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Abstract: This paper presents a novel design of a full six-degree-of-freedom, tri-rotor-actuated single-wheeled vehicle.
When stationary on the ground, the model of the vehicle mimics an inverted pendulum system, a typical
representative of highly nonlinear systems with non-minimum phase and unstable characteristics. The full
nonlinear model of the vehicle is derived using Newton-Euler approach, but the objective herein is to balance
the single-wheeled vehicle in its unstable upright position as this is a precursor to rolling motion. Robust
feedback and Jacobi linearization techniques are invoked on the nonlinear dynamics of the vehicle in the
relevant axis for subsequent controller synthesis. The synthesized controllers are verified and compared by
means of numerical simulations, where it is shown that the design objective of stabilizing the vehicle in its
unstable equilibrium (upright) position is robustly achieved.

1 INTRODUCTION

Unmanned vehicles are usually designed to operate
with great agility and rapid maneuver, having applica-
tions in both military and civilian spheres, for exam-
ple, reconnaissance, surveillance, search and rescue,
disaster remediation, data and image acquisition of
targets, etc. (Kim and Shim, 2003; Valavanis, 2007;
Das et al., 2009; Lum and Waggoner, 2011). As a re-
sult of rapidly increasing interest in autonomous ve-
hicles, industries and researchers, are encouraged to
research new vehicle platforms that aim at more ef-
ficient configurations in terms of size, range, auton-
omy and payload capacity amongst other factors. One
of such efficient designs is the tri-rotor Unmanned
Aerial Vehicle (UAV) (Salazar-Cruz et al., 2006; Es-
careño et al., 2008; Prior et al., 2009), which has three
axes of rotation from a triangular-shaped orientation
of actuation as shown in Figure 1.

This platform has been used in many applications
(see (Yoo et al., 2010) and the references therein).
Unlike earlier work, it is recognized by the authors
that if each of the three rotors is attached to a servo
motor that allows change in the axis of rotation of the
propeller, then the UAV becomes a full six-degrees-
of-freedom (6-DOF) vehicle, capable of fully decou-
pled thrust and torque vectoring in all the 3D-space.
Consequently, the UAV has no nominal upright po-
sition. This concept is captured in patent (Crowther
et al., 2010) and article (Crowther et al., 2011).

Interestingly, a fascinating and attractive scope to
unmanned vehicles is their capability to combine dif-
ferent vehicle types that can operate in multiple en-
vironments, for example, air and ground, ground and
water, etc. These types of vehicles are able to pro-
vide up-close visual surveillance capabilities and ma-
nipulations that are unattainable with any single vehi-
cle, as they combine the benefits of different types of
vehicles into a collective system by exploiting differ-
ent vehicle types (Omelchenko, 2004). For instance,
an unmanned ground vehicle (UGV), enhanced with
lift capabilities, will possess greater ability to exert
forces and torques on the environment. Despite the
increasing complexity associated with the construc-
tion and control of these different types of vehicle, the
advantages are numerous, with vast application areas
(Omelchenko, 2004; Barnes et al., 2010).

This work proposes a novel unmanned vehicle that
can operate as a UAV or UGV using a full 6-DOF
tri-rotor platform for actuation. The full 6-DOF can
be exploited whilst operating in the air, but will re-
sult in over-actuation whilst on the ground. When the
UAV is embedded in an outer wheel structure, it can
roll on the ground, thereby becoming a UGV. Since
rolling is a more energy-efficient way of translating
than flying, the vehicle flies only when it is necessary,
perhaps due to autonomy tasks or as an obstruction
avoidance strategy. The vehicle thus offers a platform
to explore the problem of actuation and control from
a tri-rotor’s perspective vis-à-vis the problem of sta-
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Figure 1: Tri-rotor UAV.

bilizing the wheeled-vehicle. The objective is to bal-
ance the vehicle in its unstable upright position, which
invariably corresponds to solving the inverted pendu-
lum problem in this highly coupled over-actuated sys-
tem.

It is well-known that the robustness of con-
trol systems to disturbance and uncertainty is the
central theme of feedback control (Zhou et al.,
1996; Vinnicombe, 2001). Due to stringent perfor-
mance and robust stability requirements and signifi-
cant cross-coupling in the channels of the multi-input
multi-output (MIMO) wheeled-vehicle, theH¥ loop-
shaping design procedure is used for the synthesis of
a robust controller. This choice of controller synthesis
is further justified since there is always a tradeoff be-
tween the accuracy and complexity of a model, bear-
ing in mind that there are high fidelity dynamics that
are neglected in the modelling, for example, higher
order aerodynamics effects on the propellers.

H¥ loop-shaping is a design paradigm that estab-
lishes a good tradeoff between performance and ro-
bustness of a closed-loop system by combining clas-
sical loop-shaping concepts withH¥ synthesis. This,
which can be easily adjusted in this design frame-
work, is also intuitive for a control engineer. The con-
troller maximizes the closed-loop robustness to co-
prime factor uncertainty, which has been shown to
be a powerful type of unstructured uncertainty repre-
sentation (Glover and McFarlane, 1989; Zhou et al.,
1996; Lanzon and Papageorgiou, 2009). Since much
of the design effort inH¥ loop-shaping goes into
the selection of the loop-shaping weights to achieve
the desired performance specifications, the system-
atic framework established in (Osinuga et al., 2012a),
which builds on (Osinuga et al., 2010; Osinuga et al.,
2012b; Lanzon, 2005), is therefore used to simulta-
neously synthesize loop-shaping weights and a stabi-
lizing controller that give satisfactory robust perfor-
mance for a guaranteed level of robust stability mar-
gin.

The rest of the paper is organized as follows. The
description of the vehicle is elucidated upon in Sec-
tion 2 while the nonlinear model of the unmanned

Figure 2: The proposed unmanned vehicle.

vehicle is derived in Section 3. In Section 4, input-
output linearization technique is invoked to linearize
the nonlinear dynamics around the upright operating
point and a robust controller is subsequently synthe-
sized. The concluding remarks and future scope of
work are given in Section 5. Symbols and other nota-
tions are given in the appendix.

2 GENERAL DESCRIPTION OF
THE UNMANNED VEHICLE

The proposed unmanned vehicle presented in this pa-
per is shown in Figure 2 and its schematic diagram is
shown in Figure 3(a), where

• there are six cylindrical spokes, connected to the
centre of the circular wheel of a very small width
of about 10mm; three of the spokes are used to sup-
port the propellers and their driving motors.

• (Xe,Ye,Ze) represents the earth coordinate system
whereas(Xb,Yb,Zb) denotes the body coordinate
system. (Xl i ,Yl i ,Zl i ) ∀i = 1,2,3 is the local co-
ordinate system of the propeller-motor assembly,
with the origin of each local coordinate system co-
inciding with the intersection of the UGV arm and
the propeller-motor assembly, i.e., fori = 1,2,3,
Xl i is along theith arm of the UGV andYl i is in
the plane of the vehicle. When the servo angle is
zero, the direction of the motor-shaft/propeller lift
coincides withZl i ;

• Figure 2 considers a reduced problem where the
UGV is mechanically restricted to only rotate in
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the roll directionf v around theXe−axis while in
contact with the ground. Denoting the angular ve-
locity vector asw b =

(

p q r
)T , this restric-

tion implies thatq v = y v = 0 andq= r = 0.

The right hand coordinate system is used in this paper
as shown in Figure 3(b).

(a) Schematic diagram of the UGV.

v Xe

b p q r
T

v v q r

(a) Schematic diagram of the UGV.

(b) Coordinate systems of the UGV.
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(b) Coordinate systems of the UGV.

Figure 3: Coordinate systems.

3 MATHEMATICAL MODEL OF
THE UNMANNED VEHICLE

As earlier stated and also shown in Figure 2, the ob-
jective of this current work is to balance the UGV in
its upright position (f v = 0). Based on the local co-
ordinate systems shown in Figure 3(a), the rotation

angles from the propeller local coordinate system to
the body coordinate system can be expressed as fol-
lows:
l1 to b: f b

l1
=−90◦, q b

l1
= 0◦, y b

l1
=−90◦;

l2 to b: f b
l2
=−90◦, q b

l2
= 0◦, y b

l2
= 150◦;

l3 to b: f b
l3
=−90◦, q b

l3
= 0◦, y b

l3
= 30◦.

The transformation from a fixed to a rotating co-
ordinate system is obtained via a rotation matrix, and
this is used to express the force and torque compo-
nents in the local to the body coordinate system. The
respective rotation matrices from the propeller local
coordinate system to the body coordinate system are
obtained as follows:

Re
l1 =





0 −1 0
0 0 −1
1 0 0



 ,Re
l2 =







−
√

3
2

1
2 0

0 0 −1

− 1
2 −

√
3

2 0







Re
l3 =







√
3

2
1
2 0

0 0 −1

− 1
2

√
3

2 0






. (1)

3.1 Actuator Dynamics

As part of the derivation of the model of the UGV,
we start with the dynamics of the actuators. The dy-
namic equation of the BLDC1 and the servo motors
with their drive circuits can both be modelled as first
order systems as follows:

˙w bl = t bl w bl + kblVbl, (2)

˙a s = t sa s+ ksVs, (3)

wherew bl =





w bl1
w bl2
w bl3



, a s =





a s1

a s2

a s3



,

Vbl =





Vbl1
Vbl2
Vbl3



 andVs =





Vs1

Vs2

Vs3



, and w bli and a si

are expressed in the direction of rotation. In (2)
and (3) above, it is assumed that the motors and ser-
vos have identical time constants, respectively. Note
that t s (which is always negative) andks are directly
obtained from the specifications of the servo drives
while t bl andkbl are calculated based on the specifi-
cations of the BLDC motors as follows:

t bl =
−k2

v +BmRa

ImRa
; kbl =

kv

ImRa
,

wherek2
v > BmRa (Ramu, 2009).

1Here, the inductance effect of the motors is neglected.
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3.2 Forces

The total force acting on the UGV can be written as

Fb = Fb
p +Fb

g +Fb
r , (4)

whereFb
p is the total propulsive force,Fb

g is the force
due to gravity andFb

r is the reaction force from the
ground. Since the objective of the current work is to
balance the UGV in its upright position, which is a
precursor to rolling action, i.e., the vehicle is in con-
tact with the ground, the force due to gravity is effec-
tively cancelled by the reaction force in the earth co-
ordinate system, even though there is torque attributed
to these forces. The total propulsive force is equal to
the algebraic sum of the individual propulsive forces
generated by each propeller. The propulsive forces at
the local coordinate systems can be written as

Fpi =





0
fi sin a si

fi cosa si



 ∀i = 1,2,3. (5)

The thrust generated by each propeller is ideally sim-
plified asfi = kf w 2

bli
∀i = 1,2,3. To obtain the propul-

sive forces in the body coordinate system, the rotation
matrices obtained in (1) are used for the transforma-
tion to the body coordinate system:
Fb

pi
= Rb

l i
Fpi ∀i = 1,2,3, thus yielding the following

Fb
p1
=







Fb
p1x

Fb
p1y

Fb
p1z






=





−kf w 2
bl1

sin a s1

−kf w 2
bl1

cosa s1

0



 , (6)

Fb
p2
=







Fb
p2x

Fb
p2y

Fb
p2z






=







1
2kf w 2

bl2
sin a s2

−kf w 2
bl2

cosa s2

−
√

3
2 kf w 2

bl2
sin a s2






, (7)

Fb
p3
=







Fb
p3x

Fb
p3y

Fb
p3z






=







1
2kf w 2

bl3
sin a s3

−kf w 2
bl3

cosa s3√
3

2 kf w 2
bl3

sin a s3






. (8)

Finally, the total propulsive force is obtained as

Fb
p =

3

å
i=1

Fb
pi
= kf H f r , (9)

whereH f =





−1 1
2

1
2 0 0 0

0 0 0 −1 −1 −1

0 −
√

3
2

√
3

2 0 0 0





and r =



















w 2
bl1

sin a s1

w 2
bl2

sin a s2

w 2
bl3

sin a s3

w 2
bl1

cosa s1

w 2
bl2

cosa s2

w 2
bl3

cosa s3



















.

3.3 Torques

To simplify the complexity of the problem, we con-
sider the different torques acting at the UGV’s point
of contact with the ground. Hence, the torque due to
the reaction forceFb

r will be zero at this point. The
total torque can now be written as

t b = t b
f + t b

d + t b
G+ t b

gy, (10)

wheret b
f is the torque due to the propulsive force,t b

d

is the drag torque on the propellers,t b
G is the torque

due to the force of gravity andt b
gy is the gyroscopic

torque. The torque due to the thrust generated from
the propellers with respect to the pivot point to the
ground can be written as

t b
f = kf Ht r , (11)

where

Ht =





0 0 0 l + rw a a
−l − rw b b 0 0 0

0 0 0 0
√

3
2 l −

√
3

2 l



 ,

wherea= rw− l
2 andb= rw

2 − l .
The drag torque, which is due to the rotation of

the propeller, can be expressed in the local coordinate
systems as

t l1
dpi

=





0
−kt w 2

bli
sin a si

−kt w 2
bli

cosa si



 ∀i = 1,2,3.

The above torque is then expressed in the body co-
ordinate system using the rotation matrices in (1) as
t b

dpi
=Rb

l i
t l i

dpi
∀i = 1,2,3, and the resultant drag torque

is obtained as

t b
d =

3

å
i=1

t b
dpi

=−ktH f r . (12)

The torque due to the force of gravity can be written
as

t b
G = Mgrw





sin f v
0
0



 . (13)

Lastly, we derive the gyroscopic torque, which is as
a result of the rotation of the UGV and the tilting of
a rotating propeller. If we neglect the rotating parts
of the BLDC motors, the gyroscopic torque can be
modelled in the body coordinate as follows (Meriam
and Kraige, 2010):

t b
gypi

=−Ip

(

˙a b
si
× w b

bli

)

− Ip

(

w b× w b
bli

)

,

=−Ip

(

˙a b
si
+ w b

)

× w b
bli , (14)
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where w b
bli

:= Rb
l i

[

0 w bli sin a si w bli cosa si

]T
,

˙a b
si

is the rate of change in the tilting angle of theith

servo motor, and is expressed as
˙a b

si
= Rb

l i

[

− ˙a si 0 0
]T

.
Performing the algebraic manipulation in (14), the gy-
roscopic torques in the body coordinate system from
the three propellers and the UGV are obtained as

t b
gyp1

=−Ipw bl1





− ˙a s1 cosa s1
˙a s1 sin a s1

−pcosa s1



 (15)

t b
gyp2

=−Ipw bl2







1
2 ˙a s2 cosa s2

( ˙a s2 +
√

3
2 p)sin a s2

−(p+
√

3
2 ˙a s2)cosa s2






(16)

t b
gyp3

=−Ipw bl3







1
2 ˙a s3 cosa s3

( ˙a s3 −
√

3
2 p)sin a s3

−(p−
√

3
2 ˙a s3)cosa s3






(17)

The total gyroscopic torque is given as the algebraic

sum of (15) - (17):t b
gy =

3

å
i=1

t b
gypi

.

3.4 Dynamic Model

For the dynamic model of the vehicle, we use the
Newton-Euler approach, and the translational and ro-
tational dynamics can be written as follows:

Fe =
¶ (Mtotve)

¶ t
= Mtot

¶ ve

¶ t
, (18)

t e =
¶ (Iew e)

¶ t
. (19)

Since all variables are expressed in the body coor-
dinate system, the dynamic equations above can be
equally rewritten in the body coordinate as follows:

Fb = Mtot

(

v̇b+S
(

w b
)

vb
)

, (20)

t b = Ib ˙w b+S
(

w b
)

Ib w b
, (21)

wherevb =
(

u v w
)T

, S
(

w b
)

is the skew matrix
of w b, given as

S
(

w b
)

=





0 0 0
0 0 −p
0 p 0



 , and

Ib =





Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz



 .

Due to the symmetry around they− z plane, Iyz =
Izy= 0. Also, note thatIxy = Iyx andIxz= Izx.

Let the attitude and position vectors of the UGV
in the earth coordinate system be denoted by
h :=

(

f v q v y v
)T and l :=

(

xv yv zv
)T .

Then, the following expressions, in addition to (20)
and (21), fully describe the dynamic equations of the
UGV:

˙h = Yw b (22)

˙l =
(

Rb
e

)−1
vb
, (23)

whereRb
e is the rotation matrix from the earth coor-

dinate system to the body coordinate system andY
is the matrix that relates the angular velocity in the
body coordinate system to the earth coordinate system
(Valavanis, 2007; Freddi et al., 2011), both expressed
as

Rb
e = Y =





1 0 0
0 cosf v −sinf v
0 sinf v cosf v



 . (24)

Hence, the angular velocities are related in the body
and the earth coordinate systems asp= ˙f v.

Now, the dynamics governing the roll-axis rota-
tion is obtained from the first row of (21):

t b
x = Ixxṗ= Ixx¨f v, (25)

where

t b
x = kf

(

(l + rw) r 4+(rw− l
2
) r 5+(rw− l

2
) r 6

)

−kt

(

−r 1+
1
2

r 2+
1
2

r 3

)

+ Ip w bl1 ˙a s1 cosa s1

− Ip

(

1
2

w bl2 ˙a s2 cosa s2 +
1
2

w bl3 ˙a s3 cosa s3

)

+Mgrw sin f v.

(26)

4 DESIGN OBJECTIVES AND
CONTROLLER SYNTHESIS

The control design objective of stabilizing the UGV in
its unstable equilibrium point can be categorized un-
der the generalized tracking and regulatory problems
as follows: the controller should

1. ensure settling time of less than 2 secs;

2. ensure stability of the vehicle in an upright posi-
tion (f v = 0);

3. guarantee robustness of the system to input/output
disturbance and measurement noise.
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4.1 Input-output Linearization

In order to use theH¥ loop-shaping design procedure
to achieve the above objectives, we linearize the non-
linear dynamics of (26) using the Jacobi linearization
and robust feedback linearization techniques. If we
taker as the input to the vehicle, it is apparent that the
gyroscopic torque is not affine in this input, but rather
a nonlinear function of its components. We therefore
do not consider this torque in the robust feedback lin-
earization, but include it as a perturbation and uncer-
tainty to the model. This is because the robust lin-
earization technique of (Franco et al., 2006) requires
affine control action. Also, the actuator dynamics
are neglected in the controller design since they have
much faster dynamics when compared with the dy-
namics of the UGV, and this is in line with the ob-
servation in (Aldhaheri and Khalil, 1996) that an out-
put feedback controller recovers asymptotic stability
in the presence of unmodelled fast actuator dynam-
ics. Moreover, these dynamics are linear and there is
therefore no need to cancel them. Albeit, both dynam-
ics are fully incorporated in the time-domain simula-
tions implemented in the next section.

Removing the gyroscopic term, we now take the
input to the system in (25) as

r t = kf

(

(l + rw)r 4+(rw−
l
2
)r 5+(rw−

l
2
)r 6

)

− kt

(

− r 1+
1
2

r 2+
1
2

r 3

)

. (27)

The resultant system can then be written as

¨f v =
1
Ixx

(Mgrw sin f v+ r t ). (28)

Now, invoking Jacobian linearization technique
on the above state equation, the linearized model
(about the equilibrium pointf v = 0, ˙f v = 0, r t = 0)
can be written in state-space form as follows:

(

˙f v
¨f v

)

=

(

0 1
Mgrw

Ixx
0

)(

f v
˙f v

)

+

(

0
r t
Ixx

)

,

(29)

and the output isf v.
Instead, one could also use the robust feedback

linearization technique, proposed in (Franco et al.,
2006), to linearize the nonlinear dynamics of the
UGV. In order to get the parameters for this lineariza-
tion technique, we first employ the classical feedback
linearization method, choosing the output asy= f v:

ẏ= y(1) = ˙f v; (30)

ÿ= y(2) = ¨f v =
1
Ixx

(Mgrw sin f v+ r t ) . (31)

Let a new control input be defined asr c
t = ÿ, the clas-

sical feedback linearization law can then be written
as:

r t = Ixxr c
t −Mgrwsin f v. (32)

From the above control law, the parameters for the ro-
bust feedback linearization can be written, using stan-
dard notation as in (Franco et al., 2006), as follows:

a c(F ) =−Mgrwsin f v;

b c(F ) = Ixx;

f c(F ) =

(

f v
˙f v

)

,

where

F =
(

f v ˙f v
)

;

T =

(

¶f c(F )

¶F

)

F =0
=

(

1 0
0 1

)

;

R= b c(0) = Ixx;

L =−R−1
(

¶a c(F )

¶F

)

F =0
=
[

I−1
xx Mgrw 0

]

.

Now, the new control law is given as

r t = a + b r r
t , (33)

wherer r
t is the linear control effort and

a = a c(F )+ b cLT−1f c(F ) = Mgrw (f v− sinf v) ;

b = b cR
−1 = 1,

with the linearized model given in state-space form
as in (29), withr t replaced withr r

t .

Remark 1. (a) The choice ofr t as input to the sys-
tem is quite intuitive as it is derived from the
force/torque mapping to the input to the plant.
The forces in x, y and z directions and torques in
y and z directions can be set to zero so that there
will be no exerted forces and torques in undesir-
able directions.

(b) The solution to the stabilization problem de-
pends on the non-singularity of the mapping from
(

Fb
p

t b
f + t b

d

)

to r . This mapping is intrinsic to

the mechanical structure of the vehicle, i.e., the
position and orientation of the propeller-motor
assembly, the orientation of the servo motors, etc.
The proposed mechanical structure of the vehicle
is therefore sensible since this term always has
full rank and is not ill-conditioned. This signifies
that there always exists a combination of inputs
for any choice of force and torque. Note that the
output of the controller isr b

x and the force/torque
mapping is used to obtain the requiredr .
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4.2 Robust Controller Synthesis

As earlier motivated, theH¥ loop-shaping design
procedure is used for the controller synthesis and the
following considerations (in view of the design spec-
ifications stated at the beginning of this section 5) are
made in the selection of weights to form the shaped
plant Ps, which is the cascade between the loop-
shaping weightsW1 andW2 and the nominal plant:

• for good reference signal tracking and input dis-
turbance rejection in (a) and (c), respectively, a
designer maximizes the loop-gain of the shaped
plant Ps at low frequencies in order to obtain a
small sensitivity function;

• for fast response in (a), a reasonable bandwidth is
required;

• for good robustness to unmodelled dynamics and
sensor noise in (c), the designer’s objective is to
minimize the loop-gain of the shaped plantPs
in order to make the complementary sensitivity
transfer function matrix close to zero;

• for robust stability of the UGV in (b), the ob-
jective is to maximize the gain and phase mar-
gins so as to avoid a perturbed plant encircling
the Nyquist point. In (Glover et al., 2000; Vin-
nicombe, 2001), the relationships between the ro-
bust stability marginb(Ps,C¥ ) and the gain and
phase margins have been established;b(Ps,C¥ )
of 0.3 is equivalent to a gain and phase margins
greater than or equal to 5.39dB and 34.92◦, re-
spectively.

An algorithm in (Osinuga et al., 2011; Osin-
uga et al., 2012a) directly captures the above factors
in a systematic manner, and will therefore be used
to synthesize a controller for the linearized plants.
This efficient framework simultaneously synthesizes
loop-shaping weights and a stabilizing controller that
achieve satisfactory performance for a guaranteed
level of robust stability margin, corresponding to suf-
ficient gain and phase margins of the closed-loop sys-
tem. This algorithm also incorporates smoothness
constraints, formulated in (Osinuga et al., 2010), to
aid the synthesis of low-order, “smooth” controller
that avoids the “approximate” pole-zero cancellation
of the lightly-damped modes of the nominal plant.

The inputs to this algorithm are simply chosen as:
[w1 w1 k1 g1 w l w u e ] = [10−2 102 1 60 0.1 80 0.3],
wherew1(rad/s), w1(rad/s), k1 andg1(dB/dec) re-
spectively delimit the allowable region for the singu-
lar values, condition number and gradient of loop-
shaping weightW1, w l (rad/s) and w u(rad/s) divide
the frequency region into three distinct frequency re-
gions of low, mid and high frequencies, respectively,

while ¯e is the desired level of robust stability mar-
gin that is chosen ‘a priori’. Here, frequency points
between 10−3 and 103 rad/s are divided into 150
equally spaced points on a logarithmical scale. Fur-
thermore, we fix the post-compensator as a first-order
low-pass filter with a corner frequency of 50rad/s.

The algorithm converged in four iterations, and
the order of the synthesized pre-compensator is 8. A
robust stability margin of 0.4608 is obtained, which is
an indicator of a decent design that tolerates approx-
imately 46% coprime factor uncertainty for which
closed-loop stability is guaranteed. The singular
values of the nominal plantP, the correspondingly
shaped plantPs, the simultaneously synthesized stabi-
lizing controller and synthesized loop-shaping weight
are shown in Figure 4.
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Figure 5: Simulation block diagram: High Fidelity Plant in-
cludes gyroscopic dynamics, ignored in the control systems
design.

5 SIMULATION RESULTS

We set up the simulation in Simulink2 as shown in
Figure 5. A non-zero initial state of the inverted
pendulum-based vehicle was set asf v = 0.18rad and
the desired reference input signal was given as¯f v = 0.
For the simulation, the roll channel was perturbed
with an output disturbance of maximum magnitude
of 0.13rad from time t = 10s to t = 12s; BLDC and
servo output disturbance of 10.5rad/s and 0.09rad
(corrupted with uniform random noise) were further
introduced fromt = 15s to t = 17s.

For both simulations involving the Jacobian and
the robust feedback linearization techniques, the plots
of the angular acceleration, angular velocity and the
orientation of the CG of the UGV, alongside the gyro-
scopic torque are shown in Figure 6, where it is seen
that all the states are well-behaved.

It is evident that the two control schemes stabi-
lized the vehicle in its upright position. The speed
of the responses were very fast, satisfying the de-
sired specification. Also, the robust controller ade-
quately recovered from the effect of input and out-
put disturbance, and the overall response and damp-
ing was satisfactory. Furthermore, the BLDC and
servo motors were bounded within the limits of 900
rad/s and± p rad, respectively, as shown in Figure
7. Finally, the gyroscopic torque, considered as unac-
counted perturbation to the system, was well-handled
by the controller.

Remark 2. (a) As expected, the closed-loop system
with the robust feedback linearization technique
showed slightly better performance; the out-
put mean square error values of 16.9761 and
18.0834 were, respectively, obtained from the ro-
bust feedback linearization and Jacobi lineariza-
tion techniques. It should be noted that the robust
feedback linearization produces a linear system
that coincides with the Jacobi linearized system.
However, the robust feedback linearization is ef-
fectively a robust nonlinear controller that uses

2The feedback linearization block is removed when im-
plementing the Jacobian linearization technique.
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Figure 6: Angular acceleration, velocity and position of the
vehicle and gyroscopic torque.

the concept of ‘local W-stability’ to guarantee the
local input-output stability of the nonlinear sys-
tem, thereby preserving the robustness properties
of the linear design (Franco et al., 2006). Hence,
whereas a Jacobi linearization is just an approx-
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Figure 7: Actuator efforts.

imation at an operating point, a robust feedback
linearization is an exact nonlinear linearization
of the same model.

(b) The force along the Ze−axis was chosen as5N,
which is about10%of the UGV’s weight. A non-
zero positive force in this axis was chosen in or-
der to operate the motors adequately in optimal
region.

6 CONCLUSIONS

A novel 6-DOF, tri-rotor actuated vehicle is presented
in this paper. The nonlinear dynamics of the un-
manned vehicle are developed and linearized using
the Jacobi linearization and the robust feedback lin-
earization techniques. A robust stabilizing controller
is thereafter synthesized using a systematic weight
optimization algorithm inH¥ loop-shaping control
and this choice of controller synthesis technique is
demonstrated to be robust and effective; the time-
domain simulations showed satisfactory tracking per-
formance and disturbance rejection characteristics.
Future work will involve experimental validation and
controller tuning.
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APPENDIX

Let the feedback interconnection of a shaped plant
Ps = W2PW1 and a robust stabilizing controllerC¥
be denoted by[Ps,C¥ ]. Furthermore, letC (Ps) de-
note the set of all stabilizing controllers forPs (i.e.,
C (Ps) := {C¥ : [Ps,C¥ ] is internally stable}), the ro-
bust stability margin of[Ps,C¥ ] is then defined as

b(Ps,C¥ ) :=

∥

∥

∥

∥

[

Ps
I

]

(I −C¥ Ps)
−1[ −C¥ I

]

∥

∥

∥

∥

−1

¥
whenC¥ ∈ C (Ps), and 0 otherwise.

Symbol Description

Vbli Applied voltage to theith Brushless DC
(BLDC) motor

Vsi Applied voltage to theith servo motor
t bl Time constant of BLDC motor (0.035s)
kbl Gain of BLDC motor (10.81)
ks Gain of servo motor (0.02)
t s Time constant of servo motor (0.018s)
w bli Rotational speed of theith BLDC motor
a si Tilting angle of theith servo motor
fi Generated propulsive force in the direc-

tion of the motor shaft
kf Thrust constant of propeller
kt Torque constant of drag resulting from

the rotation of propeller
g Gravitational acceleration
M Total mass of the unmanned vehicle
l Distance between propeller-motor as-

sembly and the centre of gravity of the
unmanned vehicle

rw Radius of the vehicle’s wheel
Ip Inertia of propeller around axis of rota-

tion
Im Inertia of rotor of BLDC motor
Ra Armature resistance of BLDC motor
Bm Viscous friction coefficient of propeller
kv Speed-to-voltage constant of BLDC

motor
v Velocity vector of the unmanned vehicle
w Angular velocity vector of the un-

manned vehicle
(f v, q v, y v) Roll, pitch and yaw angles of the un-

manned vehicle
(xv,yv,zv) x, y, zposition of the unmanned vehicle
ab, ae vectora in the body and earth coordi-

nate system, respectively

ICINCO�2012�-�9th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

86


