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Abstract— Characterisations of “mixed” systems are pre-
sented in a discrete-time setting. First, a feedback stability result
based on the Nyquist stability theorem is presented. Second,
an eigenvalue-based characterisation of “mixed” systems based
on their state-space data is derived. The results are analogous
to previous results presented for the continuous-time case
and provide a foundation for further study concerning the
discretisation of “mixed” systems.

I. INTRODUCTION

The passivity theorem [1], [2] is a well-established stabil-

ity result for engineering systems, used in a wide range of

application areas such as circuit network theory [3], signal

processing systems [4], mechanical networks [5] and robotics

[6], [7]. The result guarantees the stability of a feedback

interconnection of two stable systems if, for instance, both

of the systems are passive, and one of the systems is

input strictly passive with finite gain [8]. Passivity has an

energy-based interpretation: passive systems are systems that

consume, but do not produce, energy (eg: [2]). Related

to passivity include the notions of positivity [1] and strict

positive realness (SPRness) [2].

Problems can arise from using purely traditional passivity-

based techniques for real-world applications. For example,

unmodelled dynamics can destroy assumed or nominal pas-

sivity over certain frequency bandwidths [9], [10]; and meet-

ing passivity criteria can conflict with system performance

requirements [11]. The concept of finite frequency positive

realness (ie: positive realness only over a certain frequency

band) [12] or “restricted passivity” [13] thus provides engi-

neers with a tool for potentially dealing with a number of

these issues.
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Building on the idea of finite frequency positive real-

ness, “mixed” systems were introduced in [14]–[17] as

systems that combine notions of passivity and small gain

type behaviour in a certain manner, eg: a “mixed” system

has small gain behaviours over frequency bands where

positivity is violated. “Mixed” systems were intended to

aid in the formalisation and extension of the well-known

engineering notion that keeping feedback-loop gain small at

high frequencies where passivity might be violated avoids

destabilisation of high frequency dynamics; see also [18],

[19]. The stability of large-scale interconnections of “mixed”

systems was considered in [17], and an eigenvalue-based

characterisation for “mixed” systems in continuous-time was

presented in [16].

While the study of systems with finite frequency positive

realness (eg: “mixed” systems [16], [17]; see also [20], [21])

has seen much progress over the past number of years, many

basic questions remain. For instance, engineers rarely work

with continuous-time systems exclusively. For simulation

purposes, or for the purpose of control design, or in order

to implement a controller, at some stage a discrete-time

representation of the system must be considered. Thus, it

is critical to establish whether discrete-time systems inherit

fundamental properties of the continuous-time systems from

which they are derived. System discretisation has currently

become an issue of importance once again, and several

papers [22]–[27] have recently appeared on this topic, par-

ticularly in the switched systems community. The purpose

of this paper is to lay the foundation for future studies

concerning the discretisation of “mixed” systems by fully

characterising “mixed” systems in the discrete-time setting.

In Section II of the paper, “mixed” systems in discrete-time

are defined. In Section III, a feedback stability result based

on the Nyquist stability theorem is presented. An eigenvalue-

based characterisation of “mixed” systems based on their

state-space description is derived in Section IV. Directions

for future research are presented in Section V.

II. MATHEMATICAL PRELIMINARIES

Before presenting the main results of the paper, some

mathematical preliminaries are first established.

A. Notation

Let ℜ[·] and ρ(·) denote the real part of a complex

number and the spectral radius of a matrix, respectively. The

conjugate of a complex number z = re jθ , where r is the
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magnitude of z, θ is the phase of z and j2 = −1, will be

denoted by z̄.

B. Definitions

The following definitions are required.

Definition 1: [28, Section 10.1.3] A discrete-time system

with proper, real-rational transfer function matrix G(z) is said

to be input-output stable if all of the poles of G(z) lie inside

the unit circle on the complex plane.

Suppose that θ := ωT , where T denotes a fixed sampling

interval in seconds, and ω denotes any signal frequency in

rad/s such that θ ∈ [−π ,π ]. Suppose that 0 ≤ ā ≤ b̄ ≤ π ,

where ā and b̄ are in radians.

Definition 2: An input-output stable, discrete-time system

with square, proper, real-rational transfer function matrix

M(z) is said to be input and output strictly positive over

[−b̄,−ā]∪ [ā, b̄] if there exist real numbers k, l > 0 such that

−kM∗(e jθ )M(e jθ )+M∗(e jθ )+M(e jθ )− lI ≥ 0

for all θ ∈ [−b̄,−ā]∪ [ā, b̄].
A system is said to be input strictly positive over

[−b̄,−ā]∪ [ā, b̄] if Definition 2 is satisfied with k = 0; output

strictly positive over [−b̄,−ā] ∪ [ā, b̄] if the definition is

satisfied with l = 0; and positive over [−b̄,−ā]∪ [ā, b̄] if it

is satisfied with k = l = 0.

Definition 3: For an input-output stable, discrete-time sys-

tem with proper, real-rational transfer function matrix M(z),
define the system gain over [−b̄,−ā]∪ [ā, b̄] as

ε := min{ε̄ ∈ R+ : −M∗(e jθ )M(e jθ )+ ε̄2I ≥ 0

for all θ ∈ [−b̄,−ā]∪ [ā, b̄]}.

The system is said to have a gain of less than one over

[−b̄,−ā]∪ [ā, b̄] if ε < 1.

A “mixed” discrete-time system, analogous to the descrip-

tion of a “mixed” continuous-time system provided in [16],

[17], is now defined.

Definition 4: An input-output stable, discrete-time system

with square, proper, real-rational transfer function matrix

M(z) is said to be “mixed” if, for each θ ∈ [−π ,π ], either

of the following hold:

(i) there exist k, l > 0 such that −kM∗(e jθ )M(e jθ ) +
M∗(e jθ )+M(e jθ )− lI ≥ 0;

(ii) there exists ε < 1 such that −M∗(e jθ )M(e jθ )+ε2I ≥ 0.

The following example further illustrates Definition 4.

Example 1: Suppose that

Ac =

[
−3 −2

1 0

]
, Bc =

[
2

0

]
, C =

[
0 1.5

]
, D =−0.2

from which the transfer function

m(s) =
−0.2(s2 + 3s− 13)

(s+ 1)(s+ 2)

is obtained. The Nyquist diagram of m(s) is illustrated in

Fig. 1. From [17, Definition 3], this continuous-time system

is classified as “mixed.”
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Fig. 1. Nyquist diagram of m(s).

Next, consider the zero-order hold discretisation method

described in [29, Chapter 13]; that is, for the nth-order,

continuous-time plant described by

ẋ(t) = Acx(t)+Bcu(t)

y(t) =Cx(t)+Du(t)

its discrete-time model is given by

x[(k+ 1)T ] = Ax(kT )+Bu(kT)

y(kT ) =Cx(kT )+Du(kT)

where

A := eAcT = I +AcT +
A2

cT 2

2!
+

A3
cT 3

3!
+ . . .

B :=

[
IT +

AcT 2

2!
+

A2
cT 3

3!
+ . . .

]
Bc

or B = A−1
c [eAcT − I]Bc = [eAcT − I]A−1

c Bc when Ac is non-

singular.

Using the expm function in MATLAB Version 7.13.0.564

(R2011b) to compute eAcT for a sampling interval of T = 0.2s

gives

eAc0.2 =

[
0.5219 −0.2968

0.1484 0.9671

]
.

Then

A =

[
0.5219 −0.2968

0.1484 0.9671

]
, B =

[
0.2968

0.03286

]

and

m(z) =
−0.2z2 + 0.3471z− 0.06941

z2 − 1.489z+ 0.5488
.

The Nyquist diagram of m(z) is shown in Fig. 2. From the

Nyquist diagram, it is clear that there exists a θ0 =ω0T such

that, over [−θ0,θ0], Property (i) of Definition 4 holds and,

over [−π ,−θ0] and [θ0,π ], Property (ii) of the definition is

satisfied, noting that ℜ[m(e jωT )] = 1
2 [m

∗(e jωT ) +m(e jωT )]
and |m(e jωT )|2 = m∗(e jωT )m(e jωT ). Hence, this discrete-

time model of the continuous-time system, obtained when

T = 0.2s, is “mixed.”
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Fig. 2. Nyquist diagram of m(z) with T = 0.2s.

On the other hand, computing eAcT for a sampling interval

of T = 1s yields

eAc =

[
−0.09721 −0.4651

0.2325 0.6004

]
.

Then

A =

[
−0.09721 −0.4651

0.2325 0.6004

]
, B =

[
0.4651

0.3996

]

and

m(z) =
−0.2z2 + 0.7z+ 0.2105

z2 − 0.5032z+ 0.04979
.

In this case, the Nyquist diagram of m(z) is given in Fig.

3. Note that there exists on the Nyquist diagram a range of

ω from 0.757 rad/s to 0.952 rad/s (and another range from

−0.952 rad/s to −0.757 rad/s) over which neither Property

(i) nor Property (ii) of Definition 4 holds. The discretisa-

tion procedure thus fails on this occasion to preserve the

property of “mixedness.” That is, this discrete-time model of

the continuous-time system, obtained when T = 1s, is not

“mixed.”

C. Preliminary Results

A feedback stability result for “mixed” discrete-time sys-

tems is presented later (in Section III). The proof of the result

is based on classical Nyquist techniques. Hence, a discrete-

time version of the well-known Nyquist stability theorem is

recalled, as follows.

Theorem 1: [30, page 74] [31, Section 3.2] Consider

the feedback-loop depicted in Fig. 4. Suppose that G(z) is

a strictly proper, real-rational transfer function of a stable

discrete-time system. Then the feedback-loop is stable if and

only if the Nyquist plot of 1+G(e jθ ) for −π ≤ θ ≤ π does

not make any encirclements of the origin.

In the above theorem, stability is defined in the sense

of [30, Section 3.7]. Note, also, the following observations

concerning the Nyquist plot of 1+G(e jθ) for −π ≤ θ ≤ π .

Observation 1: The Nyquist plot of 1+G(e jθ ) belongs to

a family of Nyquist plots of 1+ 1
κ G(e jθ ), where κ ∈ [1,∞).
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Fig. 3. Nyquist diagram of m(z) with T = 1s.

G

Fig. 4. A negative feedback-loop.

Observation 2: Each Nyquist plot of 1+ 1
κ G(e jθ ) is sym-

metrical about the real axis of the complex plane, where

κ ∈ [1,∞).1

Observation 3: As κ and θ vary continuously, the point in

the complex plane on which the Nyquist plot of 1+ 1
κ G(e jθ )

lies varies continuously.

Observation 4: As κ → ∞, 1+ 1
κ G(e jθ )→ 1.

Observation 5: Suppose that κ is very large such that

1+ 1
κ G(e jθ ) is almost equal to 1 for all θ ∈ [−π ,π ]. Then

suppose that κ is continuously decreased towards 1. Suppose

that the Nyquist plot of 1+G(e jθ ) encircles the origin at least

once. Then there must exist at least one κ0 and one θ0 for

which 1+ 1
κ0

G(e jθ0) = 0.

The following corollary has thus been established.

Corollary 2: Adopt the hypotheses of Theorem 1. Then

a sufficient condition for the Nyquist plot of 1+G(e jθ) to

make no encirclements of the origin is that, for all κ ∈ [1,∞)
and all θ ∈ [−π ,π ], 1+ 1

κ G(e jθ ) 6= 0.

The next result is also required.

Lemma 3: Let G1(z) and G2(z) be square, proper, real-

rational transfer function matrices with no poles on or

outside of the unit circle in the complex plane. Suppose

that G∗
1(e

jθ0)+G1(e
jθ0)> 0 and G∗

2(e
jθ0)+G2(e

jθ0)≥ 0 for

some θ0 ∈ [−π ,π ]. Then det[I+G1(e
jθ0)G2(e

jθ0)] 6= 0.

1Since 1+ 1
κ G(e− jωT ) = 1+ 1

κ G(e jωT ).
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Proof: Since G∗
1(e

jθ0) + G1(e
jθ0) > 0,

ℜ[λi[G1(e
jθ0)]] > 0 ∀i (where λi[·] denotes the ith

eigenvalue) [32, Theorem 1 of Section 13.1] and so

G1(e
jθ0) is nonsingular. Then G−∗

1 (e jθ0) + G−1
1 (e jθ0) > 0

since G∗
1(e

jθ0) + G1(e
jθ0) and G−1

1 (e jθ0) + G−∗
1 (e jθ0)

are Hermitian congruent [33, page 415]. Then

G−∗
1 (e jθ0) + G∗

2(e
jθ0) + G−1

1 (e jθ0) + G2(e
jθ0) > 0. Hence

ℜ[λi[G
−1
1 (e jθ0) +G2(e

jθ0)]] > 0 ∀i and so det[G−1
1 (e jθ0)+

G2(e
jθ0)] 6= 0. Then det[I + G1(e

jθ0)G2(e
jθ0)] 6= 0 since

det[I + G1(e
jθ0)G2(e

jθ0)] = det[G1(e
jθ0)]det[G−1

1 (e jθ0) +
G2(e

jθ0)] and G1(e
jθ0) is nonsingular.

III. FEEDBACK STABILITY

As demonstrated in Example 1, the assumption that,

upon discretisation, systems retain certain properties, such

as “mixedness” or passivity, is not always a valid one.

This issue with system discretisation is well-known of in

the case of passivity [34]. The following result shows that,

if “mixedness” has been established in discrete-time, then

a feedback stability result holds. (A test for determining

whether a system is “mixed” in discrete-time is the subject

of Section IV.)

Theorem 4 is analogous to the feedback stability result

presented in [17] for “mixed” continuous-time systems. A

simpler version of Theorem 4 was proposed in [35, Propo-

sition 4].

Theorem 4: Suppose that M1(z) and M2(z) denote the

transfer functions of “mixed” discrete-time systems, inter-

connected as depicted in Fig. 5, where one of these transfer

functions is strictly proper. Suppose that there exist two

closed sets of θ : (a) a set denoted by Θp that consists of

θ ∈ [−π ,π ] over which both M1(e
jθ ) and M2(e

jθ ) have

associated with them Property (i) as given in Definition 4;

and (b) a set denoted by Θs that consists of θ ∈ [−π ,π ] over

which both M1(e
jθ ) and M2(e

jθ ) have associated with them

Property (ii) as given in Definition 4. Finally, suppose that

Θp∪Θs = {θ ∈R : −π ≤ θ ≤ π}. Under these assumptions,

the feedback-loop in Fig. 5 is stable.

Proof: The goal is to show that, for all κ ∈ [1,∞)
and all θ ∈ [−π ,π ], 1+ 1

κ M1(e
jθ )M2(e

jθ ) 6= 0. From Corol-

lary 2, this is a sufficient condition for stability of the

feedback-loop. Subsequently, the proof is split into two

parts: first, it is shown that 1+ 1
κ M1(e

jθ )M2(e
jθ ) 6= 0 for

all κ ∈ [1,∞) and all θ ∈ Θs; and second, it is shown that

1+ 1
κ M1(e

jθ )M2(e
jθ ) 6= 0 for all κ ∈ [1,∞) and all θ ∈ Θp.

Part I: for any θ ∈ Θs. From Property (ii) of Definition

4, |Mi(e
jθ )|< 1 for i = 1,2, and hence |M1(e

jθ )M2(e
jθ )|<

1. Then 1
κ |M1(e

jθ )M2(e
jθ )| < 1

κ ≤ 1 for any κ ≥ 1;

M
2

M
1

Fig. 5. A negative feedback interconnection of “mixed” systems.

ie: | 1
κ M1(e

jθ )M2(e
jθ )| < 1 since 1

κ |M1(e
jθ )M2(e

jθ )| =
| 1

κ M1(e
jθ )M2(e

jθ )|. So 1
κ M1(e

jθ )M2(e
jθ ) 6=−1 for any κ ∈

[1,∞).
Part II: for any θ ∈ Θp. From Property (i) of Definition 4,

M∗
i (e

jθ )+Mi(e
jθ )> 0 for i = 1,2. Observe that M∗

i (e
jθ )+

Mi(e
jθ ) > 0 if and only if 1√

κ
M∗

i (e
jθ ) + 1√

κ
Mi(e

jθ ) > 0,

where κ > 0. Then, from Lemma 3, 1+ 1
κ M1(e

jθ )M2(e
jθ ) 6=

0 for any κ > 0, and hence for any κ ≥ 1.

IV. EIGENVALUE-BASED CHARACTERISATION

A procedure for testing whether a discrete-time system

is “mixed” is now provided. Consider an arbitrary, causal,

linear, shift-invariant system, described by the equations

x(k+ 1) = Ax(k)+Bu(k), x(0) = x0,

y(k) =Cx(k)+Du(k),

where x(k)∈R
n, u(k)∈R

m, y(k)∈R
m, A∈R

n×n, B∈R
n×m,

C ∈ R
m×n and D ∈ R

m×m with A stable.2 Furthermore,

suppose that A is nonsingular. Denoting M(z) := C(zI −
A)−1B+D and M∗(z) := [M(z−1)]T gives

M∗(z) =

[
A−T −A−TCT

BT A−T DT −BT A−TCT

]
, (1)

from [36, Section 21.4].3 Let G1(e
jθ ) :=

−kM∗(e jθ )M(e jθ ) + M∗(e jθ ) + M(e jθ ) − lI and

G2(e
jθ ) := −M∗(e jθ )M(e jθ )+ ε2I. Consider the following

two results.

Lemma 5: Suppose that k, l ∈ R and consider G1(e
jθ )

as defined above. Let Y := I − kD and suppose that X1 :=
−kDT D+DT +D− lI and X̃1 := X1 − BT A−TCTY are in-

vertible. For some θ0 ∈ [−π ,π ], the matrix G1(e
jθ0) has a

zero eigenvalue if and only if the simplectic matrix S1 has

an eigenvalue on the unit circle at the point e jθ0 , where

S1 :=

(
E1 +U1E−T

1 V1 −U1E−T
1

−E−T
1 V1 E−T

1

)

and E1 := A−BX−1
1 Y TC, U1 := −BX−1

1 BT , V1 := kCTC +
CTY X−1

1 Y TC.

Proof: Given that
[

(e jθ0 I −A)−1 0

−k(e jθ0 I −A−T )−1A−TCTC(e jθ0 I −A)−1 (e jθ0 I −A−T )−1

]

=

[
e jθ0I −

(
A 0

−kA−TCTC A−T

)]−1

, (2)

note that G1(e
jθ0) = −k[−BT A−T (e jθ0I −A−T )−1A−TCT +

DT − BT A−TCT ][C(e jθ0I − A)−1B + D] − BT A−T (e jθ0 I −
A−T )−1A−TCT + DT − BT A−TCT +C(e jθ0 I − A)−1B + D −
lI = C̄(e jθ0I− Ā)−1B̄+ X̃1, where

Ā :=

(
A 0

−kA−TCTC A−T

)
, B̄ :=

(
B

A−TCTY

)

and

C̄ :=
(
Y TC+ kBT A−TCTC −BT A−T

)
,

2Ie: ρ(A)< 1 [36, Section 21.1].
3The notation on the right-hand side of (1) denotes a state-space realisa-

tion.
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using [37, Lemma 3]. Then, in the manner of [38, Lemma

1],

det(G1(e
jθ0))

= det(C̄(e jθ0I− Ā)−1B̄+ X̃1)

= det(X̃1)det(I + X̃−1
1 C̄(e jθ0I− Ā)−1B̄)

= det(X̃1)det(I +(e jθ0I− Ā)−1B̄X̃−1
1 C̄) (Sylvester’s

Determinant Theorem)

= det(X̃1)det((e jθ0I − Ā)−1)det(e jθ0I − Ā+ B̄X̃−1
1 C̄)

= det(X̃1)det((e jθ0I −A)−1)det((e jθ0I −A−T )−1)

det(e jθ0I− H̃1),

where H̃1 := Ā− B̄X̃−1
1 C̄. Since A is stable, then det(e jθ0I−

A) 6= 0 for any θ0 ∈ R; and e jθ0I − A is invertible and so

det((e jθ0 I − A)−1) 6= 0. Similarly, det((e jθ0I − A−T )−1) 6=
0 noting that (−1)n det(e jθ0I)det(e− jθ0I − A)det(A−1) =
det(e jθ0 I − A−1) = det(e jθ0I − A−T ) from [39, Equation

6.1.4]. Thus, G1(e
jθ0) has a zero eigenvalue if and only if

det(e jθ0 I − H̃1) = 0, ie: H̃1 has an eigenvalue on the unit

circle at the point e jθ0 . Finally, H̃1 = S1 via matrix inversion

identities [36, Section 2.3].

Lemma 6: Suppose that ε ∈R\{0} and consider G2(e
jθ )

as defined at the beginning of the section. Suppose that

−DDT +ε2I, X2 :=−DT D+ε2I and X̃2 := X2+BT A−TCT D

are invertible. For some θ0 ∈ [−π ,π ], the matrix G2(e
jθ0)

has a zero eigenvalue if and only if the simplectic matrix S2

has an eigenvalue on the unit circle at the point e jθ0 , where

S2 :=

(
E2 +U2E−T

2 V2 −U2E−T
2

−E−T
2 V2 E−T

2

)

and E2 := A + BX−1
2 DTC, U2 := −BX−1

2 BT , V2 :=
ε2CT (−DDT + ε2I)−1C.

Proof: Given (2) with k = 1, note that

G2(e
jθ0) = −[−BT A−T (e jθ0I − A−T )−1A−TCT + DT −

BT A−TCT ][C(e jθ0I −A)−1B+D]+ ε2I = C̄(e jθ0I − Ā)−1B̄+
X̃2, where

Ā :=

(
A 0

−A−TCTC A−T

)
, B̄ :=

(
B

−A−TCT D

)

and

C̄ :=
(
−DTC+BT A−TCTC −BT A−T

)
,

from [37, Lemma 3]. Then, in the manner of [38, Lemma

1] and similar to the proof of Lemma 5, det(G2(e
jθ0)) =

det(X̃2)det((e jθ0I − A)−1)det((e jθ0I − A−T )−1)det(e jθ0I −
H̃2), where H̃2 := Ā− B̄X̃−1

2 C̄. The remainder of this proof

follows in the manner of the proof to Lemma 5.

Lemmas 5 and 6 can be utilised for testing whether a

system of the form given at the beginning of the section is

“mixed” in the following manner.

Let G̃1(e
jθ ) denote G1(e

jθ ), where k = l = 0. Similarly,

let G̃2(e
jθ ) denote G2(e

jθ ), where ε = 1. Upon applying

Lemmas 5 and 6 to G̃1(e
jθ ) and G̃2(e

jθ ), respectively, set

Ψp := {θ ∈ [−π ,π ] : S1 has an eigenvalue on the unit circle

at e jθ}

and

Ψs := {θ ∈ [−π ,π ] : S2 has an eigenvalue on the unit circle

at e jθ}.
Remark 1: It has been assumed that the system does not

have a strictly proper transfer function in order to facilitate

the application of Lemma 5 to G̃1(e
jθ ).

Next, divide two intervals of −π to π up into smaller

intervals, where any elements of Ψp and Ψs are set as open

interval endpoints, as follows:

Division Group 1 :=

[−π ,θp1
),(θp1

,θp2
), . . . ,(θpn̄−1

,θpn̄),(θpn̄ ,π ]

Division Group 2 :=

[−π ,θs1
),(θs1

,θs2
), . . . ,(θsm̄−1

,θsm̄),(θsm̄ ,π ]

where n̄ = number of elements in Ψp; m̄ = number of

elements in Ψs; θp1
,θp2

, . . . ,θpn̄ denote the elements of

Ψp listed in increasing order; and θs1
,θs2

, . . . ,θsm̄ denote

the elements of Ψs listed in increasing order. If Ψp is

empty, then n̄ = 0 and Division Group 1 consists of the

single interval [−π ,π ]; similarly, if Ψs is empty, then m̄ =
0 and Division Group 2 consists of the single interval

[−π ,π ]. If θp1
= −π and θpn̄ = π , then Division Group

1 becomes (−π ,θp2
),(θp2

,θp3
), . . . ,(θpn̄−1

,π). Similarly, if

θs1
= −π and θsm̄ = π , then Division Group 2 becomes

(−π ,θs2
),(θs2

,θs3
), . . . ,(θsm̄−1

,π).

Finally, identify the sign definiteness of G̃1(e
jθ ) over each

of the individual intervals in Division Group 1, and the sign

definiteness of G̃2(e
jθ ) over each of the individual intervals

in Division Group 2. Determining the sign definiteness over

any of these intervals can be achieved by checking the sign

definiteness at a single θ from within the interval, eg: at the

interval midpoint. Let I
G̃1

denote the set of θ belonging to

those intervals over which G̃1(e
jθ ) > 0, and I

G̃2
denote the

set of θ belonging to those intervals over which G̃2(e
jθ )> 0.

Then, implement the following result.

Theorem 7: The following two statements are equivalent.

(a) A discrete-time system, as described at the beginning

of the section, is “mixed.”

(b) I
G̃1

∪ I
G̃2

= {θ ∈ R : −π ≤ θ ≤ π}
Sketch of Proof: Recall, from Definition 4, that an input-

output stable, discrete-time system with square, proper, real-

rational transfer function matrix M(z) is “mixed” if, for each

θ ∈ [−π ,π ], Property (i) and/or Property (ii) hold. For θ
continuously varying over some small interval, over which

a “mixed” system is alternating between exhibiting only

Property (i) and only Property (ii), there exists at least one

common θ in that range at which both Property (i) and

Property (ii) hold due to continuity. In general, over intervals

with open endpoints, the existence of k, l > 0 such that

−kM∗(e jθ )M(e jθ )+M∗(e jθ )+M(e jθ )− lI ≥ 0 implies that

M∗(e jθ )+M(e jθ )> 0, and the existence of ε < 1 such that

−M∗(e jθ )M(e jθ )+ ε2I ≥ 0 implies that −M∗(e jθ )M(e jθ )+
I > 0; while the converse (ie: M∗(e jθ )+M(e jθ )> 0 implying

the existence of k, l > 0 such that −kM∗(e jθ )M(e jθ ) +
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M∗(e jθ ) + M(e jθ )− lI ≥ 0, and −M∗(e jθ )M(e jθ ) + I > 0

implying the existence of ε < 1 such that −M∗(e jθ )M(e jθ )+
ε2I ≥ 0) is not necessarily true. However, any overlap of open

intervals from Division Group 1 and Division Group 2 such

that I
G̃1

∪ I
G̃2

= {θ ∈R : −π ≤ θ ≤ π} implies the existence

of common θ at which both G̃1(e
jθ ) > 0 and G̃2(e

jθ )> 0,

and these common θ can be taken as closed endpoints of

subintervals existing within the open intervals over which

G̃1(e
jθ ) > 0 or G̃2(e

jθ ) > 0. For closed interval endpoints,

the implication directions concerning the matrix inequalities

go both ways, and hence the equivalence in the theorem

statement holds. �

V. CONCLUSIONS

In this paper, “mixed” systems were characterised in a

discrete-time setting. The purpose of doing so was to provide

a foundation for future studies concerning discretisation pro-

cedures that preserve “mixedness.” A discussion on systems

with strictly proper transfer functions in relation to Section

IV will also follow at a later date.
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