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Abstract— This paper introduces the concept of normalized
bicoprime factorizations. The notion of a normalized bicoprime
factorization is first defined and conditions for normalization
are given in state space. Algorithms that can be used to obtain a
normalized bicoprime factorization of the plant are presented.

I. INTRODUCTION

Normalized coprime factorizations play an important role
in control theory. It is well known that introducing the
normalization property to a coprime factorization of a plant
offers many advantages, with a prominent one being the
ability to directly derive a lower bound on the achievable
robust stability margin [1], [2]. This then allows for the con-
struction of a robustly stabilizing controller without the need
of an iterative procedure. The well known H∞ loopshaping
design procedure uses normalized coprime factorizations [3]
to robustly stabilize the shaped plant. Another result making
use of normalized coprime factorizations is the ν-gap metric
[4], [5], which is a powerful tool in robustness analysis.

A right (resp. left) coprime factorization of a plant is said
to be normalized if the associated graph symbol is inner
(resp. co-inner) [2]. Equivalently, let the pair {N,M} be a
right coprime factorization of P = NM−1 ∈ R over RH∞,
then the factorization is normalized if M∼M +N∼N = I ,
where T∼ denotes the L2-adjoint of T defined as T∼ =
TT (−s) [6, Definition 3.8].

Bicoprime factorizations (BCFs) of the plant were first
introduced by Vidyasagar in [7]. They are a generalization
on the aforementioned coprime factorizations. BCFs were
briefly studied in the late 80’s however they were quickly
abandoned due to high mathematical complexity when their
coprime factor counterparts began to yield powerful results.
Recent work [8], [9] has shown that it is possible to capture
and generalize earlier coprime factor results into a more
complete BCF framework. Several BCF results were pre-
sented therein mostly pertaining to internal stability and BCF
parameterization.

Just like the classical case of left and right coprime
factorizations, every plant in R admits a BCF over RH∞.
The ordered quad {N,M,L,K} is said to be bicoprime (BC)
in RH∞ if {L,M} is left coprime (LC) in RH∞, {N,M} is
right coprime (RC) in RH∞ and K ∈ RH∞. Furthermore,
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it is a BCF of P ∈ R over RH∞ if M is square and
invertible in R and P = NM−1L + K. Such a structure
is commonly encountered in many areas of control theory,
including standard state space realizations and basic closed
loop transfer functions of feedback interconnections. It can
be shown in fact that these are BCFs over sets other than
RH∞, for example a minimal state space realization of a
plant is a BCF over the ring of polynomials R[s] [7].

BCFs have been shown to provide benefits in several
areas of interest to the control community. For example, in
internal stability analysis, BCFs can induce tests based on the
invertibility of objects with dimensions smaller that those of
the plant [9]; comparatively, coprime factor tests require the
inversion of transfer matrices with dimensions equal to the
number of inputs or outputs of the plant [6, Lemma 5.2]. It
can also be shown that BCFs can be successfully utilized in
the context of robust control synthesis with one significant
benefit being a reduction in the order of the Algebraic Riccati
Equations (AREs) that need to be solved for the construction
of a robustly stabilizing controller. Even though this result
is interesting in its own right, it is outside the scope of this
paper and will be published elsewhere.

This paper develops the idea of normalized BCFs in
a manner similar to classical coprime factorizations with
the left and right coprime pairs of the factorization both
being normalized. Subsequently, methods of obtaining a
normalized BCF of a plant are outlined. Finally, a numerical
example is provided to illustrate the applicability of the
theory developed herein.

II. PRELIMINARIES

In this section some preliminary results and notation are
presented. These will be used as a basis for the main results
of this paper developed in the subsequent sections.

Definition 1: The set of all BC quads in RH∞ is denoted
by B. The set of all BCFs of a plant P ∈ R over RH∞ is
denoted by B(P ).

It is often convenient to pack a BC quad into a matrix as
in the following definition.

Definition 2: The set B̃ is defined as

B̃ =

{[
M −L
N K

]
: {N,M,L,K} ∈ B̃

}
.

The set of all objects in B̃ that define a BCF of a plant
P ∈ R is denoted by B̃(P ). Objects in B̃(P ) are referred
to as BCF symbols of P .

It should be noted that BCF symbols are not equivalent to
graph symbols as induced by coprime factorizations as they
cannot be used to generate all bounded input-output pairs.
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They do however share some properties such as common
transmission zero set with the plant as shown by [9].

An appealing feature of coprime factorizations is that they
can easily be obtained from state space data of a plant using
the formulae given by [10], which were extended to the
normalized case by [11] and [12]. The following lemma gives
a state space characterization of BCFs for a plant.

Lemma 1 ([9]): Let P ∈ Rp×q have a stabilizable and

detectable state space realization P =

[
A B
C D

]
where

A ∈ Rn×n. Furthermore, suppose that Q ∈ Rn×r and R ∈
Rr×n are such that A+QR is Hurwitz and let DN ∈ Rp×r

and DL ∈ Rr×q be arbitrarily chosen matrices. Then
A+QR Q B +QDL

R I DL

C +DNR DN D +DNDL

 ∈ B̃(P ). (1)

It is apparent that the above BCF parametrization could be
simplified by selecting DN = 0 and DL = 0. This restriction
will be imposed for the remainder of this paper. The results
presented in the subsequent sections can be derived for the
case of non-zero DN and DL via some simple, albeit tedious,
linear algebra. When the above restriction is imposed, (1)
will be referred to as a QR-BCF parametrization of P .

The controllability and observability Gramians of a plant
P ∈ RH∞, with a stabilizable and detectable state space

realization P =

[
A B
C D

]
, are given by the solutions X ≥

0 and Y ≥ 0 to the Lyapunov equations

AX +XA∗ +BB∗ = 0 and
Y A+A∗Y + C∗C = 0

respectively [6]. These concepts will be used in the definition
of normalized BCFs.

III. NORMALIZED BCF

In this section the notion of a normalized BCF of a plant is
formally defined. Some state space conditions are provided
that help to establish whether a BCF is normalized. These are
then used as a basis for algorithms that attempt to generate
such a BCF for a given plant in the next section.

Definition 3: Let P ∈ Rp×q have a BCF {N,M,L,K} ∈
B(P ). The BCF is said to be normalized if the factors satisfy

M∼M +N∼N = I, (2)
MM∼ + LL∼ = I. (3)

Though the above definition of a normalized BCF involves
normalized coprime pairs, it is important to realize that
this new concept is distinct from the classically studied
normalized coprime factorizations.

Before presenting state space conditions for the normal-
ization of a QR-BCF, the following terminology is needed.
The triplet (C,A,B) is said to have no modes that are both
controllable and observable when all controllable modes in
(A,B) are unobservable in (C,A) and all observable modes
in (C,A) are uncontrollable in (A,B). On the other hand,

(C,A,B) is said to be minimal if (A,B) is controllable and
(C,A) is observable.

The following theorem gives necessary and sufficient state
space conditions for a QR-BCF to be normalized.

Theorem 1: Let P ∈ Rp×q have a stabilizable and

detectable state space realization P =

[
A B
C D

]
where

A ∈ Rn×n and let Q ∈ Rn×r and R ∈ Rr×n be such that
A+QR is Hurwitz. Define

G =

[
M −L
N K

]

=

 A+QR Q B
R I 0
C 0 D

 ∈ B̃(P ). (4)

Then the QR-BCF defined by G is normalized if and only
if each of the triplets (R,A + QR,Q + XR∗) and (R +
Q∗Y,A+QR,Q) has no modes that are both controllable and
observable, where X ≥ 0 and Y ≥ 0 are the controllability
and observability Gramians of G respectively.

Proof: By direct calculation it can be shown that[
M
N

]∼[
M
N

]
= I+

[
A+QR Q

R+Q∗Y 0

]
+

[
A+QR Q

R+Q∗Y 0

]∼
.

(5)

Given that for any strictly proper S ∈ RH∞, S+S∼ = 0 if
and only if S = 0, it follows that (5) reduces to the identity

matrix if and only if
[
A+QR Q
R+Q∗Y 0

]
= 0 or equivalently,

using [6, Theorem 3.10], the triplet (R+Q∗Y,A+QR,Q)
has no modes that are both controllable and observable. It
can similarly be proven that {L,M} is normalized if and
only if (R,A+QR,Q+XR∗) has no modes that are both
controllable and observable.

Corollary 1: Suppose that Q and R in Theorem 1 are
chosen such that (R,A,Q) is minimal. Then the QR-BCF
induced by G in (4) is normalized if and only if Q+XR∗ = 0
and R+Q∗Y = 0.

Proof: First note that[
M
N

]
=

 A+QR Q
R I
C 0

 ∈ RH∞

is minimal and that its observability Gramian is given by Y .
Then by definition, the RC pair {N,M} is normalized if

and only if[
M
N

]∼ [
M
N

]
= I ⇐⇒

[
M
N

]
is inner

⇐⇒ R+Q∗Y = 0

where the last equivalence follows from [6, Corollary 13.30].
The fact that the LC pair {M,L} is normalized if and only
if Q+XR∗ = 0 can be similarly proven.

Remark 1: It is easy to see that Q + XR∗ = 0 and
R + Q∗Y = 0 are sufficient for the induced QR-BCF to
be normalized regardless of the minimality of (R,A,Q). �



The following theorem gives a sufficient condition for a
QR-BCF to be normalized based on two AREs with sign-
definite quadratic terms. The resulting condition, although
not necessary, is easier to evaluate than that of Theorem 1,
making it more useful in constructing normalized BCFs.

Theorem 2: Let P ∈ Rp×q have a stabilizable and

detectable state space realization P =

[
A B
C D

]
where

A ∈ Rn×n. Let Q ∈ Rn×r and R ∈ Rr×n be such that
(A,Q) is stabilizable and (R,A) is detectable. Furthermore,
let X ≥ 0 and Y ≥ 0 be the stabilizing solutions to

XA∗ +AX −XR∗RX +BB∗ = 0 and (6)
Y A+A∗Y − Y QQ∗Y + C∗C = 0. (7)

Finally, suppose that Q+XR∗ = 0 and R+Q∗Y = 0. Then
the QR-BCF induced by Q and R is normalized.

Proof: First note that A+QR is Hurwitz, therefore Q
and R induce a valid QR-BCF. Then by substituting Q =
−XR∗ and R = −Q∗Y into (6) and (7) respectively, it can
be seen that X and Y are the controllability and observability
Gramians of the associated BCF symbol respectively. The
conclusion then follows from Theorem 1.

The following lemma relates the normalizing Q and R
to the Gramians of the associated BCF symbol. The result
proves useful in defining terminating criteria for the iterative
algorithms used to obtain a normalized QR-BCF.

Lemma 2: Let P ∈ Rp×q have a stabilizable and de-

tectable state space realization P =

[
A B
C D

]
and a

normalized QR-BCF induced by the matrices Q and R
satisfying the conditions of Theorem 2. Then[

Q
R∗

]
∈ Ker

[
I X
Y I

]
. (8)

Furthermore, Q ∈ Ker(I −XY ) and R∗ ∈ Ker(I − Y X).
Proof: The proof follows trivially from Q+XR∗ = 0

and R+Q∗Y = 0.
As a result of the above lemma, it follows that for any

normalized QR-BCF of the type being considered

‖(I −XY )Q‖ = 0 and ‖R(I −XY )‖ = 0.

IV. CONSTRUCTING A NORMALIZED BCF

Obtaining a normalized left or right coprime factorization
of a plant is simple and requires the solution of a single
ARE with a sign-definite quadratic term as demonstrated by
[11], [12]. On the contrary, BCFs require the solution of two
coupled AREs, which is a considerably harder problem, a
direct solution to which does not exist in general. Though
the normalization condition set forth by Theorem 2 appears
to be simple, it must be noted that it is in fact hard to
solve as the coupling between the two AREs leads to a
nonlinear problem. This can be observed by substituting for
and eliminating Q and R from (6) and (7) yielding

XA∗R +ARX −XC∗CX +BB∗ = 0,

A∗QY + Y AQ − Y BB∗Y + C∗C = 0

where AR = (I−XY )A and AQ = A(I−XY ), which must
be solved for X ≥ 0 and Y ≥ 0. No explicit mathematical
method exists in the literature to solve such coupled AREs.

In this section, two iterative algorithms are presented that
attempt to generate a pair of matrices Q and R satisfying
the conditions set forth in Theorem 2.

Algorithm 1: Let P ∈ Rp×q have a stabilizable and

detectable state space realization P =

[
A B
C D

]
where

A ∈ Rn×n and specify a tolerance µ > 0.
1) Select R0 ∈ Rr×n such that (R0, A) is detectable and

set i = 0.
2) Solve the ARE

XiA
∗ +AXi −XiR

∗
iRiXi +BB∗ = 0 (9)

for the stabilizing solution Xi ≥ 0 and set Qi+1 =
−XiR

∗
i .

3) Solve the ARE

YiA+A∗Yi − YiQi+1Q
∗
i+1Yi + C∗C = 0 (10)

for the stabilizing solution Yi ≥ 0 and set Ri+1 =
−Q∗i+1Yi.

4) If max {‖Ri(I −XiYi)‖, ‖(I −XiYi−1)Qi‖} < µ
and i ≥ 1, stop. Otherwise increment i and go to (2).

The following algorithm is inspired by the Kleinman ap-
proach to solving AREs [13], where the solution is obtained
via the recursive solution of Lyapunov equations. For brevity,
the notation A{i,j} = A+QiRj will be used.

Algorithm 2: Let P ∈ Rp×q have a stabilizable and

detectable state space realization P =

[
A B
C D

]
where

A ∈ Rn×n and specify a tolerance µ > 0.
1) Select Q0 ∈ Rn×r and R0 ∈ Rr×n such that A+Q0R0

is Hurwitz and set i = 0.
2) Solve the Lyapunov equation

XiA
∗
{i,i} +A{i,i}Xi +QiQ

∗
i +BB∗ = 0 (11)

for the solution Xi ≥ 0 and set Qi+1 = −XiR
∗
i .

3) Solve the Lyapunov equation

YiA{i+1,i} +A∗{i+1,i}Yi +R∗iRi + C∗C = 0 (12)

for the solution Yi ≥ 0 and set Ri+1 = −Q∗i+1Yi.
4) If max {‖Ri(I −XiYi)‖, ‖(I −XiYi−1)Qi‖} < µ

and i ≥ 1, stop. Otherwise increment i and go to (2).
The suitability of the stopping conditions of Algorithms

1 and 2 could be explained using Lemma 2. Another more
intuitive approach is as follows. Consider Algorithm 1, then

Ri+1 −Ri = −Q∗i+1Yi −Ri

= RiXiYi −Ri

= −Ri(I −XiYi). (13)

It can similarly be shown that

Qi+1 −Qi = −(I −XiYi−1)Qi. (14)

Hence, taking the norm of (13) and (14) gives a measure
of the change imparted on Ri and Qi at the ith iteration



respectively. Therefore as (13) and (14) tend to 0, Qi and
Ri converge to constant values. It can be shown that the
same arguments hold for Algorithm 2 for all i > 0.

A seemingly reasonable change to Algorithm 2 would be
to replace (12) with

YiA{i,i} +A∗{i,i}Yi +R∗iRi + C∗C = 0

and then update Ri+1 = −Q∗i Yi. However by doing this
(13) and (14) no longer hold. This means that Qi+1 and
Ri+1 are not related to their previous values in a simple
way. Though extensive numerical testing indicates that the
resulting algorithm also converges to the normalizing Q and
R, it generally takes longer to converge than the proposed
two algorithms and is not as numerically reliable.

An important point to make about the above two algo-
rithms is that a solution always exists at every iteration.
For Algorithm 1 this is immediately evident by noting that
(A,Qi) is stabilizable for all i ≥ 1 and (Ri+1, A) is
respectively detectable for all i ≥ 0 and then using [6,
Theorem 13.7]. The same fact can be proven for Algorithm 2,
but the following lemma is first needed.

Lemma 3: Let P ∈ Rp×q have a stabilizable state space

realization P =

[
A B
C D

]
where A ∈ Rn×n and suppose

that F ∈ Rq×n is such that A+BF is Hurwitz. Furthermore,
let Y ≥ 0 be the solution to the Lyapunov equation

(A+BF )∗Y + Y (A+BF ) + F ∗F + C∗C = 0. (15)

Then A−BB∗Y is also Hurwitz.
Proof: First define

S =
1√
2

2B∗Y + F√
2C
F


and note that (S,A − BB∗Y ) is detectable. Then by rear-
ranging (15) it can be shown that Y is also a solution to

(A−BB∗Y )∗Y + Y (A−BB∗Y ) + S∗S = 0

The conclusion then follows from [14, Theorem 13.24].
Lemma 4: Let P ∈ Rp×q have a stabilizable and de-

tectable state space realization P =

[
A B
C D

]
. Now

consider Algorithm 2 applied to this state space realization
of P . Then there exists a Xi ≥ 0 and Yi ≥ 0 satisfying (11)
and (12) respectively for all i ≥ 0.

Proof: First note that R∗iRi + C∗C ≥ 0 and QiQ
∗
i +

BB∗ ≥ 0 for all i ≥ 0. Then using Lemma 3 it follows
that A{i,i} and A{i,i+1} are Hurwitz for all i ≥ 0. This then
guarantees via [14, Theorem 13.21] that there exist Xi ≥ 0
and Yi ≥ 0 satisfying (11) and (12) or all i ≥ 0, which
concludes the proof.

Algorithms used to iteratively solve single AREs typically
exhibit monotonicity in the iteration variables [13], [15],
[16], a fact exploited in proving that they do converge to the
stabilizing solution (if it exists). Unfortunately, this is not
always the case for the proposed algorithms, thus a simple

proof of convergence is not available. This can be seen by
very simple counter examples such as the 1st order plant

P =

[
1 1
1 0

]
with Q0 = 3 and R0 = −2. Figure 1 demonstrates this non-
monotonic behavior when using either algorithm to obtain
a normalized BCF of the above plant with the given initial
conditions and tolerance µ = 10−3.

0 1 2 3 4 5

0.8

0.9

1

1.1

1.2

Fig. 1. Non-monotonic behavior in Algorithm 1 ( ) and Algo-
rithm 2 ( ). Solid lines correspond to ρ(XiX

−1
i−1) and dashed lines

to ρ(YiY −1
i−1).

Even though no convergence proof is provided for either
algorithm, no cases were found where they fail to converge
to a normalizing solution.

The selection of initial conditions for the above algorithms
is important. Suppose that for a plant P ∈ Rp×q , Q and R
induce a normalized QR-BCF. If R0 is chosen to be exactly
R, then Algorithm 1 would converge after just one iteration.
On the other hand, Algorithm 2 would need a few iterations
depending on how close Q0 is to the actual solution Q. It is
also possible that Ri is changed before re-converging to the
solution. If also Q0 is chosen as Q, then Algorithm 2 would
also converge after just one iteration.

The following lemma gives a necessary condition Q and
R must satisfy in order for a BCF to be normalized.

Lemma 5: Let P ∈ Rp×q have a stabilizable and de-

tectable state space realization P =

[
A B
C D

]
and a

normalized QR-BCF given by Theorem 2. Then there exists
a unitary matrix U such that

CQ = (RBU)∗. (16)
Proof: Note that (6) can be rearranged into QQ∗ =

XA∗ +AX +BB∗. Substituting into (7) yields

Y (XA∗ +AX +BB∗)Y = A∗Y + Y A+ C∗C

Y BB∗Y = (I − Y X)A∗Y + Y A(I −XY ) + C∗C.

Then pre- and post-multiplying by Q∗ and Q respectively
and using Lemma 2, gives Q∗Y BB∗Y Q = Q∗C∗CQ, or
equivalently RBB∗R∗ = Q∗C∗CQ. The conclusion then
follows from [17, Theorem 7.3.11].
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Fig. 2. Mass-spring-damper system schematic.

V. NUMERICAL EXAMPLE

For this example we consider a mass-spring-damper sys-
tem extensively studied as a benchmark in many areas of
control theory (see for example [16] or [5]).

A schematic representation of the system under consider-
ation is shown in Figure 2. Two masses are attached to the
walls and coupled together via springs and dampers. It is
assumed that the masses are constrained to slide only in the
horizontal direction while the surface upon which they do
so is frictionless. The inputs to the system are the forces u1
and u2 applied to m1 and m2 respectively while the outputs
are their respective displacements x1 and x2.

The parameters used were k1 = 0.5 N/m, k2 = 1.75 N/m,
k3 = 1.5 N/m, c1 = 0.1 Ns/m, c2 = 0.3 Ns/m, c3 = 0.5
Ns/m, m1 = 1.25 kg and m2 = 1 kg. With the above values,
a state space realization of the plant can be obtained as

P =


0 0 1 0 0 0
0 0 0 1 0 0
−1.8 1.4 −0.32 0.24 0.8 0
1.75 −3.25 0.3 −0.8 0 1
1 0 0 0 0 0
0 1 0 0 0 0

 .

Algorithms 1 and 2 were executed for the above state space
realization of P with the tolerance set to µ = 10−3 and using
as initial conditions

Q0 =
[
0 0 0.5 0.5

]∗
and R0 = −

[
0.3 0.2 0 0

]
.

It can be easily shown that Q0 and R0 satisfy the nec-
essary condition given by Lemma 5, with Q∗0C

∗CQ0 =
R0BB

∗R∗0 = 0.
Table I provides some important data obtained from the

execution of the two algorithms including the number of
iterations it took for each to converge to its final state.
The trajectories of ‖Ri(I −XiYi)‖ and ‖(I −XiYi−1)Qi‖
are shown in Figure 3 and Figure 4 for both algorithms.
The results are plotted on linear and logarithmic scales

Parameter Algorithm 1 Algorithm 2
Iterations 7 7

Time 11.3 ms 3.1 ms
‖Ri(I −XiYi)‖ 2.421× 10−4 2.779× 10−4

‖(I −XiYi−1)Qi‖ 4.069× 10−4 4.659× 10−4

{L,M} normalization error 1.7246× 10−4 1.9754× 10−4

{N,M} normalization error 8.4916× 10−16 5.8412× 10−8

TABLE I
EXECUTION DATA FOR ALGORITHMS 1 AND 2.

1 2 3 4 5 6 7

0

0.2

0.4

Fig. 3. Linear scale stopping criteria evolution for Algorithm 1 ( )
and Algorithm 2 ( ). Solid lines correspond to ‖Ri(I − XiYi)‖ and
dashed lines to ‖(I −XiYi−1)Qi‖.

1 2 3 4 5 6 7

10−3

10−2

10−1

100

Fig. 4. Logarithmic scale stopping criteria evolution for Algorithm 1
( ) and Algorithm 2 ( ). Solid lines correspond to ‖Ri(I−XiYi)‖
and dashed lines to ‖(I −XiYi−1)Qi‖.

respectively to aid analysis. A normalization error metric
is also provided in Table I to quantify how close to a
true normalized BCF the obtained solution is. For the pair
{L,M}, this error is defined as ‖I − [M −L ] [M −L ]

∼‖∞;
this is similarly defined for the pair {N,M}. Figure 5
shows the evolution of ρ(XiX

−1
i−1) and ρ(YiY

−1
i−1) for this

example. It can be seen that, like in the previous example, the
sequence of generated Gramians is still not monotonic. Both
algorithms converged to the same solution (within tolerance)
in the same number of iterations.

Though it seems from Table I and Figures 3 and 4 that
the two algorithms perform very similarly in a discrete time
context, the real-time performance of Algorithm 2 was found
to be significantly better terminating in within 3.1 ms while
Algorithm 1 required approximately 11.3 ms.

1 2 3 4 5 6 7

1

1.05

1.1

1.15

Fig. 5. Evolution of ρ(XiX
−1
i−1) (dashed) and ρ(YiY

−1
i−1) (solid) for

Algorithm 1 ( ) and Algorithm 2 ( ).



Parameter Value
‖XR −XK‖ 1.320× 10−5

‖YR − YK‖ 1.334× 10−5

‖QR −QK‖ 2.664× 10−5

‖RR −RK‖ 1.592× 10−5

TABLE II
SOLUTION DIFFERENCE. THE SUBSCRIPTS R AND K DENOTE MATRICES

OBTAINED FROM ALGORITHMS 1 AND 2 RESPECTIVELY.

Table II lists the norm difference in the parameters ob-
tained using each of the two algorithms. As stated above and
and exemplified by this table, both algorithms converged to
the same normalizing pair Q and R. The resulting pair was
given by

Q =
[
0.390 0.273 0.398 0.281

]∗
and

R =
[
−0.572 −0.383 −0.487 −0.273

]
,

with Q∗C∗CQ = 0.2266 and RBB∗R∗ = 0.2264. The
resulting associated Gramians were given by

X =


0.432 0.232 0.076 0.062
0.232 0.284 0.044 0.037
0.076 0.044 0.618 0.134
0.062 0.037 0.134 0.610

 > 0 and

Y =


1.048 0.171 0.248 0.063
0.171 0.742 0.147 0.195
0.248 0.147 0.675 0.290
0.063 0.195 0.290 0.284

 > 0.

With the pair normalizing Q and R generated above, the
eigenvalues of A + QR are placed at −0.4519 ± 2.0078i
and −0.4072 ± 0.9122i. The induced QR-BCF was then
constructed as[
M −L
N K

]
=

−0.223 −0.149 0.810 −0.106 0.390 0 0
−0.156 −0.104 −0.133 0.926 0.273 0 0
−2.028 1.248 −0.514 0.131 0.398 0.8 0
1.589 −3.358 0.163 −0.877 0.281 0 1
−0.572 −0.383 −0.487 −0.273 1 0 0

1 0 0 0 0 0 0
0 1 0 0 0 0 0


.

VI. CONCLUSION

In this paper, the concept of normalized bicoprime fac-
torizations is introduced. Conditions are presented for a
factorization obtained via the QR-BCF parametrization to
be normalized. These conditions are then used as the basis
for two iterative algorithms that can be used to construct a
normalized BCF of a plant.

Although the concept of normalized BCFs is thoroughly
examined, the motivation behind this study might be unclear
to the reader. One possible application of such factorizations
is that of robust control synthesis. In fact, it can be shown
that given a normalized BCF of the plant, a lower bound on
the achievable robust stability margin with respect to BCF

uncertainty as defined by [9] is given by

max


(
1−

∥∥∥∥[MN
]∥∥∥∥2

H

)− 1
2

,
(
1−

∥∥[M −L
]∥∥2

H

)− 1
2


where ‖S‖H corresponds to the Hankel norm of the transfer
matrix S ∈ RH ∞. The above fact will not be proven here
as it is out of the scope of this paper.

Another possible usage of normalized BCF is in the
context of distance measures as defined by [4], [18]. Using
the standard procedures presented therein it is not possible
to capture the notion of distance between two plants based
on their BCFs. It is possible that imposing a normalization
property is the tool needed to achieve this.
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