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1. INTRODUCTION

In standard literature (Doyle et al., 1989; Green and
Limebeer, 1995; Zhou et al., 1996), the set of all admissible
H∞ controllers is given by the set of all transfer function
matrices K = Fl (M, S), where M is constructed from
the plant state-space matrices and S ∈ RH∞ satisfying
‖S‖∞ < 1 is a free parameter that characterises the set.
Then, the central controller frequently discussed in the
literature is given by Kc = Fl (M, 0). It has been shown
in (Glover and Doyle, 1988; Doyle et al., 1989) that Kc has
the same McMillan degree as the plant P and in (Mustafa
and Glover, 1988; Glover and Mustafa, 1989; Mustafa and
Glover, 1990; Mustafa et al., 1991) that Kc also minimises
the entropy function. In fact, this central controller has
some interesting interpretations and motivations in the
literature. It thus seems natural that if for any reason we
wish to select a single uniquely identifiable controller from
the set of all admissible H∞ controllers, the central (or
minimum entropy) controller should be our natural choice.

Since their inception, H∞ control problems have been
amenable to a variety of solution techniques. In this paper,

we shall study the notion of central controller in the chain-
scattering approach to H∞ control (Kimura, 1997) and
we shall show how to select a single uniquely identifiable
H∞ controller from the admissible controller set in this
framework. The chain-scattering operator-theoric frame-
work possesses a distinct advantage over state-space based
approaches in that it poses and solves the H∞ control prob-
lem entirely in the frequency domain (i.e. (Kimura, 1997)
shows that the normalised H∞ control problem is equiva-
lent to a J -lossless factorisation problem and that the set of
all admissible controllers can be completely characterised
in terms of one of the resulting factors). This entirely
operator-theoric framework permits direct manipulation of
the frequency domain symbols which may be very useful in
some applications. For example, one may wish to consider
changes in the frequency domain symbols that may result
in changes in the McMillan degree of the symbols, as
in (Bombois and Anderson, 2002; Lanzon et al., 2003).
These kind of manipulations would otherwise be more
cumbersome and not easily cast in state-space descriptions.
It is these kind of arguments that motivate us to study the
notion of central controller in the chain-scattering frame-
work.



It is however well known that factorisation problems often
do not have unique solutions and hence the admissible
controller set is characterised in terms of a non-unique
factor in this chain-scattering framework. This is clearly
undesirable as the centre of the admissible controller set
(i.e. the central controller for the particular parametrisation
considered) may be different for every reparametrisation.
One has to thus pin-down the factors resulting from the J -
lossless factorisation in order to ensure that the central con-
troller is uniquely defined in this chain-scattering frame-
work and to also ensure that it corresponds to the central
and minimum-entropy controller so frequently discussed in
the literature. This will be done by pinning down one of the
factors in the J -lossless factorisation at infinite frequency.
In so doing, we shall also demonstrate that the standard
assumptions frequently adopted in the literature (Doyle et
al., 1989; Green and Limebeer, 1995; Zhou et al., 1996)
bury some interesting features of H∞ control, particularly
associated with the central and minimum-entropy con-
troller. These features will also be exposed and discussed
in this paper.

2. BACKGROUND MATERIAL

2.1 Chain-Scattering Representation of Plant

Consider a plant P with two kinds of inputs (w, u) and two
kinds of outputs (z, y) represented as

[

z
y

]

=
[

P11 P12
P21 P22

] [

w

u

]

,

where z represents the errors to be reduced [dim(z) = m], y
denotes the measured outputs [dim(y) = q], w represents
the exogenous signals [dim(w) = r ], and u denotes the
control inputs [dim(u) = p]. Let the state-space realisation
of P be given by

P :=
[

P11 P12
P21 P22

]

=
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2
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1 D P

11 D P
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C P
2 D P

21 D P
22



 , (1)

and assume that it satisfies the following assumption:

Assumption (A1): q ≤ r , p ≤ m and rank[P21( jω)] = q,
rank[P12( jω)] = p for all ω ∈ R ∪ {∞}.

This assumption is generally fulfilled in practice. If P−1
21

exists (i.e. if r = q), then the plant P can be alternatively
represented by

[

z
w

]

=
[

G11 G12
G21 G22

] [

u
y

]

,

where

G :=
[

G11 G12
G21 G22

]

=
[

P12 − P11 P−1
21 P22 P11 P−1

21
−P−1

21 P22 P−1
21

]

. (2)

This type of representation is usually referred to as a
chain-scattering representation of P . The transformation
in equation (2) mapping P to G is denoted by

G := CHAIN(P)

and exists if P21 is invertible (Kimura, 1997).

Now, let the plant P or its chain-scattering equivalent G be
controlled by a controller u = K y as shown in Figure 1.
Then the closed-loop transfer function matrix Tzw mapping

z w

y u

P

K

≡
z

w

u

y

G K

Fig. 1. Linear fractional and Homographic transformations

exogenous inputs w to errors z is given by

Tzw = Fl (P, K ) := P11 + P12 K (I − P22 K )−1 P21

= HM(G, K ) := (G11 K + G12)(G21 K + G22)
−1,

whereFl (·, ·) denotes the “lower Linear Fractional Trans-
formation” frequently used in control theory and HM(·, ·)
denotes the “Homographic Transformation” frequently
used in classical circuit theory.

2.2 Plant Augmentations

Problems where neither r = q nor m = p hold are
harder because (a) the plant needs to be augmented in
order to derive a chain-scattering representation, and (b)
the results obtained need to be independent of the particular
augmentation chosen. Such problems are usually referred
to as four-block problems in the literature.

In four-block problems, the plant P is augmented by a
fictitious output y′ of dimension (r − q) given by

y′ = P ′
21w + P ′

22u (3)

to give





z
(

y
y′

)



 =

Paug
︷ ︸︸ ︷




P11 P12(

P21
P ′

21

) (

P22
P ′

22

)





[

w

u

]

. (4)

Assumption (A2): P ′
21 is such that rank

[(

P21( jω)

P ′
21( jω)

)]

= r

for all ω ∈ R ∪ {∞}.

If assumption (A2) holds, a chain-scattering representation
G of the augmented plant Paug exists. Then, applying the
control law u = K y, the closed-loop transfer function
matrix Tzw mapping exogenous inputs w to errors z is given
by

Tzw = HM
(

G,
[

K 0
])

and is depicted in Figure 2.

w
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y
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y′
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G = CHAIN

(

Paug
)

Fig. 2. Closed-loop system with output augmentation



2.3 J-Lossless Factorisations

Definition 1. Jmr denotes the signature matrix and is de-
fined by Jmr = diag(Im,−Ir ).

Definition 2. A rational matrix 2 is said to be (Jmr , Jpr )-
lossless if 2∼(s)Jmr2(s) = Jpr ∀s ∈ C and
2∗(s)Jmr2(s) ≤ Jpr ∀s ∈ C+. Here, 2∼(s) := 2(−s)T

denotes the L2-adjoint of 2(s) whereas 2∗(s) := 2(s̄)T

denotes the complex conjugate transpose of 2(s).

Definition 3. A rational matrix 5 is said to be unimodular
in RH∞ if 5−1 exists and 5,5−1 ∈ RH∞.

The (Jmr , Jpr )-lossless factorisation defined below is a
generalisation of the well known inner-outer factorisation
for stable systems and the well known spectral factorisation
for positive hermitian systems.

Definition 4. The rational matrix G ∈ R(m+r)×(p+r)

is said to have a (Jmr , Jpr )-lossless factorisation if G
is represented as the product G = 25, where 2 is
(Jmr , Jpr )-lossless and 5 is unimodular in RH∞.

Necessary and sufficient conditions for the existence of a
(Jmr , Jpr )-lossless factorisation of G and the construction
of factors 2 and 5 can be found in (Kimura, 1997). It
should be clear that if factors 2 and 5 exist, then they are
not unique. In fact, any two solution pairs 21, 51 and 22,
52 to the (Jmr , Jpr )-lossless factorisation of G must be
related by

22 = 219
−1 and 52 = 951, (5)

where 9 is a real nonsingular matrix satisfying 9T Jpr9 =
Jpr .

2.4 Normalised H∞ control problems

The following theorem reduces a normalised H∞-control
problem into a (Jmr , Jpr )-lossless factorisation problem.

Theorem 1. (Kimura, 1997) Suppose that a plant P ∈
RL∞ given by equation (1) satisfies assumption (A1) and
is such that q < r . Then, the normalised H∞ control
problem is solvable for P if and only if there exists an
output augmentation (3) with P ′

21, P ′
22 ∈ RL∞ such

that the augmented plant Paug in equation (4) satisfies
assumption (A2) and G = CHAIN

(

Paug
)

has a (Jmr , Jpr )-
lossless factorisation

G = 25

with 5 of the form

5 =
[

5a 0
5b1 5b2

]

}p+q

}r−q

} }

p+q r−q

. (6)

In that case, K is an admissible controller if and only if

K = HM
(

5−1
a , S

)

for an S ∈ RH∞ satisfying ‖S‖∞ < 1.

As indicated earlier in this section, the particular choice of
the plant augmentation (3) ends up playing no role in the
final solution of the normalised H∞ control problem. This
can be seen from the following argument: Let the chain-
scattering plant G = CHAIN

(

Paug
)

be written as

G =
[

P12 P11
0 I

]




I 0
(

P22
P ′

22

) (

P21
P ′

21

)





−1

.

If the normalised H∞ control problem is solvable, then
there exists a 5 of the form of equation (6) such that
G∼ Jmr G = 5∼ Jpr5. We must show that 5a (the only
sub-block of 5 that is used in characterising the controller
set) is independent of the particular augmentation chosen.
Towards this end, note that

(G∼ Jmr G)−1

=





I 0
P22 P21
P ′

22 P ′
21





[

P∼

12 P12 P∼

12 P11
P∼

11 P12 P∼

11 P11 − I

]−1 [

I P∼

22 P ′
22

∼

0 P∼

21 P ′
21
∼

]

=





√ √
×√ √
×

× × ×



 .

Here,
√

denotes terms that do not depend on the augmen-
tation and × denotes terms that do depend of the particular
augmentation chosen. Since

(G∼ Jmr G)−1 = 5−1 Jpr5
−∼ =

[

5−1
a Jpq5−∼

a �

� �

]

,

it follows that 5a is independent of the particular augmen-
tation chosen.

Furthermore, since 5 in Theorem 1 is required to be of the
lower triangular form of equation (6), the real nonsingular
matrix 9 that characterises the non-uniqueness in the
factors 2 and 5 satisfies further structural properties
besides 9T Jpr9 = Jpr . It is in fact easy to show that
9 has the following block diagonal form

9 =
[

9a 0
0 9b

]

(7)

with 9a ∈ R
(p+q)×(p+q) satisfying 9T

a Jpq9a = Jpq

and 9b ∈ R
(r−q)×(r−q) satisfying 9T

b 9b = I(r−q). Note
furthermore that 9a expresses the non-uniqueness in the
unimodular matrix 5a .

3. QUESTIONS OF INTEREST

Since the unimodular matrix 5a is unique up to left
multiplication by a constant J -unitary real nonsingular
matrix, the questions of interest that will be addressed in
this paper are:

A. Is HM
(

5−1
a , 0

)

a single controller or is there a family
of such controllers obtained by considering all possible
5a in the factorisation of G?

B. If there is a family of such controllers:
a. Does the central controller advanced by the litera-

ture belong to this family?



b. Do all such controllers possess the same properties
as the central controller given in the literature?
For instance, do they all minimise the entropy
function and are they all strictly proper when certain
conditions are fulfilled?

c. What properties need to be enforced in order to pin-
point just one member (i.e. select a single uniquely
identifiable member) of this family?

4. ADDRESSING THE POSED QUESTIONS IN A
FOUR-BLOCK SETTING

4.1 Reparametrisation of controller set

The first result presented here states that the extra free-
dom associated with the non-uniqueness of 5 simply
reparametrises the same controller set.

Lemma 2. Given any two (Jmr , Jpr )-lossless factorisa-
tions of G = 2151 = 2252 with 51 and 52 of the
form in equation (6), the following two sets are identical:

{

HM
(

5−1
a,1, S

)

: S ∈ RH∞, ‖S‖∞ < 1
}

≡
{

HM
(

5−1
a,2, S

)

: S ∈ RH∞, ‖S‖∞ < 1
}

.

4.2 Uniqueness of strictly proper central controllers

As pointed out at the end of Section 2.4, the unimodular
matrix 5a is unique up to left multiplication by a constant
real nonsingular matrix 9a that satisfies 9T

a Jpq9a =
Jpq . Consequently, there is evidently a family of central
controllers described by HM

(

5−1
a , 0

)

for all 5a arising in
the (Jmr , Jpr )-lossless factorisation of G.

The following theorem gives a condition under which the
central controller is uniquely defined in the chain-scattering
framework. The corresponding existence question will be
discussed in the next subsection.

Theorem 3. Suppose that a plant P ∈ RL∞ given by
equation (1) satisfies assumption (A1) and is such that
q < r . Suppose furthermore that there exists an output
augmentation (3) with P ′

21, P ′
22 ∈ RL∞ such that the

augmented plant Paug in equation (4) satisfies assump-
tion (A2) and G = CHAIN

(

Paug
)

admits a (Jmr , Jpr )-
lossless factorisation

G = 25

with 5 of the form

5 =
[

5a 0
5b1 5b2

]

}p+q

}r−q

} }

p+q r−q

.

Then the central controller

Kc = HM
(

5−1
a , 0

)

is uniquely defined if Kc is strictly proper.

Consequently, if there exists a strictly proper central con-
troller, then (with the strict properness constraint imposed)
it is unique. It should be pointed out that if we impose the
same simplifying assumptions as in the literature (Doyle et
al., 1989; Green and Limebeer, 1995; Zhou et al., 1996),
then the strictly proper central controller discussed in
this subsection (which was proved to be unique here) is
identical to the central controller given in the literature.
However, the simplifying assumptions of the literature bury
the existential questions as there always exists a strictly
proper central controller under the assumptions, as will be
shown in the next subsection.

4.3 Existence of strictly proper central controllers

The next lemma gives a necessary and sufficient condition
for a central controller to be strictly proper.

Lemma 4. Given a (Jmr , Jpr )-lossless factorisation of
G = 25 with 5 of the form in equation (6), then

Kc := HM
(

5−1
a , 0

)

is strictly proper

if and only if

E := 5( j∞) =





(

Ea11 0
Ea21 Ea22

)

0

Eb1 Eb2



 (8)

with Ea11 ∈ R
p×p, Ea22 ∈ R

q×q and Eb2 ∈
R

(r−q)×(r−q).

There are plants P with σ(D P
11) ≥ 1 for which the nor-

malised H∞ control problem is solvable. For such plants,
there cannot exist an admissible strictly proper controller.
The following theorem gives a necessary and sufficient
condition for the existence of a lower triangular matrix E .
As we now well know from Lemma 4, the existence of
such a lower triangular matrix E is intimately related to
the existence of a strictly proper central controller.

Theorem 5. Let the suppositions of Theorem 3 hold and
define D := G( j∞). Then there exists a unique real
nonsingular matrix E satisfying DT Jmr D = ET Jpr E of
the form

E =





(

Ea11 0
Ea21 Ea22

)

0

Eb1 Eb2





with 0 < Ea11 ∈ R
p×p, 0 < Ea22 ∈ R

q×q and
0 < Eb2 ∈ R

(r−q)×(r−q) if and only if σ(D P
11) < 1.

Any lower triangular matrix E would have been sufficient
in the above theorem to guarantee the existence of a strictly
proper central controller Kc. However, it should be noticed
that even though Kc is unique when it is strictly proper,
the unimodular (in RH∞) transfer function matrix 5 is
not uniquely defined. In some particular situations when
explicit use of 5 is made, it is desirable to have a unique
selection of 5. An example of this situation is (Bombois
and Anderson, 2002; Lanzon et al., 2003), where the



authors analyse how small changes in weights map to
changes in 5 and subsequently to changes in Kc. In this
case, 5 has to be selected always in the same way. This
was enforced in the above theorem by selecting a unique
lower triangular matrix E .

4.4 Minimum entropy and central controllers

Let T be a transfer function matrix such that ‖T ‖∞ < γ .
Then the entropy of T (s) is defined by

I (T, γ ) := −
γ 2

2π

∫ ∞

−∞

∑

i

ln
∣
∣
∣1 − γ −2σi (T ( jω))2

∣
∣
∣ dω

where σi (T ( jω)) is the i-th singular value of T ( jω).

The entropy function I (T, γ ) has been studied in great
detail (Glover and Mustafa, 1989; Mustafa and Glover,
1990; Mustafa et al., 1991) in the late 1980s and early
1990s. It is not difficult to see that the entropy function
I (T, γ ) is finite if and only if T ( j∞) = 0. Letting T (s) be
our closed-loop transfer function matrix Tzw(s) and γ = 1
for a normalised H∞ control problem, we have I (Tzw, 1)

is finite if and only if Tzw( j∞) = 0. Since the simplifying
assumptions in the literature (Doyle et al., 1989; Green
and Limebeer, 1995; Zhou et al., 1996) always require
D P

11 = 0, we know from the preceeding discussion
that in this situation there always exists a strictly proper
central controller that is uniquely defined in this chain-
scattering framework. This controller obviously achieves
Tzw( j∞) = 0 and hence finite entropy. It was in fact shown
in (Glover and Mustafa, 1989; Mustafa and Glover, 1990;
Mustafa et al., 1991) that this unique strictly proper central
controller also minimises the value of the entropy function.
For this reason, when the simplifying assumptions of the
literature are enforced, the central controller is often also
called the minimum entropy controller.

The question that immediately arises is: Would the central
controller (in the sense of this paper in the chain-scattering
framework considered) still be the same as the minimum
entropy controller if D P

11 = 0 is not assumed and if we
are allowed to choose the characterisation of the set of
all admissible controllers as we desire? In general, the
answer to this question is no (again it is emphasised that
the definition of central controller is taken in the sense of
this paper). This is illustrated by the following example.

Example: Consider a plant P with 0 6= σ(D P
11) < 1 for

which the normalised H∞ control problem is solvable.
Assume that there exists an admissible controller that
makes the closed-loop transfer function matrix Tzw strictly
proper (i.e. assume that there exists DK ∈ R

p×q such that
D P

11 + D P
12 DK (I − D P

22 DK )−1 D P
21 = 0). Then for this

controller, we get finite entropy. Thus the minimum entropy
controller will certainly achieve finite entropy.

However, since σ(D P
11) < 1, we know from Theorems 3

and 5 that there always exists a unique strictly proper
central controller. With this controller, Tzw is clearly not
strictly proper and hence we get infinite entropy. Conse-
quently, this unique strictly proper central controller does

not minimise the entropy function in this situation since
there is another admissible controller which achieves a
smaller value of entropy. ♠

A loop-shifting argument will be adopted in the next
subsection to transform the original problem into one
where there is correspondence between the unique strictly
proper central controller and the minimum entropy con-
troller (as in (Mustafa and Glover, 1988; Glover and
Mustafa, 1989; Mustafa and Glover, 1990; Mustafa et
al., 1991) through the application of the simplifying as-
sumptions). This will help us to select a single uniquely
identifiable controller from the admissible controller set.

4.5 A loop-shifting argument to select a unique controller

Care must be exercised in the selection of a unique E
satisfying DT Jmr D = ET Jpr E with D = G( j∞)

as this will uniquely determine the central controller in
this chain-scattering setting and the properties associated
with this central controller. Furthermore, in an earlier
subsection, it was also shown that if the unique selection
of E is obtained by requiring some special property on the
central controller (such as strict-properness), then there are
admissible situations that do not allow this kind of unique
selection of E .

In this subsection, we will construct a unique E , show that
this unique E always exists (provided the normalised H∞
control problem is solvable), and show that it also reduces
to the unique lower triangular matrix E of Theorem 5
when D P

11 = 0. The derivation of such a unique E
relies on the following loop-shifting argument. The reader
is referred to (Safonov and Limebeer, 1988; Safonov
et al., 1989; Green and Limebeer, 1995) for extensive
coverage of this topic.

Consider the feedback interconnection of Figure 3. The

z

y

u

ỹ y

ũ u

G
F F K

G̃ K̃

−+

ỹ′y′
w

Fig. 3. Loop-shifting transformation

process of loop-shifting can be conceptually viewed as
extracting the controller gain at infinite frequency from
the controller and putting it into the plant. This is done
through the constant gain matrix F . When this is done,
the original interconnection of G and K is replaced with
an equivalent interconnection of G̃ and K̃ . The relations
between the original systems and the loop-shifted systems
are given below:

G̃(s) = G(s)





(

Ip F
0 Iq

)

0

0 I(r−q)





and K̃ (s) = HM

([

Ip −F
0 Ir

]

, K (s)

)

= K (s) − F.



In the context of this paper, F will be chosen so as to
minimise σ(HM(D, F)), where D = G( j∞). Note that
HM(D, F) corresponds to the gain at infinite frequency of
the transfer function from w to z. Since the normalised H∞
control problem is assumed to be solvable, it will always
be possible to select an F such that σ(HM(D, F)) < 1.
Then, applying Theorem 5 on the loop-shifted plant G̃, we
see that there exists a unique lower triangular matrix Ẽ
that satisfies D̃T Jmr D̃ = ẼT Jpr Ẽ where D̃ = G̃( j∞).
Consequently, the matrix E that needs to be selected will
be composed of the unique lower triangular matrix Ẽ and
the loop-shifting transformation.

The matrix E is only unique after we fix (a) the choice of
plant augmentation, and (b) in the case when finite mini-
mum entropy is not possible (i.e. minF σ(HM(D, F)) 6=
0), the choice of the minimising matrix F . The sub-block
Ea in the matrix E (i.e. the only sub-block of interest in
constructing the controller set) is however always inde-
pendent of the choice of plant augmentation. It is also
important to point out that if it is possible to achieve
finite minimum entropy with an admissible controller,
then minF σ(HM(D, F)) = 0 and hence the chosen
minimising F is unique (Green and Limebeer, 1995).
On the other hand, if it is not possible to achieve fi-
nite minimum entropy with an admissible controller, then
0 < minF σ(HM(D, F)) < 1 and hence there is a set of
matrices F that minimise the quantity σ(HM(D, F)). We
simply pick a single uniquely identifiable member of this
set for ease of selection. All this argument is captured by
the following theorem.

Theorem 6. Let the suppositions of Theorem 3 hold and
let Q = arg minQ σ(D P

11 + D P
12 Q D P

21) ∈ R
p×q . Further-

more, define D := G( j∞). Then there exists a unique real
nonsingular matrix E satisfying DT Jmr D = ET Jpr E of
the form

E =





(

Ẽa11 0
Ẽa21 Ẽa22

)

0

Ẽb1 Ẽb2









(

Ip −F
0 Iq

)

0

0 I(r−q)



 (9)

with 0 < Ẽa11 ∈ R
p×p, 0 < Ẽa22 ∈ R

q×q , 0 < Ẽb2 ∈
R

(r−q)×(r−q) and

F = HM

([

Ip 0
D P

22 Iq

]

, Q

)

.

Note that E in equation (9) reduces to the lower triangular
matrix E of Theorem 5 when D P

11 = 0. Furthermore,
with E selected as in Theorem 6 (which is always possible
whenever the normalised H∞ control problem is solvable),
the notions of minimum entropy controller and central
control (in the sense of this paper) always coincide as
in (Mustafa and Glover, 1988; Glover and Mustafa, 1989;
Mustafa and Glover, 1990; Mustafa et al., 1991), as one
would expect and desire.

5. CONCLUSIONS

It is well known that in the chain-scattering framework,
the H∞ control problem can be solved via a J -lossless

factorisation and that the admissible controller set is char-
acterised in terms of one of the resulting factors. Since the
resulting factors are not uniquely defined, the centre of the
parametrised set of admissible controllers (i.e. the central
controller for the admissible controller set considered) is
also not uniquely defined in this chain-scattering frame-
work. This presents a problem if we wish to pick a single
uniquely defined controller from the admissible controller
set in the chain-scattering framework.

In this paper, we show how to pin-down the non-unique
factors resulting from the J -lossless factorisation, thereby
ensuring that there is only one way in which the admissible
controller set can be characterised and in turn guaranteeing
that the central controller (corresponding to the centre
of this admissible controller set) is (a) uniquely defined,
and (b) corresponds to the central and minimum entropy
controller frequently discussed in the literature.

In the process of ensuring that the centre of the parametrised
set of admissible controllers in the chain-scattering frame-
work corresponds to the central and minimum entropy
controller frequently discussed in the literature, we discuss
and uncover a number of properties associated with the
central controller that are buried when D P

11 = 0 is assumed.
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