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Abstract— This paper presents sufficient conditions, in a lin-
ear matrix inequality (LMI) framework, for a control protocol
to robustly stabilize a networked multi-agent system in the
presence of strict negative imaginary (SNI) uncertainties with
certain DC size. The control protocol under consideration is
based on relative state measurements of neighbouring agents
and absolute state measurements of a subset of agents and
therefore the network graph which models the information
exchange among agents is assumed a connected undirected
graph with at least one self-loop. Under such assumptions on
the network graph it is shown that the negative imaginary
(NI) property of the networked system is unchanged due to
transformation. Hence, the sufficient conditions are derived
based on multiple reduced order subsystems satisfying the NI
property simultaneously. The paper also summarizes the steps
required to design the control protocol parameters; which are a
positive scalar and a gain matrix. It is shown that appropriately
adjusting the positive scalar while leaving the gain matrix
unchanged guarantees robustness of the control protocol to
variations in the network topology as well as robustness to
SNI uncertainties. A numerical example is given to show the
usefulness of the proposed results.

I. INTRODUCTION

Distributed control of networked multi-agent systems and
negative imaginary systems theory are two distinct areas of
significant importance to the control systems community.

Distributed control of networked multi-agent systems has
been an active field of study over the past two decades.
See, for instance, [1]–[4] for an extensive overview. Broadly
speaking, agents interact locally with each other to achieve
a desired collective behaviour or a global control objective
such as stability of a network, synchronization, consensus,
etc. The dynamics of agents and the interaction among
them play a key role in analysing the problem for a certain
behaviour and in protocol design. Also, robustness of the
designed protocol is a key factor that needs to be consid-
ered. Robust stability of multi-agent dynamical systems was
studied in [5] where three different types of multiplicative
perturbations were considered. A distributed H∞ control
problem for multi-agent systems with linear dynamics was
addressed in [6] and a new definition of an H∞ performance
region was introduced to evaluate the performance of a
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networked system subject to external disturbances. Robust
synchronization of uncertain multi-agent networks was ad-
dressed in [7] and [8] with uncertainties in the form of
additive perturbations in [7] and in the form of coprime factor
perturbations in [8]. Robust consensus control for multi-agent
systems involving gap metric uncertainties was investigated
in [9].

Negative imaginary (NI) systems are systems with nega-
tive imaginary frequency response. The theory of NI systems
was first introduced in [10] in the interest to develop, in
a systematic framework, robust stability results for flexible
structures with co-located force actuators and position sen-
sors. Since then, significant progress in this area has been
reported. For example, [10]–[13] provide robust stability
analysis results for NI systems, [14]–[18] consider nega-
tive imaginary synthesis problems, [19] studies the negative
imaginary property of descriptor linear systems, [20] intro-
duces the notion of discrete-time NI systems, and [21] studies
non-proper, non-rational NI systems. Robust output feedback
consensus was investigated in [22], [23] for networks of
homogeneous and heterogeneous negative imaginary multi-
agent systems respectively under external disturbance and
model uncertainties. In this paper, we consider the situation
where the only thing known about each agent/system is
that the perturbation belongs to the strict negative imaginary
(SNI) class and we seek to address the following question:
How can we design distributed controllers that can robustly
stabilize the uncertain closed loop networked multi-agent
system in the presence of SNI uncertainties of certain DC
size, and achieve robustness to variations in the network
topology? The results in [15]–[18] address the case where
a system’s perturbation is SNI. The results showed that if
a controller is designed such that the closed loop system is
negative imaginary, then the robust feedback stability result
in [10]–[13] can be applied to guarantee robustness to this
class of uncertainties. The aforementioned papers deal with
individual systems. In particular, [16] proposed a systematic
robust static state feedback synthesis method for (single)
systems with SNI uncertainty in an LMI framework. In this
paper we address such issue for networked systems. We
consider the case in which the uncertain agents are connected
over a network topology that can be modelled by an undi-
rected graph with self-loops. Furthermore, the information
available for each agent is relative state measurements and
only a subset of agents can additionally have access to
their own absolute state measurements. The paper presents
sufficient conditions in an LMI framework that ensure the
existence of a control protocol that achieves the desired
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objectives. An algorithm for control protocol design is also
provided. This study is inspired by the work in [6].

The paper is further organized as follows: The notations
used in this paper and some preliminaries on negative imag-
inary systems and graph theory are presented in Section II.
A description of the problem is stated in Section III. The
problem is also addressed in this section where the main
results of this paper are provided. A numerical example to
support the results is provided in Section IV. The paper is
then concluded in Section V.

II. PRELIMINARIES

A. Notation

Let Rm×n andRm×n denote the set of m×n real matrices
and real, rational, proper transfer function matrices respec-
tively. Given a matrix A, AT and A∗ denote the transpose and
the complex conjugate transpose of A respectively. λi(A)
and λmax(A) denote the ith and the largest eigenvalue (when
the matrix has only real eigenvalues) of A respectively. <[·]
is the real part of a complex number. IN denotes the identity
matrix of dimension N . A⊗B denotes the Kronecker product
of matrices A and B. diag(A1, . . . , AN ) represents a block-
diagonal matrix with matrices Ai for i = 1, . . . , N on the
main diagonal. For a real symmetric matrix X , the notation
X > 0 (X ≥ 0) means that matrix X is positive definite
(positive semidefinite).

B. Negative Imaginary Systems

Negative imaginary systems are defined as follows.
Definition 1 ( [11]): A square real, rational, proper trans-

fer function matrix R(s) is termed negative imaginary if
1) R(s) has no poles at the origin and in <[s] > 0;
2) j[R(jω) − R∗(jω)] ≥ 0 for all ω ∈ (0,∞) except

values of ω where jω is a pole of R(s);
3) if jω0 with ω0 ∈ (0,∞) is a pole of R(s), then it is a

simple pole and the residue matrix K0 , lims→jω0
(s−

jω0)jR(s) is Hermitian and positive semidefinite.
Note that the aforementioned definition, which we use in
this paper, is for NI systems without poles at the origin. A
definition for NI systems which includes poles at the origin
is given in [12].
Strict negative imaginary systems are defined as follows.

Definition 2 ( [10]): A square real, rational, proper trans-
fer function matrix R(s) is termed strictly negative imaginary
if

1) R(s) has no poles in <[s] ≥ 0;
2) j[R(jω)−R∗(jω)] > 0 for ω ∈ (0,∞).

The following lemma is used to check whether a system
belongs to the class of NI or not.

Lemma 1 ( [16]): Let (A,B,C,D) be a state space real-
ization of R(s) ∈ Rm×m where A ∈ Rn×n, B ∈ Rn×m, C
∈ Rm×n, D ∈ Rm×m with m ≤ n. If det(A) 6= 0, D = DT

and there exists a real matrix Y = Y T > 0 such that

AY + Y AT ≤ 0 and B +AY CT = 0, (1)

then R(s) is negative imaginary.

The following lemma characterises robust stability for NI
systems. The result we use here is not the main theorem (see
[10, Th. 5] or [11, Th. 1] for the main feedback stability
theorem) as stated in the literature but a corollary to the
principal theorem stated in the same form as the small gain
theorem in order to suit our purpose. This was first proposed
in [10] for stable NI systems and later shown to be also valid
for marginally stable NI systems in [11].

Lemma 2 ( [10], [11]): Given γ > 0 and a negative
imaginary transfer function matrix R(s). Then the positive
feedback interconnection [∆(s), R(s)] is internally stable for
all strict negative imaginary transfer function matrices ∆(s)
satisfying ∆(∞)R(∞) = 0, ∆(∞) ≥ 0 and λmax (∆(0)) <
(1/γ) (respectively, ≤ (1/γ)) if and only if λmax (R(0)) ≤ γ
(respectively, < γ).

C. Graph theory

In this paper we focus our attention on undirected graphs.
An undirected graph G = (V, E) consists of a non-empty
finite vertex set V = {v1, v2, . . . , vN} and an edge set E ⊂
V ×V of unordered pairs of vertices, called edges. An edge
in G is denoted by (vi, vj). If (vi, vj) ∈ E , then vertices (i.e.,
agents) vi and vj are adjacent (or neighbours) and can obtain
information from each other. The set of neighbours of vertex
vi is defined as Ni = {vj ∈ V : (vj , vi) ∈ E}. An edge
(vi, vi) is called a self-loop. A graph is said to be simple if it
contains no self-loops and no repeated edges. A loop around
vertex vi means that agent vi has access to its own absolute
measurements. A path in a graph from vi to vj is a sequence
of edges of the form (vi, vi+1), (vi+1, vi+2), . . . , (vj−1, vj).
An undirected graph is connected if there is an undirected
path between every pair of distinct vertices. The adjacency
matrix A = [aij ] ∈ RN×N of G is defined as aij = aji = 1
if (vi, vj) ∈ E , 0 otherwise and aii = 1 if vi has a self
loop, 0 otherwise. Note that for a simple graph aii = 0 for
i = 1, . . . , N . The Laplacian matrix L = [lij ] ∈ RN×N of G
is defined as lij = −aij , for i 6= j and lii =

∑N
k=1 aik for

i = 1, . . . , N . Based on the adjacency matrix, this definition
can fit for both simple graphs and for graphs with self-loops.
The notation L̂ will hereafter be used to indicate the Lapla-
cian matrix associated with a graph with self-loops.

Lemma 3 ( [6]): For a graph with at least one self-loop,
the Laplacian matrix L̂ is positive definite, if the graph is
connected.

III. MAIN RESULTS

A. Problem Statement

Consider a network of N linear uncertain agents. The
dynamics of the ith agent are described by

ẋi(t) = Axi(t) +B1wi(t) +B2ui(t),

zi(t) = C1xi(t),

ŵi(s) = ∆i(s)ẑi(s),

(2)

where xi(t) ∈ Rn, wi(t) ∈ Rm, ui(t) ∈ Rp, and zi(t) ∈ Rm
are the state, disturbance, control input and controlled output
of the ith agent, respectively with m ≤ n. The matrices
A ∈ Rn×n, B1 ∈ Rn×m, B2 ∈ Rn×p, C1 ∈ Rm×n are



known constant matrices. The transfer function matrix ∆i(s)
represents the uncertainty in the dynamics of the ith agent
where ŵi(s) and ẑi(s) are the Laplace transform of wi(t)
and zi(t) respectively. The following assumption is made
about the uncertainty in the agents dynamics.

Assumption 1: For all i ∈ {1, . . . , N}, the uncertainty
∆i(s) is strict negative imaginary and satisfies ∆i(∞) ≥ 0
and λmax(∆i(0)) ≤ (1/γ), where γ > 0 is a pre-specified
number.

Following [6], the control protocol for the ith agent is

ui(t) = cK

 N∑
j=1

aij(xi(t)− xj(t)) + aiixi(t)

 , (3)

where c > 0 is the coupling strength to be selected, K ∈
Rp×n is the control feedback gain matrix to be designed and
aij are the elements of the adjacency matrix with aii = 1
∀i ∈ {1, . . . , q}, and aii = 0 ∀i ∈ {q + 1, . . . , N} and
(q � N).
The interpretation of protocol (3) is that each agent can
collect relative state measurements with respect to its neigh-
bours. In addition, a subset of agents can collect their own
absolute state measurements. It is assumed, without any loss
of generality, that the subset of the agents which can collect
their own absolute state measurements are the first q agents
with (q � N). Therefore, in terms of the network graph
which models the interaction among the agents the following
assumption can be made.

Assumption 2: The graph G is connected, undirected and
at least one vertex has a self-loop.

Dropping time dependency and Laplace variable depen-
dency where it is clear from the context, it is clear that agent
dynamics (2) can be rewritten as

ẋ = (IN ⊗A)x+ (IN ⊗B1)w + (IN ⊗B2)u,

z = (IN ⊗ C1)x,

ŵ = ∆(s)ẑ,

(4)

and control protocol (3) can be rewritten as

u = (cL̂ ⊗K)x, (5)

where x =
[
xT1 , . . . , x

T
N

]T ∈ RnN , w =
[
wT1 , . . . , w

T
N

]T ∈
RmN , u =

[
uT1 , . . . , u

T
N

]T ∈ RpN , z =
[
zT1 , . . . , z

T
N

]T ∈
RmN , ∆(s) = diag(∆1(s), . . . ,∆N (s)), ŵ is the Laplace
of w, ẑ is the Laplace of z and L̂ ∈ RN×N is the
Laplacian matrix associated with G. The uncertain closed
loop networked multi-agent system resulting from applying
control protocol (5) (or equivalently (3) to each agent i in
(2)) to the uncertain agents (4) is given by

ẋ =
(

(IN ⊗A) + (cL̂ ⊗B2K)
)
x+ (IN ⊗B1)w,

z = (IN ⊗ C1)x,
(6)

and
ŵ = ∆(s)ẑ. (7)

Observe that ∆(s) is SNI since each ∆i(s), i ∈ {1, . . . , N}
is SNI and satisfies ∆(∞) ≥ 0. Moreover, λmax(∆(0)) ≤

Generalised
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z w

x u

∆(s)
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Fig. 1. Networked multi-agent system with SNI uncertainty.

1/γ since λmax(∆(0)) = max
i=1,...,N

λmax(∆i(0)) ≤ 1/γ.

The transfer function matrix of the nominal closed loop
networked multi-agent system from w to z is strictly proper
and given by

Gcl(s) = Ccl(sInN −Acl)−1Bcl, (8)

where Acl = (IN ⊗ A) + (cL̂ ⊗ B2K), Bcl = (IN ⊗ B1),
Ccl = (IN ⊗ C1) and has an associated DC gain of

λmax(Gcl(0)) = λmax(Ccl(−Acl)−1Bcl). (9)

The uncertain networked multi-agent system is depicted
in Fig. 1. Note that since each system in the network is
modelled with a heterogeneous uncertainty, the networked
system is considered heterogeneous from this perspective.

In this paper we are concerned with the the distributed
robust stabilization problem. According to Lemma 2, this
problem can be stated as follows.

Definition 3: Given γ > 0, control protocol (3) is said
to robustly stabilize the networked system with agent dy-
namics (2) against any strict negative imaginary uncertainty
satisfying Assumption 1 if it is designed such that the transfer
function matrix (8) is negative imaginary and satisfies the DC
gain condition λmax(Gcl(0)) < γ.

B. Problem reduction and robust protocol design

To address the distributed robust stabilization problem for
a class of networked systems with SNI uncertainties, we take
the following steps:

1) Problem reduction: The large scale networked system
is first analysed. Under Assumption 2 of the network graph,
Theorem 1 below states that analysis of the transfer function
matrix Gcl(s) is equivalent to analysis of multiple reduced
order subsystems each having the order of a single system.

Theorem 1: Given γ > 0 and assume that that the network
topology G satisfies Assumption 2. Let L̂ be the Laplacian
matrix of G and let λi for all i ∈ {1, . . . , N} be the
eigenvalues of L̂. Then, the transfer function matrix (8) of
the networked system (6) is negative imaginary and satisfies
λmax(Gcl(0)) < γ if and only if for all i ∈ {1, . . . , N},
the transfer functions G̃i(s) of the following N isolated
subsystems

x̃i = (A+ cλiB2K)x̃i +B1w̃i,

z̃i = C1x̃i,
(10)



are all negative imaginary and satisfy λmax(G̃i(0)) < γ
simultaneously, where G̃i(s) = C1(sI−A−cλiB2K)−1B1.

Proof: The proof will be published elsewhere.
This means that the NI property of the networked system is
not affected due to transformation. Therefore, it is adequate
to find a positive scalar c and a gain matrix K such that
systems (10) satisfy the NI property simultaneously for
networked dynamical system (6) to satisfy the NI property.
The basis of Theorem 2, which is stated next, is based on
Theorem 1.

2) Robust protocol design: Based on the reduced order
subsystems, sufficient conditions are provided in Theorem 2
which ensure the existence of a positive scalar c and a gain
matrix K such that a control protocol in the form of (3) is
able to maintain stability of the networked system in face of
uncertainties which belong to the SNI class.

Theorem 2: Given γ > 0, a network topology that satis-
fies Assumption 2 and an uncertain multi-agent system (2)
with C1B2 = 0, m ≤ n and (A,B2) controllable. If there
exists a matrix Y = Y T > 0 and a scalar τ > 0 such that[

AY + Y AT − τB2B
T
2 B1 +AY CT1

BT1 + C1Y A
T 0

]
≤ 0, (11)

C1Y C
T
1 < γI, (12)

det(AY − 1

2
τB2B

T
2 ) 6= 0, (13)

then there exists a feedback gain matrix K and a scalar
c ≥ τ

min
i∈{1,...,N}

λi
such that control protocol (3) robustly

stabilizes the networked multi-agent system in the presence
of any strict negative imaginary uncertainty satisfying As-
sumption 1. Moreover, a suitable feedback gain matrix K is
given by K = −0.5BT2 Y

−1.
Proof: The proof will be published elsewhere.

While the determinant condition is non-convex, and ap-
pears due to the NI property excluding poles at the origin,
it is not troublesome. This is because a feasible solution
for Y and τ can always be obtained first by solving the
LMI conditions and then checking whether the computed
values satisfy the determinant condition or not. If they do
not, then a small increase in τ often resolves the problem.
Therefore, we can summarize the steps needed to design
control protocol (3) in the following algorithm:

1) Solve the LMI conditions (11)–(12) for Y > 0 and
τ > 0. Then, check whether the determinant condition
(13) is satisfied or not. If not, perturb τ and/or Y to
satisfy all of (11)–(13).

2) Let the feedback gain matrix K = −0.5BT2 Y
−1.

3) Select the coupling strength c not less than the thresh-
old value cth = τ

min
i=1,...,N

λi
, where λi ∀i ∈ {1, . . . , N}

are the eigenvalues of L̂.
Remark 1: The reason for control protocol (3) to have

two design parameters is simply to avoid construction of
a different feedback gain matrix K for different network
topologies and thereby leaving the effect of the network
topology to be handled by the positive scalar c. Thus, by
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Fig. 2. Six different network topologies.

appropriately selecting the positive scalar c robust stability
in the agents dynamics and robustness to variations in the
network topology can be guaranteed.

IV. NUMERICAL EXAMPLE

Consider a group of N = 4 uncertain agents where the
dynamics of each agent are

A =

[
−0.4 −0.9
0.2 −0.8

]
, B1 =

[
1

0.5

]
, B2 =

[
1
0

]
,

C1 =
[
0 1

]
.

We can easily see that C1B2 = 0, m ≤ n and (A,B2) is
controllable. Now choose γ = 1. We follow the steps of
the algorithm in the preceding section to design the control
protocol parameters. Using the YALMIP [24] and SeDuMi
[25] toolboxes, we solve the LMI conditions (11) and (12).
A feasible solution is given by

Y =

[
2.0816 0.7

0.7 0.8

]
> 0, τ = 1.1307. (14)



For the values of Y and τ as given in (14), condition (13)
is satisfied; i.e. det(AY − 1

2τB2B
T
2 ) = 0.8703 6= 0.

Consequently, the feedback gain matrix K is given by

K = −0.5BT2 Y
−1 =

[
−0.3403 0.2978

]
.

Now consider the six different network topologies in Fig. 2.
We select c = 15. Accordingly, it is guaranteed by Theo-
rem 2 that control protocol (3) with the designed values of c
and K achieves robust stability for all six networked systems
(i.e. agents may be connected over any of the six network
topologies in Fig. 2) in the presence of SNI uncertainties
with DC gains less than or equal to unity since c = 15 is
greater than the threshold value cth corresponding to each
of the network graphs in Fig. 2. These values are 5.4176,
6.0662, 6.0662, 9.3745, 8.1233, 5.4176 which correspond
to the network graphs of Fig. 2a to Fig. 2f respectively.

We can easily demonstrate that for some specific uncer-
tainties the conclusion holds. We do so only for the network
topology in Fig. 2a as the conclusion can be demonstrated
for the remaining network graphs in a similar manner. For
instance, choose ∆1(s) = 0.5/(s + 1), ∆2(s) = 1/(s + 3),
∆3(s) = (1 − s)/(1 + s), ∆4(s) = 1/(s + 1)2 which are
SNI. ∆(s) in Fig. 1 has λmax(∆(0)) = 1 ≤ 1/γ. The
poles of Gcl(I−∆Gcl)

−1 are −0.06, −0.062, −0.28, −0.45,
−1.4, −1.8 ± j0.11, −1.3 ± j0.71 −3.2, −21, −21, and
−25. Since all closed-loop poles are in the left half plane,
we conclude that the heterogeneous perturbed closed loop
system of Fig. 1 is internally stable.

V. CONCLUSION

In this paper we showed how to design distributed con-
trollers that can robustly stabilize the uncertain closed loop
networked multi-agent system in the presence of strict neg-
ative imaginary uncertainties of certain DC size, and also
achieve robustness to variations in the network topology. The
problem under consideration was addressed by first analysing
the large scale networked system where it was shown that the
NI property of the networked system remains unchanged due
to transformation under certain assumptions on the network
graph. Consequently, sufficient conditions were provided
which ensure the existence of a control protocol that satisfies
the desired objectives. A numerical example was finally
given to demonstrate the results.
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