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Abstract: The windsurfing approach to iterative control entails several controller
designs to gradually and safely widen the closed-loop bandwidth. Eventually some
validation tests are carried out in order to stop the algorithm. In this paper,
an H∞ design algorithm is presented in order to remove the empirical aspect
from the stopping criteria and to make the procedure more systematic, hence
expediting the design. Furthermore, a new controller design method is introduced
which relaxes some restrictive assumptions on the plant model and tackles well
some issues with the controller design step. This enables us to address a wider
class of practical problems.
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1. INTRODUCTION

One of the model-based iterative identification
and control design methods, the windsurfer ap-

proach, was first introduced in (Anderson and
Kosut, 1991). This proposes an iterative algo-
rithm which gradually broadens the bandwidth
of a closed-loop system through repetition of a
two-step procedure using identification and con-
troller re-design steps. Hence, the algorithm, out-
lined e.g. in (Lee et al., 1993) and (Anderson,
2002), is constructed to achieve the desired per-
formance and design objectives, in which the In-
ternal Model Control (IMC) method (Morari and
Zafiriou, 1989) is iteratively utilised in the con-
troller design steps. In the case of stable plants,

1 Corresponding author. Arvin.Dehghani@anu.edu.au,
Fax: (61)-2-6125 8660
2 This work was supported by an ARC Discovery-Projects
Grant (DP0342683) and National ICT Australia. National
ICT Australia is funded through the Australian Gov-
ernment’s Backing Australia’s Ability initiative, in part
through the Australian Research Council.

the IMC design method offers the advantage of
simplicity and the fact that the closed-loop band-
width of the system can be set via a single design
parameter (Lee et al., 1993). However, if the plant
is unstable, the same simple IMC design method
cannot be used. Treatment of the unstable plant
case can be found in papers (Lee et al., 2001)
and (Campi et al., 1982). Nevertheless, there are
some inadequacies with the IMC design methods
for both stable and unstable plants which will be
extensively discussed and addressed in section 2.

In this paper, we introduce a modified algorithm
for the windsurfer approach in section 3 by in-
corporating a new controller design method. This
new controller design method (section 2.2) main-
tains the desirable features of the IMC design
method, but also extends its applicability and
addresses some of the IMC shortcomings. The pro-
posed algorithm introduces an H∞ design tech-
nique in order to make the windsurfer approach
more systematic and to relax some restrictive as-
sumptions on the plant.
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2. CONTROLLER DESIGN METHOD

Internal Model Control is a simple but effective
control design method which has been successfully
used in many applications where a desired closed-
loop amplitude response from reference to plant
output must be achieved. Furthermore, for a stable

plant, adjustment of a single parameter directly
and simply determines the closed-loop bandwidth
and hence the reference tracking capabilities.

2.1 Difficulties with the IMC approach

Consider the feedback system in Fig. 1. One can
express y and u in terms of r1 and r2 as follows:
[

y

u

]

= H(Pi, Ci)

[

r1

r2

]

=

[

PiCi
1+PiCi

Pi
1+PiCi

Ci
1+PiCi

1
1+PiCi

][

r1

r2

]

(1)

where r2 represents a second external input or dis-
turbance acting on the plant input. To motivate
the importance of considering the four transfer
functions in equation (1), let us note some key
points. The (1,1) transfer function Tyr1 = PiCi

1+PiCi

is clearly important for reference tracking and
the IMC design method deals particularly with
this. Special care, however, must be exercised in
regard to the other three transfer functions as the
IMC (Morari and Zafiriou, 1989) does not handle
them explicitly. For a sensible design, the transfer
function from plant input disturbance to output,
Tyr2 = Pi

1+PiCi
, must be maintained below a cer-

tain size since we wish plant input disturbances
to be attenuated at the plant output. Likewise,
Tur1 = Ci

1+PiCi
represents the transfer function

from reference input to control signal and hence,
must be kept below a certain size in order to avoid
control actuator saturation and high energy con-
trol action. Furthermore, the size of the four trans-
fer functions in equation (1) is related to a gener-
alised robust stability margin (Vinnicombe, 2000)
which corresponds to the amount of (coprime
factor) uncertainty that can perturb Pi without
destabilising the loop (Zhou et al., 1996). With
this introduction in mind, let us now record the
circumstances where the IMC design method de-
scribed in (Morari and Zafiriou, 1989) cannot be
properly used or is limited by restrictive assump-
tions.

(a) If Pi is unstable, then the simple IMC de-
sign method for the stable case outlined
in (Morari and Zafiriou, 1989) cannot be

−

PSfrag replacements

r1

r2

Ci Pi

yu

Fig. 1. Standard Feedback Configuration

used. There does exist a different IMC de-
sign method for the unstable plant case
but the procedure is much more compli-
cated (see (Lee et al., 2001; Campi et al.,
1982));

(b) If Pi has zeros on the jω-axis, then the factor-
ing of Pi into stable all-pass, [Pi]a, and stable
strictly minimum-phase, [Pi]m, components
as required by (Morari and Zafiriou, 1989) is
not possible.

(c) If the model has lightly-damped stable poles
in the closed-loop passband, then Pi

1+PiCi
will

have large gain near the frequencies of those
poles;

(d) If the model has lightly-damped stable or
unstable zeros in the closed-loop passband,
then Ci

1+PiCi
will have large gain near the

frequencies of those zeros;
(e) If the bandwidth of the IMC filter Fi (Morari

and Zafiriou, 1989) is much larger than the
bandwidth of Pi, then |Ci| will be very large
at frequencies inside the bandwidth of Fi and
outside the bandwidth of Pi, and again the
control signal will be very large;

(f) If the roll-off rate of Fi is desired to be
less than the roll-off rate of Pi, then the
IMC design method outlined in (Morari and
Zafiriou, 1989) will result in an improper
controller, Ci.

Notice that the IMC design method described
in (Morari and Zafiriou, 1989) fails and cannot be
used in situations (a), (b),(f). However, the IMC
design method can be applied in situations (c),(d)
and (e) but difficulties may occur. In the sequel,
we shall introduce a new controller design method
that inherits the useful desired features of the IMC
design method, but addresses problems stated in
situations (a)–(f) explicitly.

2.2 Proposed H∞ Controller Design Method

On the one hand, we would like to utilise the
desired features of the IMC on either a stable or
unstable plant. On the other hand, we would like
to ensure that the magnitudes of all the transfer
function matrix entries in equation (1) do not
become too large. These two objectives, however,
are not the same and we need to reformulate the
problem in such a way to capture our objectives.
Therefore, we shall introduce an H∞ index and
require this index to be minimised over all stabil-
ising controllers. We normally have performance
objectives in mind, which requires some trans-
fer functions to be small or below certain val-
ues in some frequency regions and other transfer
functions small or below certain values at other
frequencies. The H∞ index will be weighted to
achieve the desired effect. Let us outline our pro-
posed controller design method:
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(i) Given a model of the plant, Pi do the follow-
ing factorisation:

Pi = [Pi]a[Pi]m ;

{

[Pi]a ∈ RH∞ , [Pi]
∼
a [Pi]a = I

[Pi]m has no zeros in C+
(2)

where C+ denotes the open right-half plane.
(ii) The admissible controller is given by solving

the following H∞ problem:

γi = min
Ci ∈C

∥

∥

∥

∥

PiCi
1+PiCi

− [Pi]aFi ε2(s)
Pi

1+PiCi

ε1(s)
Ci

1+PiCi
ε1(s)ε2(s)

1
1+PiCi

∥

∥

∥

∥

∞

(3)

where C denotes the set of all proper stabilising
controllers for the plant, Pi, and ε1(s) and ε2(s)
are SISO, stable, minimum-phase and proper
weights 3 . We shall explain in detail the selection
of the weighting functions in the following section.

One can easily verify that this proposed design
method addresses all the aforestated difficulties,
cases (a)–(f), with the IMC design method.

2.3 Design of weighting functions ε1(s) and ε2(s)

The weighting functions were introduced as a part
of the H∞ index in equation (3) and we shall
now discuss the way to design them. One should
realize that, based upon the particular application
specifications and also the characteristics of the
plant, we will have different objectives in different
frequency regions. Let us now set out our design
objectives, as specified in index (3):

(1) Let α be the desired closeness between PiCi

1+PiCi

and [Pi]aFi in an H∞ sense. That is, we re-

quire
∥

∥

∥

PiCi

1+PiCi
− [Pi]aFi

∥

∥

∥

∞
≤ α.

(2) Let βp be the maximum tolerable gain in the
appropriate frequency region for the trans-
fer function Tyr2 = Pi

1+PiCi
. That is, we re-

quire σ̄
[

Pi

1+PiCi
(jω)

]

≤ βp ∀ω ∈ [ω1, ω2].

(3) Let βc be the maximum tolerable gain in the
appropriate frequency region for the trans-
fer function Tur1 = Ci

1+PiCi
. That is, we re-

quire σ̄
[

Ci

1+PiCi
(jω)

]

≤ βc ∀ω ∈ [ω3, ω4].

Now, we have three different numbers, i.e. α, βp

and βc, that capture our objectives. These three
numbers will be used to specify ε1(s) and ε2(s) as
we discuss next. Once ε1(s) and ε2(s) are specified,
we just need to check the number γi to determine
whether the design was successful in achieving our
objectives or not. Towards this end, note that the
index in (3) certainly guarantees that:

σ̄

[

PiCi
1+PiCi

− [Pi]aFi

]

≤ γi ∀ω , (4)

σ̄

[

Pi
1+PiCi

(jω)
]

≤
γi

|ε2(jω)|
∀ω , (5)

σ̄

[

Ci

1 + PiCi

(jω)

]

≤
γi

|ε1(jω)|
∀ω (6)

are achieved. Let us consider four different scenar-
ios that describe how ε1(jω) and ε2(jω) ought to
be chosen.

3 Note that min
Ci ∈C

‖Fl(., .)‖∞ rather than inf
Ci ∈C

‖Fl(., .)‖∞

is used since we need both γi and Ci ∈ C.

2.3.1. If ε1(jω) = 0 and ε2(jω) = 0, then the
H∞ index specified in equation (3) reduces to

γi = min
Ci ∈ C

∥

∥

∥

PiCi

1 + PiCi

− [Pi]aFi

∥

∥

∥

∞

(7)

and hence Ci will be exactly the standard IMC
controller 4 , at least if Pi is stable and has no jω-
axis zeros and all other assumptions of the IMC
design method outlined in (Morari and Zafiriou,
1989) are fulfilled (i.e. γi = 0 for such a case) 5 .
Thus, ε1(jω) and ε2(jω) can be set to be very
small in the frequency regions where the plant
characteristics and our performance objectives are
such that an IMC controller can perform well at
those frequencies.

2.3.2. If ε1(jω) = 0 but ε2(jω) 6= 0, then it is
clear that, in this situation, we are trying to make

PiCi

1+PiCi
close to [Pi]aFi but simultaneously we are

seeking to limit the size of Pi

1+PiCi
. With reference

to section 2.1, we choose |ε2(jω)| ≥ α
βp

near the

frequencies of the lightly-damped poles of Pi, as
this will then limit the size of Pi

1+PiCi
.

2.3.3. If ε1(jω) 6= 0 but ε2(jω) = 0, then it
is clear that, in this situation, we are trying to
make PiCi

1+PiCi
close to [Pi]aFi but limit the size of

Ci

1+PiCi
. With reference to section 2.1, we choose

|ε1(jω)| ≥ α
βc

near the frequencies of the lightly-
damped zeros of Pi, as this will limit the size
of Ci

1+PiCi
.

2.3.4. If ε1(jω) 6= 0 and ε2(jω) 6= 0, then we
can trade-off the closeness requirement of PiCi

1+PiCi

to [Pi]aFi with limiting the size of both Pi

1+PiCi

and Ci

1+PiCi
at the appropriate frequencies. Again,

ε1(jω) and ε2(jω) are chosen such that |ε1(jω)| ≥
α
βc

and |ε2(jω)| ≥ α
βp

at the right frequencies.

3. NEW WINDSURFER DESIGN METHOD

The iterative control and identification approach
to adaptive control includes two types of steps:
identification and controller design steps. With a
stabilising controller acting on the true plant, a
model of the plant is identified through a closed-
loop identification procedure.

As mentioned in the introduction, the originally
proposed windsurfer approach to iterative identi-
fication and control re-design (Lee et al., 1993)

4 Note though that the H∞ index can be used even if the
plant, Pi, is unstable or has jω-axis zeros, although γi may
not be equal to zero in this case.
5 The minimum may not be attainable when Pi is unstable
or has jω-axis zeros or the roll-off rate of F is smaller than
that of Pi in which case there would be an infimum but
not a minimum.
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gradually and safely increases the closed-loop
bandwidth using the IMC design method at the
control stage. As extensively discussed in sec-
tion 2.1, the IMC design method suffers from
some serious deficiencies. These are, however, all
addressed in our new H∞ design method (see
section 2.2). Hence, in the sequel, we shall propose
a modified windsurfer algorithm that makes use of
our new H∞ design method, instead of the IMC,
at the control design step. Because of this change,
we modify other parts of the windsurfer algorithm
to make it more amenable to our design method.
It is important to understand that our new H∞

design method is better suited to flag when the
re-identification is required, when compared to the
IMC design method, as will become evident below.

3.1 A Modified Iterative Identification and

Controller Re-design Algorithm

Given a true physical plant, Pt, which is unknown,
and a known controller, C0, which stabilises Pt,
the algorithm follows the steps outlined below.

• Step 1. Perform the closed-loop identifica-
tion, outlined in (Anderson, 2002) and the
references therein, so that the identified plant
model Pi satisfies: [Pi, Ci] stable and

max
1≤k≤N

σ̄[H(Pt, Ci) − H(Pi, Ci) (jωk)]

small 6 .
• Step 2. Set an initial bandwidth, λ0, for

the desired closed-loop response, Fi(jω). The
initial bandwidth can be chosen to be much
smaller than that of the identified model
where its magnitude response is flat. It is
always safe to choose the initial bandwidth of
Fi(jω) to be an order of magnitude less than
the lowest predominant feature of Pi(jω).
That is, if there is a resonant pole at ω0

inside the plant bandwidth, choose the initial
bandwidth for Fi(jω) to be ω0

10 ;
• Step 3. Find the critical frequency regions in

Pi based on the cases, (a) – (f), discussed in
section 2.1. Based on the desired closed-loop
objectives and specifications, set:
(a) the positive number α in the sense that

∥

∥

PiCi
1+PiCi

− [Pi]aFi

∥

∥

∞
≤ α .

(b) the positive numbers βp and βc in the

sense that

{

σ̄

[

Pi
1+PiCi

(jω)
]

≤ βp ∀ω ∈ [ω1, ω2]

σ̄

[

Ci
1+PiCi

(jω)
]

≤ βc ∀ω ∈ [ω3, ω4]

• Step 4. Design the frequency weights, ε1(s)
and ε2(s), according to the rules given in sec-
tion 2.3, using the specified values α, βp and
βc in Step 3, for the appropriate frequency
regions;

6 It can be shown that if [Pt, Ci] and [Pi, Ci] are sta-
ble then for SISO systems σ̄ [H(Pt, Ci) − H(Pi, Ci)] =
[

|Ci| +
1

|Ci|

]
∣

∣

PtCi
1+PtCi

− PiCi
1+PiCi

∣

∣.

• Step 5. Solve the H∞ controller design prob-
lem given in equation (3) and obtain γi and Ci;

• Step 6. If γi ≤ α and max
1≤k≤N

σ̄[H(Pt, Ci) −

H(Pi, Ci) (jωk)] is small, then increase the
bandwidth for Fi by 10%; and go to Step 5.
Otherwise, go to Step 7;

• Step 7. Discard the last controller. IF there
was a previous controller, then go to Step 1,
else END.

4. NUMERICAL EXAMPLE

In this section, we consider a plant which is exam-
ined in (Lee et al., 1993) and (Anderson, 2002) in
order to discuss the proposed algorithm and also
to show its systematic easy-to-use features.

The true plant is a robot arm with the transfer

function 7 , Pt(s) = 0.5196

∏5

i=1
(s−zi)

∏

6

i=1
(s−pi)

where the zeros

are −13.162, −10.646±j12.27, 7.169±j11.54 and
the poles are−0.0996±j3.0017,−0.3339±j12.131,
−1.8450± j31.481.

We shall apply the algorithm described in sec-
tion 3.1 and use the closed-loop identification pro-
cedure detailed in (Hansen, 1989) and outlined
in (Anderson, 2002). To start, the identification
procedure requires an initial model of the plant
and a controller that stabilises both the model
and the true plant. The initial model P0, obtained
from (Lee et al., 1995), and the controller C0,
standard IMC controller to achieve a closed-loop
bandwidth of 0.1 rad/s, are chosen to be

P0 =
0.1709(s+13.31)

s2+0.1806s+9.024
, C0 =

0.5849(s2+0.1806s+9.024)

s(s+13.31)
.

Using the identification procedure of (Hansen,
1989), we identify a model P̃1 using P0 and C0 and
the identification data collected. The (reference)
input is chosen to consist of four periods of a
zero-mean square wave of amplitude 1. The plant
output was corrupted by zero-mean white noise
with standard deviation of 0.05. The Numerical
Subspace-Based State Space Model Estimation
N4SID (built in MATLAB function) is used to es-
timate the model. Choosing the identified Youla-
Kucera parameter R (discussed in (Anderson,
2002)) to be of order five, the resulting identified
model, P̃1, is of degree eleven and is given by

P̃1(s) = 0.51819
1.0×102

∏7

i=1
(s−zi)

1.0×102
∏

8

i=1
(s−pi)

where the zeros are

−0.0038, −0.1331, −8.9357, −0.0043, 0.0628 ± j0.1300, −0.0658 ±

j0.0802, −0.1573 ± j0.0109 and the poles are −0.0039,

−0.0041, −8.9357, −0.0297±j0.3068, −0.0070±j0.1180, −0.1130±

j0.0030, −0.0009 ± j0.0300 .

For this identified plant model P̃1, max
1≤k≤N

σ̄[H(Pt, C0)−

H(P̃1, C0) (jωk)] = 0.4683 . Although one may think
that 0.4683 is not small enough, we point out

7 Note that, the windsurfer approach does not have avail-
able to it the mathematical description of the true plant;
we only use this information to verify the method.
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Fig. 2. Magnitude Responses of Pt, P0, P1, and ε2

that (a) for the identified model G1 in (Lee et

al., 1995) max
1≤k≤N

σ̄[H(Pt, Ci) − H(G1, Ci) (jωk)] = 0.8637 so

our scheme is no worse; (b) it is very difficult
for identification schemes to pick out the detailed
resonant structures of an unknown true plant, and
typically the largest identification errors occur at
or near these resonances.

To avoid degree explosion in the identified model,
we employ the closed-loop model reduction method
detailed in section 4.3 (pp 137–140) of refer-
ence (Obinata and Anderson, 2001). The Hankel
singular values of the graph symbols of P̃1 are
2.1976, 2.0657, 1.5216, 0.11324, 0.1191, 0.0801, 0.0552, 0.0460,

0.0002, 2.84e − 5, 7.38e − 10 . We perform balanced re-
alization and the result is truncated to retain all
Hankel singular values greater than 0.01 σ1. The
identified plant P1 is stabilised by C0, and we
estimate max

1≤k≤N

σ̄[H(Pt, C0) − H(P1, C0) (jωk)] = 0.4684 .

The magnitude responses of the true plant Pt(jω)
and the model P1(jω) are shown in Fig. 2.

The initial bandwidth, λ1 is set to 0.1, which
is much smaller than that of P1 and is well
below the first resonant frequency. We divide
(section 2.3) the plant model frequency response
into two regions; region 1: below 1.5 rad/s, and
region 2: contains the frequencies around the first
resonant mode. We shall now set our closed-loop
performance objectives to be: (i) α = 0.1; (ii) βp =
2 (≈ 6 dB). Here, the closed-loop bandwidth λ1

lies in the first region, hence ε1(jω) is set to be
small (say 0.001), and ε2(jω) is chosen to take
care of the first resonant mode of P1 at 3rad/s;
ε2(jω) is set, Fig. 2, to have the maximum gain of
−26 dB, (α/βp = 0.1/2 = 0.05).

As stated in Step 5 of our algorithm, we then
solve the H∞ index in equation (3) with F1 =

λ1

s+λ1
and the controller obtained achieves the

norm value of 0.10 (γ1 = 0.10 ≤ α). The
second condition in Step 6 of our algorithm,

max
1≤k≤N

σ̄[H(Pt, C0) − H(P1, C0) (jωk)] = 0.3136 . The two

conditions of Step 6 are met until we push out the
bandwidth to λi = 1.0 where γi = 0.09 < α but
the second condition is not satisfied since the norm

has increased to a value (0.4698) greater than
the initial one (0.4684). This points out that re-
identification is necessary. Therefore, we discard
the last controller and go back to Step 1 for re-
identification.

After re-identification, we can gradually (10%
in each iteration) increase the closed-loop band-
width λi to 8.2 rad/s where both conditions
of Step 6 are not satisfied and hence re-
identification is required.

We perform the re-identification again and then
set our closed-loop performance objectives to be:
(i)α = 0.1; (ii) βp = 2 (≈ 6 dB); (iii) βc =
30 (≈ 30 dB). The frequency cost ε1(jω) is cho-
sen to gradually reach the maximum gain of al-
most −50 dB (α/βc = 0.1/30) at 4rad/s, where
the plant model loses its bandwidth to the con-
troller. The cost ε2(jω) is chosen to be the same as
before (Fig. 3). Now, The closed-loop bandwidth
can be further pushed out to 11.2 rad/s. After re-
identification, the bandwidth can not be increased
more than 11.2 rad/s as γi will be more than 0.1
and the performance objectives will not be met.

Let us now record a number of key attributes
which make our proposed algorithm much more
suitable for the windsurfer approach. The results
in (Lee et al., 1995) show that the closed-loop
bandwidth can be expanded to 12 rad/s whereas
ours can be expanded to 11.2 rad/s. Considering
the 4-block transfer function H(G1, CIMC), where
G1 denotes the identified model in (Lee et al.,
1995) and CIMC refers to the controller which was
designed to achieve the close-loop bandwidth of
12 rad/s, we note the following important points:

• the magnitude response of the transfer func-
tion G1CIMC

1+G1CIMC
is exactly specified by the

IMC filter F = 12
(s+12)2 and hence exact

reference tracking is achieved for the desired
bandwidth on the identified model. However,

max
1≤k≤N

σ̄[
PtCIMC

1+PtCIMC
−

G1CIMC
1+G1CIMC

(jωk)] = 0.57 which

indicates a large discrepancy in reference

10
−1

10
0

10
1

10
2

10
3

−100

−80

−60

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

Frequency  (rad/sec)

ε
2
 

ε
1
 

Fig. 3. Magnitude Responses of Pt, P3, ε1 and ε2
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tracking capabilities if CIMC is chosen to be
used on the true plant. On the contrary, our
proposed algorithm ensures

max
1≤k≤N

σ̄[
PtCi

1+PtCi
−

PiCi
1+PiCi

(jωk)] ≈ 0.1

for the maximum achievable bandwidth,
11.2 rad/s;

• the transfer function G1

1+G1CIMC
has a max-

imum gain of approximately 10 dB since in
the algorithm of (Lee et al., 1995) there was
nothing limiting this gain but our method
gives σ̄[ Pi

1+PiCi
] ' 6.8 dB;

• both CIMC

1+G1CIMC
of (Lee et al., 1995) and

our Ci

1+PiCi
had a gain less than 30 dB and

hence with respect to this criterion, both
designs were satisfactory;

• for the design of (Lee et al., 1995),

max
1≤k≤N

σ̄[H(Pt, CIMC) − H(G1, CIMC ) (jωk)] = 2.1530

whereas in our algorithm

max
1≤k≤N

σ̄[H(Pt, Cfinal) − H(P3, Cfinal) (jωk)] = 0.257 .

This shows that the final controller of (Lee
et al., 1995) performs differently in a closed-
loop sense on Pt than on G1. The difference
in closed-loop transfer functions of our final
controller on Pt and on P3 is well contained.

These points assert the superiority of our algo-
rithm compared to the one of (Lee et al., 1995) in
terms of keeping PtCi

1+PtCi
close to PiCi

1+PiCi
, limiting

the size of Pi

1+PiCi
and Ci

1+PtCi
, and ensuring that

the flags γi and max
1≤k≤N

σ̄[H(Pt, Ci) − H(Pi, Ci) (jωk)] are

easy to handle.

5. CONCLUSION

This paper has introduced a modified algorithm
for the windsurfer approach to iterative identifi-
cation and control by incorporating a new con-
troller design method. This H∞ controller design
method can be applied when the plant is stable
or unstable, or has jω-axis zeros. Additionally,
it is well capable of dealing with plants with
lightly-damped poles and zeros and situations
where the bandwidth of Fi is orders of magni-
tude greater than that of Pi. This algorithm also
provides us with one number, γi, that easily flags
whether the desired performance specifications
have been achieved. Furthermore, an easy com-
putation max

1≤k≤N

σ̄[H(Pt, Ci) − H(Pi, Ci) (jωk)]indicates

whether re-identification is necessary or not. An
extension of this research is currently underway
to make the 10% bandwidth expansion rule dis-
cussed in Step 6 of the proposed algorithm more
automatic and less empirical.
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