also

ρ(P( jω),C( jω)) = σ(K̃( jω)G( jω)) to be the pointwise in
frequency generalized robust stability margin.

The generalized robust stability margin b(P,C) is a measure of
robust performance, not just robust stability, of the closed-loop
system Vinnicombe (2000), Zhou et al. (1996), Lanzon and
Papageorgiou (2009), McFarlane and Glover (1992). Higher
value of b(P,C) indicates higher level of robust performance.
This means that when an existing controller is replaced by a
new attractive stabilizing controller in the closed-loop system,
an increase in b(P,C) implies an improvement in robust perfor-
mance. In this section, new test methods will be proposed to
check whether b(P,C) increases or not so that we can ascertain
whether robust performance improves or not for the closed-
loop system. Throughout this paper, we denote the existing
controller and the new attractive stabilizing controller which
we would like to test by, C0 and C1 respectively. The perfor-
mance improvement conditions are given here both pointwise
in frequency and over all frequencies.

The transfer function matrix T : r 7→ z in Figure 3(a) or Figure
3(b) is formally given by T = (K̃1G)(K̃0G)−1 and T ′ : r 7→ (z−
r) is formally given by T ′ = (K̃1−K̃0)G(K̃0G)−1 though neither
of these two transfer functions can be computed explicitly
during the experiment as P is not known to the designer. Here,
K̃1 and K̃0 are respectively the normalized inverse left graph
symbols of C1 and C0 and G is the normalized right graph
symbol of P (see Definition 2). From above relation, we have
(K̃1G) = T (K̃0G). Using singular value inequalities, the above
expression can be rewritten pointwise in frequency as follows:

σ(T ( jω))σ(K̃0G( jω)) ≤ σ(K̃1G( jω)) ≤ σ̄(T ( jω))σ(K̃0G( jω)). (4)

4.1 Performance improvement pointwise in frequency

Sufficient condition If σ(T ( jω))> 1 ∀ω , then σ(K̃1G( jω))>

σ(K̃0G( jω)) ∀ω , which means we have pointwise improve-
ment in ρ(P( jω),C( jω)).

Checking this sufficient condition pointwise in frequency is
equivalent to check the following condition: ∀ω,∀0 6= rω ∈

C
m,z∗ω zω > r∗ω rω where at each frequency T ( jω) : C

m → C
m

rω 7→ zω
as

σ(A) = infx 6=0
‖Ax‖2

‖x‖2
and ‖x‖2

2 = x∗x.

Necessary condition In order to have any hope for the desired
pointwise in frequency robust performance improvement to be
achieved via an increase in ρ(P( jω),C( jω)), we necessarily
need σ̄(T ( jω)) > 1 ∀ω.

Checking the above condition is equivalent to check the fol-
lowing condition: ∀ω,∃0 6= rω ∈ C

m : z∗ω zω > r∗ω rω where at

each frequency T ( jω) : C
m → C

m

rω 7→ zω
as σ̄(A) = supx 6=0

‖Ax‖2

‖x‖2
and

‖x‖2
2 = x∗x.

Remark 1. The pointwise in frequency necessary condition is
easier to test than the pointwise in frequency sufficient condi-
tion because for the necessary condition, one need to find only
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one pointwise signal 0 6= rω ∈ C
m that results in amplification

of signal norms, whereas for the sufficient condition one needs
to check that all signals 1 0 6= rω ∈ C

m result in amplification
of signal norms.

Inequality (4) implies (by taking the appropriate infimum and
supremum in the correct orders)

[

inf
ω

σ(T ( jω))
]

b(P,C0) ≤ b(P,C1) ≤

[

sup
ω

σ̄(T ( jω))

]

b(P,C0)

⇒
b(P,C0)

‖T−1‖∞

≤ b(P,C1) ≤ ‖T‖∞b(P,C0) (5)

Since [P,C0] and [P,C1] are both internally stable, from The-

orem 2 we have T,T−1 ∈ RH ∞ where T : L2[0,∞) → L2[0,∞)
r 7→ z

and then equivalently T−1 : z 7→ r, then noting that ‖T‖∞ =

sup0 6=r∈L2[0,∞)
‖z‖L2
‖r‖L2

and ‖T−1‖∞ = sup0 6=z∈L2[0,∞)
‖r‖L2
‖z‖L2

=

sup0 6=r∈L2[0,∞)
‖r‖L2
‖z‖L2

since T is a unit in RH ∞ (i.e. bijective

on L2[0,∞)).

4.2 Performance improvement over all frequencies

Sufficient condition If ‖T−1‖∞ < 1, then b(P,C1) > b(P,C0)
which is the desired improvement in robust performance.

Necessary condition For having any hope of achieving
b(P,C1) > b(P,C0) (i.e. achieving robust performance improve-
ment), we need the necessary condition ‖T‖∞ > 1.

Similar to Remark 1, it is worth noting that the necessary condi-
tion is easy to test because it involves finding just one (any) en-
ergy bounded input r which achieves signal amplification. This
is in contrast with the sufficient condition which requires check-
ing that signal amplification occurs for all bounded-energy in-
puts r. 2

The following necessary and sufficient result in a SISO setting
allows us to check a priori robust performance improvement for
a new stabilizing controller C1 if it were to be inserted into the
closed-loop system and all the tests performed without actually
replacing C0 by C1.

Theorem 4. Given the experimental set-up of Figure 3(a) or

Figure 3(b) with T : L2[0,∞) → L2[0,∞)
r 7→ z and define z′ = z − r.

Then

|T ( jω)|> 1⇔|z′( jω)|> 2|r( jω)|cos[π−(∠z′( jω)−∠r( jω))].

Consequently, {ω : T ( jω)> 1}≡{ω : |z′( jω)|> 2|r( jω)|cos[π−
(∠z′( jω)−∠r( jω))]}.

Proof. This theorem is proved using the cosine rule for trian-
gle. The detailed proof will be published elsewhere.

Corollary 1. Given the suppositions of Theorem 4. Then the
following two statements hold:

(a)|∠z′( jω)−∠r( jω)| ≤
π

2
⇒ |T ( jω)| > 1;

(b)|z′( jω)| > 2|r( jω)| ⇒ |T ( jω)| > 1.

1 In a practical sense, to achieve ‘adequate’ confidence that there will be

pointwise in frequency improvement in ρ(P( jω),C( jω)) one needs to check

‘adequately’ rich signals.
2 If one obtains signal amplification for an ‘adequately’ rich family of

bounded-energy inputs, then one can obtain ‘adequate’ confidence that is likely

robust performance improvement via an increase in b(P,C). This may be suffi-

cient confidence in a practical scenario.

Proof. Trivial via Theorem 4 statement.

The above theorem gives the necessary and sufficient condition
for improvement in b(P,C) that in turn indicates the improve-
ment of robust performance as well as the robust stability mar-
gin. Note that the above theorem is only applicable to SISO
systems. In the following theorem, sufficient conditions for
robust performance improvement are given for MIMO systems.

Theorem 5. Given T : L2[0,∞) → L2[0,∞)
r 7→ z and define T ′ = T −I.

Then σ(T ( jω)) > 1 if σ(T ′( jω)) > 2 or T ′( jω)+T ′( jω)∗ >

0.

Proof. Due to its length and limited space, it will be published
elsewhere.

In the above theorem, two sufficient conditions are presented
for pointwise in frequency improvement of b(P,C) for MIMO
systems. However, the first condition is impossible to satisfy
when the controller change is small whereas the second condi-
tion can still be rather easily fulfilled. The second condition
also has a profound philosophical implication - that as long
as the controller change is in the correct direction, then the
controller change does not need to be small. Indeed, it can
be arbitrarily large in the correct direction of fulfilment of
T ′( jω)+T ′( jω)∗ > 0 and robust performance improvement is
still guaranteed. Checking the second condition is equivalent to
check a necessary and sufficient condition which is presented
in the following theorem.

Theorem 6. Given T = (K̃1G)(K̃0G)−1 and T ′ = T − I. Then
T ′( jω)+T ′( jω)∗ > (≥)0 if and only if

(K̃1G)∗(K̃1G)( jω)− (K̃0G)∗(K̃0G)( jω)
> (≥)[(K̃1 − K̃0)G]∗[(K̃1 − K̃0)G]( jω). (6)

Proof. This theorem is proved via sequence of equivalent steps.
The detailed proof will be published elsewhere.

In inequality (6), the right hand side is related to the size of
the controller change and the left hand side is the difference
between the new and the old robust stability margins. This
condition states that for the controller change to yield a change
in the positive-real direction (i.e. T ′( jω)+T ′( jω)∗ > 0) which
then guarantees robust performance improvement, we need the
controller change to be such that it has larger impact on the
increase in b(P,C) than it has on the size of the transfer function
T ′( jω). This is needed so that the left hand side is greater than
the right hand side in inequality (6).

In robust adaptive control, if one is close to the critical Nyquist
point and also has no information on which direction to perform
a controller change, it is always better to do small changes
on the controller. These kind of results then can only give a
lower bound on the maximum performance degradation and
we often are content with this as an acceptable compromise
to robust adaptive control algorithms and use this kind of ar-
gument to justify why one should do small steps so that we do
not inadvertently loose stability. But if one is not completely
lacking all information and can perform the tests in this paper,
then there is a large set of directions where huge controller
changes are perfectly acceptable and indeed yield performance
and stability margin improvement. This means we are allowed
to take arbitrary huge steps that satisfy condition (6), which cor-
responds to a step in the positive-real direction and still attain
robust performance improvement. Note that this is equivalent
to < z′,r >L2

≥ 0 ∀r ∈ L2 where z′ = z− r and z = Tr.
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5. CLOSED-LOOP DATA-BASED TESTS FOR
PERFORMANCE IMPROVEMENT

To test robust performance improvement conditions, it is how-
ever practically unrealistic to perform experiments for all fre-
quencies as well as for all signals in L2 space. To circumvent
this difficulty, experimental procedures are proposed in this sec-
tion based on the closed-loop set-up shown in Figure 3(a) and
3(b). The first experiment proposed in Dehghani et al. (2009)
was a falsification test for internal stability and interestingly, the
same falsification test data collected during the experiment can
be reprocessed to also check for robust performance improve-
ment of the closed-loop system. This experiment significantly
reduces the experimental effort as well as utilizes an extremely
simple test procedure.

From falsification test data for internal stability, we use Z̄ to
check whether this stabilizing controller will improve b(P,C)
of the closed-loop system. Note that, for both SISO and MIMO
systems, a sufficient condition for improving b(P,C) is the
positive-realness of T ′ where T ′ = T − I. In this regard, the
following falsification test for positive-realness of T ′ is useful.
If this test is not falsified then there is a hope for improvement
of the robust performance as well as the robust stability margin
of the closed-loop system at all frequencies and we need to
perform further experiments to obtain absolute guarantee.

Theorem 7. Given T : L2[0,∞) → L2[0,∞)
r 7→ z and define T ′ = T −I.

Let the suppositions of Theorem 2 and Assumptions 1 and 2
hold. Let ei denote a reference signal where a step is applied
at the i-th input while the other inputs are kept as 0. Perform n
experiments with reference signal r(t) = ei(t), i = 1, . . . ,n and
let z̄i be the steady state output of the map T : r 7→ z recorded
in each experiment. Define Z̄ = [z̄1, . . . , z̄n]. Then ∃ω1 > 0 :
T ′( jω)+T ′( jω)∗ > 0 ∀ ω ∈ [0,ω1] ⇔ Z̄ + Z̄T > 2I.

Proof. Due to limited space, it will be published elsewhere.

To check the conditions of Theorems 4 and 5, an experiment
will be performed up to the frequency ω0 such that |T ′| is
much smaller than unity for all ω > ω0. Since T = I + T ′,
the collected closed-loop data up to the frequency ω0 will be
sufficient to characterize the required properties onto the system
T as |T | ≈ 1 when |T ′| ≪ 1.

6. SIMULATION EXAMPLE

Although the experiments proposed in this paper are based on
the unknown plant, however, for simulation purpose the plant
transfer function is considered as known. We consider the same
SISO example presented in Dehghani et al. (2009) to check
whether the new controller improves robust performance or not
when it were to be inserted into the closed-loop.

Let a SISO plant which is not known to the designer be given
by

P =
−186.66(s−5)(s+4.5)

(s+10)2(s+7)(s+6)
.

A stabilizing controller

C0 =
0.021(s+10.92)(s+8.87)(s+7.31)(s+5.93)

(s2 +8.6s+19.84)(s2 −0.603s+5.34)
is physically connected to the plant in closed-loop. In Dehghani
et al. (2009), it is shown that an attractive new controller

C1 =
0.33(s+0.586)(s+2.99)(s+3.416)

(s+2)(s2 +2.26s+3.52)

also ensures internal stability of the closed-loop system if C0

were to be replaced by C1. We have used the same set of left
coprime factors for C0 and C1 which were given in Dehghani et
al. (2009). To check the robust performance improvement, we
do the following experiments.

(a) On the experimental set-up shown in Figure 3(a) or 3(b),
we apply the test method of Theorem 7 and record Z̄ = 5.68.

Since Z̄ + Z̄T > 2I, this test does not falsify the necessary and
sufficient condition for strictly positive-realness of T ′ at DC
and its neighborhood frequencies. Consequently, no conclusion
can be drawn whether this new controller improves robust
performance or not at all other frequencies.

(b) We do a sine-sweep on the experimental set-up shown
in Figure 3(a) or 3(b) starting from DC frequency and the
corresponding magnitude plot of T ′ is shown in Figure 4.
Notice that the exact plot is irrelevant as we need only some key
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Fig. 4. Magnitude plot of T ′

properties and points on this curve to characterize the transfer
function T . Beyond 30 rad/s, |T ′|≈ 0 and so |T |≈ 1 as T = I +
T ′. This means we only need to test up to approximately 30
rad/s. Also, if the sine-sweep confirms confidently that |T ′|> 2
up to approximately 0.9 rad/s, as indeed depicted in Figure 4,
then we know via Corollary 1 that up to 0.9 rad/s we have robust
performance improvement.

(c) From the sine-sweep data beyond 0.9 rad/s, compute also
Re[z′( jω)∗r( jω)]. This is plotted in Figure 5. The exact fre-
quency plot is irrelevant as the information that needs to be
extracted only uses a few key data points. From this experiment,
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Fig. 5. Re[z′( jω)∗r( jω)] vs. frequency

we can confidently conclude that there is robust performance
improvement also in the frequency range (1.5 rad/s, 16 rad/s)
as Re[z′( jω)∗r( jω)] ≥ 0 in this frequency range implying
T ′( jω)+T ′( jω)∗ ≥ 0.

(d) Consequently, robust performance improvement is guaran-
teed in [0, 0.9 rad/s) and (1.5 rad/s, 16 rad/s) via the preceding
tests. The question of whether robust performance improve-
ment happens also in the frequency intervals [0.9 rad/s, 1.5
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rad/s] and [16 rad/s, 30 rad/s] cannot be answered without the
precise data having experimental effort related to Theorem 4 as
in Figure 6.
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Fig. 6. |T ′( jω)|−2cos(π −∠T ′( jω)) vs. frequency

7. CONCLUSIONS

In this paper, conditions are derived for robust performance
improvement based on the closed-loop data when an existing
controller is replaced by an attractive new stabilizing controller
in the feedback loop. For the proposed tests, the plant model
is assumed to be unknown which is a common assumption in
robust adaptive control. A sufficient condition is derived for
robust performance improvement that shows that as long as the
controller change is done in the positive-real direction, such a
controller change can be of an arbitrary large size. The experi-
mental set-up used in this paper is identical to Dehghani et al.
(2009), Lanzon et al. (2006), however, the proposed conditions
for robust performance improvement cannot be obtained from
the test results of Dehghani et al. (2009), Lanzon et al. (2006)
directly.
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