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Abstract— Recent results in equivalence between classes of
multipliers for slope-restricted nonlinearities are extended to
multipliers for bounded and monotone nonlinearities. This
extension requires a slightly modified version of the Zames–Falb
theorem and a more general definition of phase–substitution.
The results in this paper resolve apparent contradictions in the
literature on classes of multipliers for bounded and monotone
nonlinearities.

I. INTRODUCTION

Different classes of multipliers can be used for analysing
the stability of a Lur’e system (see Fig. 1) where the non-
linearity is bounded and monotone. A loop transformation
allows us to analyse slope–restricted nonlinearities with the
same classes of multipliers [1]. Apparently contradictory
results can be found in the literature with respect to which
class provides better results. On the one hand, it is stated that
a complete search over the class of Zames–Falb multipliers
will provide the best result that can be achieved [2], [3].
On the other hand, searches over a subclass of Zames–Falb
multipliers [4], [5] have been improved by adding a Popov
multiplier [6], [7], [8].
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Fig. 1. Lur’e system.

The class of Zames–Falb multipliers is formally given in
the celebrated paper [1]. Two main result are given: Theo-
rem 1 in [1] presents the Zames–Falb multipliers for bounded
and monotone nonlinearities; Corollary 2 in [1] applies
the Zames–Falb multipliers to slope–restricted nonlinearities
via a loop transformation. We have formally shown in [9]
that the class of Zames–Falb multipliers for slope-restricted
nonlinearities, i.e. using Corollary 2 in [1], is the widest class
of multipliers available in the literature. The result relies on
the fact that only biproper plants need to be considered in the
search for a Zames–Falb multiplier, since the original plant
becomes biproper after the loop transformation in Fig. 2 [1],
[10].
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Fig. 2. Loop shifting transforms a slope restricted nonlinearity φ into
a monotone nonlinearity φ̂ . Simultaneously, a new linear system Ĝ is
generated. In [9], we have shown that when generated via loopshifting Ĝ
can be assumed biproper without loss of generality from the necessity of
the Kalman conjecture (for further discussion, see Section 2.3 in [9]), but
such assumption cannot be made in the general case.

Nevertheless, for bounded and monotone nonlinearities,
biproperness of the LTI system G cannot be assumed without
loss of generality. However, the conditions of Theorem 1
in [1] cannot hold when plant is strictly proper. An example
has been proposed in [11] where the addition of a Popov
multiplier to the Zames–Falb multiplier is essential to guar-
antee the stability of the Lur’e system. This prompts the
natural question: is the addition of a Popov multiplier an
improvement over the class of Zames–Falb multiplier for
bounded and monotone nonlinearities? In fact, we show that
this restriction of the conditions of Theorem 1 in [1] leads
to more fundamental contradictions.

This paper propose a slightly modified version of The-
orem 1 in [1] in such a way that strictly proper plants
can be analysed. Then, generalizations of phase-substitution
and phase-containment defined in [9] are given in order to
show the relationship between classes of multipliers. As a
result, we show that the class of Zames–Falb multipliers
also remains the widest class of multiplier available for
bounded and monotone nonlinearities. This paper resolves
the apparent paradoxes, providing consistency to results in
the literature.

The structure of the paper is as follows. Section II gives
preliminary results; in particular, the equivalence results
in [9] are stated and the differences between the cases of
slope-restricted and bounded and monotone nonlinearities are
highlighted. Section III provides the relationships between
classes for the case of bounded and monotone nonlinearities.
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Section IV analyses the example given in [11], showing
that there exists a Zames–Falb multiplier that provides the
stability result under our modification of Theorem 1 in [1].
Finally, the conclusions of this paper are given in Section V.
Due to space limitations, proofs are not included.

II. NOTATION AND PRELIMINARY RESULTS

Let L m
2 [0,∞) be the Hilbert space of all square integrable

and Lebesgue measurable functions f : [0,∞)→ Rm. Sim-
ilarly, L m

2 (−∞,∞) can be defined for f : (−∞,∞)→ Rm.
A truncation of the function f at T is given by fT (t) =
f (t) ∀t ≤ T and fT (t) = 0 ∀t > T . The function f belongs to
the extended space L m

2e[0,∞) if fT ∈L m
2 [0,∞) for all T > 0.

In addition, L1(−∞,∞) (henceforth L1) is the space of all
absolute integrable functions; given a function h : R→ R

such that h ∈L1, its L1-norm is given by

‖h‖1 =
∫

∞

−∞

|h(t)|dt. (1)

A nonlinearity φ : L2e[0,∞) → L2e[0,∞) is said to be
memoryless if there exists N :R→R such (φv)(t) =N(v(t))
for all t ∈ R. Henceforward we assume that N(0) = 0. A
memoryless nonlinearity φ is said to be bounded if there
exists a positive constant C such that |N(x)| < C|x| for all
x ∈R. The nonlinearity φ is said to be monotone if for any
two real numbers x1 and x2 we have

0≤ N(x1)−N(x2)

x1− x2
. (2)

The nonlinearity φ is said to be odd if N(x) =−N(−x) for
all x ∈R.

This paper focuses the stability of the feedback intercon-
nection of a proper stable LTI system G and a bounded and
monotone nonlinearity φ , represented in Fig. 1 and given by{

v = f +Gw,
w =−φv.

(3)

Since G is a stable LTI system, the exogenous input in this
part of the loop can be taken as the zero signal without
loss of generality. It is well–posed if the map (v,w) 7→ (0, f )
has a causal inverse on L 2

2e[0,∞); this interconnection is
L2-stable if for any f ∈L2[0,∞), then Gw ∈L2[0,∞) and
φkv∈L2[0,∞), and it is absolutely stable if it is L2-stable for
all φk within the class of nonlinearities. In addition, G( jω)
means the transfer function of the LTI system G. Finally,
given an operator M, then M∗ means its L2-adjoint (see [12]
for a definition). For LTI systems, M∗(s)=M>(−s), where >

means transpose.
The standard notation L∞ (RL∞) is used for the space of

all (proper real rational) transfer functions bounded on the
imaginary axis and infinity; RH∞ (RH2 ) is used for the
space of all (strictly) proper real rational transfer functions
such that all their poles have strictly negative real parts; and
RH−∞ is used for the space of all proper real rational transfer
functions such that all their poles have strictly positive real
parts. The H∞-norm of a SISO transfer function G is defined
as

‖G‖∞ = sup
ω∈R

(|G( jω)|). (4)

With some acceptable abuse of notation, given a rational
strictly proper transfer function H(s) bounded on the imagi-
nary axis, ‖H‖1 means the L1-norm of the impulse response
of H(s).

A. Zames–Falb theorem and multipliers

The original Theorem 1 in [1] can be stated as follows:
Theorem 2.1 ([1]): Consider the feedback system in

Fig. 1 with G ∈ RH∞, and a bounded and monotone
nonlinearity φ . Assume that the feedback interconnection
is well-posed. Then suppose that there exists a noncausal
convolution operator M : L2(−∞,∞)→ L2(−∞,∞) whose
impulse response is of the form

m(t) = δ (t)−
∞

∑
i=0

ziδ (t− ti)− za(t), (5)

where δ is the Dirac delta function and
∞

∑
i=0
|zi|< ∞, za ∈L1, and ti ∈R ∀i ∈N. (6)

Assume that:
(i)

‖za‖1 +
∞

∑
i=0
|zi|< 1, (7)

(ii) either φk−ε is odd or za(t)> 0 for all t ∈R and zi > 0
for all i ∈N, and

(iii) there exists δ > 0 such that

Re{M( jω)G( jω)} ≥ δ ∀ω ∈R. (8)

Then the feedback interconnection (3) is L2-stable. �
Equations (5), (6) and (7) in Theorem 2.1 provide the

class of Zames–Falb multipliers. It is a subset of L∞, i.e.
it is not limited to rational transfer functions. However, for
the remainder of this paper we restrict our attention to such
rational multipliers, i.e. we set zi = 0 for all i ∈N.

Definition 2.2: The class of SISO rational Zames–Falb
multipliers M contains all SISO rational transfer functions
M ∈RL∞ such that M(s) = 1−Z(s), where Z(s) is a rational
strictly proper transfer function and ‖Z‖1 < 1.

Lemma 2.3 ([5]): Let M ∈ RL∞ be a rational transfer
function with M(s) = M(∞)+ M̂(s), where M̂(s) denotes its
associated strictly proper transfer function. Then, M(s) is a
Zames–Falb multiplier if and only if ‖M̂‖1 < M(∞). �

If M ∈ RH∞, the multiplier is said to be causal. If M ∈
RH−∞ , the multiplier is said to be anticausal. Otherwise, the
multiplier is noncausal (see [8] for further details).

B. List of classes of multipliers for monotone and bounded
nonlinearities

The first class of multipliers for bounded nonlinearities is
the class of Popov multipliers:

Definition 2.4: The class of Popov multipliers is given by

MP(s) = 1+qs, where q ∈R. (9)
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Following [11], [6], two extension of the class of Zames–
Falb multipliers by combination with the Popov multipliers
have been proposed:

Definition 2.5: The class of Popov-extended Zames–Falb
multipliers is given by

MPZF(s) = qs+M(s) (10)

where q∈R and where M(s) belongs to the class of Zames–
Falb multipliers.

Definition 2.6: The class of Popov plus Zames–Falb mul-
tipliers is given by

MP+ZF(s) = ϑ(1+qs)+M(s) (11)

where q ∈ R, where ϑ > 0 and where M(s) belongs to the
class of Zames–Falb multipliers.

Another important class of multipliers is generated by
including both a Popov multiplier and a quadratic term. It
was given originally by Yakubovich [13], and an LMI search
over this set has been proposed in [14]:

Definition 2.7: The class of Park’s multipliers is given by

MPark(s) = 1+
bs

−s2 +a2 . (12)

where a and b are real numbers.
Following [15], an extension of the class of Zames–Falb

multipliers with this quadratic term can be proposed:
Definition 2.8: The class of Yakubovich–Zames–Falb

multipliers is given by

MYZF(s) =−κ
2s2 +M(s), κ ∈R, (13)

where κ ∈R and M(s) is a Zames–Falb multiplier.

C. Previous equivalence results

In [9], Theorem 1 in [1] is considered but restricted to
a particular set of biproper plants Ĝ(s), as a result of a
previous loop transformation (See Fig. 2). Under such a
restriction, Zames–Falb multipliers are the widest available
class of multiplier in the literature.

Definition 2.9: The subset S R ⊂ RH∞ is defined as
follows

S R = {G ∈ RH∞ : G−1 ∈ RH∞ and G(∞)> 0}. (14)
This characterization of S R plays a key role to show

that Popov multipliers are “limiting cases” of Zames–Falb
multipliers and is also essential for the extension using
the Popov multipliers. With this aim, some definitions are
mathematically formalised in [9]. For instance, a definition
of phase-substitution is proposed with respect to S R:

Definition 2.10 ([9]): Let Ma and Mb be two multipliers
and G ∈S R. The multiplier M is a phase-substitute of the
multiplier Ma when

Re{Ma( jω)G( jω)} ≥ δ1 ∀ω ∈R (15)

for some δ1 > 0 implies

Re{Mb( jω)G( jω)} ≥ δ2 ∀ω ∈R (16)

for some δ2 > 0.

Using Definition 2.10 for phase-substitution, the relation-
ship between two classes can be given as follows:

Definition 2.11 ([9]): Let MA and MB be two classes of
multipliers. The class MA is phase-contained within the class
MB if given a multiplier Ma ∈MA, then there exists Mb ∈
MB such that it is a phase-substitute of Ma.

Result 2.12 ([9]): Under the assumption G(s)∈S R, the
classes of multipliers given in Section II-B are phase-
contained within the class of Zames–Falb multipliers. �

In this paper, we focus on extending Result 2.12 to
monotone and bounded nonlinearities. With this aim, strictly
proper plants must be included in the set of interest. Then
Result 2.12 is no longer valid in general since Popov
multipliers are only phase-contained under Definition 2.11
within the class of Zames–Falb multipliers if G ∈S R.

All constant gains K are included in the class of bounded
and monotone nonlinearities. Trivially, a necessary condition
for absolute stability is that the feedback interconnection of
G and a constant gain K must be L2-stable for any value
of K. Thus if G is biproper, then G must belong to S R as
commented in [9] and Result 2.12 can be applied. Therefore
we can restrict out attention to strictly proper plants without
loss of generality. Further, we only consider strictly proper
plants with positive DC gain, i.e. G(∞) = 0 and G(0) > 0
(henceforth, this set will be referred to as RH+

2 ). It is
straightforward to show that if G(0)< 0, then the feedback
interconnection of G and K =− 1

G(0) is not L2-stable.

D. Counterexample

Let us consider the plant given by

G(s) =
b

s+a
(17)

where a,b > 0. If the nonlinearity is bounded and monotone,
then Theorem 2.1 is not able to demonstrate the absolute
stability of this system since there exists no Zames–Falb
multiplier satisfying

Re
{

M( jω)
b

jω +a

}
≥ δ ∀ω ∈R. (18)

for some δ > 0, since limω→∞ M( jω) = M(∞) > 0 for any
Zames–Falb multiplier M, thus limω→∞ M( jω) b

jω+a = 0.
However, it is possible to find a Popov-extended Zames–

Falb multiplier (Definition 2.5) such that:

Re
{

MPZF( jω)
b

jω +a

}
≥ δ ∀ω ∈R. (19)

since the transfer function on the left side is now biproper.
So, the use of a Popov-extended Zames–Falb multiplier
seems to outperform the original class of Zames–Falb mul-
tipliers. A similar example is discussed in [11] and a similar
conclusion is drawn.

But we are immediately led into a more fundamental
paradox. For any nonlinearity bounded with a finite constant
C > 0, the Circle Criterion [10] states that the feedback in
Fig. 1 is absolutely stable if 1+CG(s) is strictly positive real
(SPR). It is straightforward that 1+CG(s) is SPR for any
finite constant C. Using the same argument, we conclude that
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a constant multiplier outperforms the class of Zames–Falb
multipliers. Nevertheless, the class of constant multipliers is
included within the Zames–Falb multipliers.

To summarize, we have shown that the original version of
the Zames–Falb theorem is not adequate for strictly proper
plants. If we use this version of the Theorem for showing
that the Popov-extended Zames–Falb multipliers are superior
to the original class of Zames–Falb multipliers as in [11],
we could also reach the surprising result that some Zames–
Falb multipliers also outperform the class of Zames–Falb
multipliers.

III. MAIN RESULTS

In the following, we state a modification of the original
Zames–Falb theorem which is able to cope with strictly
proper plants. Then, a more general definition of phase-
substitution is given. Finally, we will show that the class
of Popov and Popov-extended Zames–Falb multipliers are
“phase-contained” within the original class of Zames–Falb
multipliers.

A. Modification of the Zames–Falb theorem
We have seen that if G is strictly proper then no mul-

tiplier within the class of Zames–Falb multipliers satisfies.
However, this conservatism can be avoided by requiring that
the nonlinearity be bounded. In the IQC framework [16],
it is straightforward to combine the positivity constraint
and boundedness constraint of the nonlinearity. Applying
Corollary 1 in [16], we can propose an alternative version of
the Zames–Falb theorem.

Corollary 3.1: Consider the feedback system in Fig. 1
with G ∈ RH∞ and any bounded and monotone nonlinear-
ity φ . Assume that the feedback interconnection is well-
posed. If there exists a Zames–Falb multiplier such that

Re{M( jω)G( jω)} ≥ εG∗( jω)G( jω) ∀ω ∈R (20)

for some ε > 0, then the feedback interconnection (3) is L2-
stable. �

Remark 3.2: Note that the homotopy conditions imposed
by the IQC theorem are trivially satisfied for these classes
of nonlinearities.

Remark 3.3: The extension of results in [17] in order to
show the equivalence between IQC and classical passivity
theory for Corollary 3.1 is possible by using classical results
in factorization [18].

B. General definition of phase-substitution
The modification of the Zames–Falb theorem shows that

Definition 3.1 in [9] is not general. A general definition of
phase-substitution should allow different properties of the
multiplier to be hold as they arise either in different stability
theorems or in different versions of the same stability theo-
rem. We will use the classical concept of quadratic constraint
([19], [16]).

Definition 3.4: The plant G and multiplier M satisfy the
frequency quadratic constraint QC(ε,δ ) if[

G( jω)
I

]∗ [
ε M∗( jω)

M∗( jω) −δ

][
G( jω)

I

]
< 0∀ω ∈R. (21)

Loosely speaking, a multiplier Ma can be phase-substituted
by a multiplier Mb if Mb is able to show the same stability
properties as Ma. As different versions of stability theorems
can use different quadratic constraints, a generalized defini-
tion of phase-substitution is given as follows:

Definition 3.5: Let Ma and Mb be two multipliers and let
G be a set of plants. The multiplier Mb is a QC(εa,δa)–
QC(εb,δb) phase-substitute with respect to G of the multi-
plier Ma if whenever the pair {Ma,G} satisfies the frequency
quadratic constraint QC(εa,δa) for G within a set G ; then the
pair {Mb,G} also satisfies the frequency quadratic constraint
QC(εb,δb).

Remark 3.6: Definition 2.10 is a particular case of Def-
inition 3.5 where QC(εa,δa) = QC(0,δ1) and QC(εb,δb) =
QC(0,δ2).

With this generalization, different classes of multipliers
can be analysed under different quadratic constraints. For ex-
ample, Corollary 3.1 avoids the conservatism of Theorem 2.1
when it is applied for monotone nonlinearities. Thus the
following counterpart of Definition 3.1 in [9] is appropriate
here.

Definition 3.7: Let Ma and Mb be two multipliers and
G∈RH+

2 . The multiplier Mb is a QC(0,δ )–QC(ε,0) phase-
substitute with respect to RH+

2 of the multiplier Ma when

Re{Ma( jω)G( jω)} ≥ δ ∀ω ∈R (22)

for some δ1 > 0 implies

Re{Mb( jω)G( jω)} ≥ εG∗( jω)G( jω) ∀ω ∈R (23)

for some ε > 0.
This relationship between multipliers can straightfor-

wardly extended to classes of multipliers:
Definition 3.8: Let MA and MB be two classes of multi-

pliers. The class MA is QC(0,δ )–QC(ε,0) phase-contained
with respect to RH+

2 within the class MB if given a multiplier
Ma ∈ MA, then there exists Mb ∈ MB such that it is a
QC(0,δ )–QC(ε,0) phase-substitute with respect to RH+

2 of
Ma.

Henceforth we will use the terminology “phase-contained
in the sense of Definition 3.8” to mean “QC(0,δ )–QC(ε,0)
phase-contained with respect to RH+

2 ”.

C. Popov multipliers

In this section, we state that the class of Popov multipliers
and the class of Popov-extended Zames–Falb multipliers are
phase-contained within the class of Zames–Falb multipliers
for bounded and monotone nonlinearities.

Lemma 3.9: The class of Popov multipliers with positive
constant q is phase-contained in the sense of Definition 3.8
within the class of causal first order Zames–Falb multipliers.

�
Lemma 3.10: The class of Popov multipliers with negative

constant q is phase-contained in the sense of Definition 3.8
within the class of anticausal first order Zames–Falb multi-
pliers. �

As a result, we can conclude that any Popov multiplier
can be phase-substituted by a Zames–Falb multiplier.
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Lemma 3.11: The class of Popov-extended Zames–Falb
multipliers is phase-contained in the sense of Definition 3.8
within the class of Zames–Falb multipliers. �

Lemma 3.12: The class of Popov plus Zames–Falb multi-
pliers is phase-contained in the sense of Definition 3.8 within
the class of Zames–Falb multipliers. �

D. Popov multiplier for boundedness condition
In many cases the properties of the nonlinearity may differ

from the conditions of Theorem 2.1. A subtle distinction
arises for nonlinearities that are monotone and with known
finite bound C.

Although Theorem 2.1 may be used, there is an inherent
conservativeness as the value of the bound is not exploited.
The additional sector bound allows a less conservative sta-
bility criterion than Theorem 2.1. Loosely speaking, the
feedback interconnection is stable provided there exists some
Zames-Falb multiplier M(s), some Popov multiplier (1+qs)
and some λ > 0 such that for all ω

Re{M( jω)G(ω j)+λ (1+qs)[1+CG( jω)]}> 0. (24)

Then a Popov multiplier can be more appropriate than a
Zames–Falb multiplier if C is small.

A similar observation has been stated for the case of slope–
restricted nonlinearities with a sector condition smaller than
its slope condition [6].

IV. EXAMPLE

Let us consider the example given by [11], where it
is suggested that the class of Popov-extended Zames–Falb
multipliers is wider than the class of Zames–Falb multipliers.
As commented in [11], a search over the set of Zames–Falb
multipliers is not able to find the stability of this example if
Theorem 2.1 is used. This is trivial since the plant

G(s) =
(2s2 + s+2)(s+100)
(s+10)2(s2 +5s+20)

(25)

is strictly proper (a factor −1 has been included to consider
negative feedback). On the other hand, [11] shows a Popov-
extended Zames–Falb multiplier MPZF such that

Re{MPZF( jω)G( jω)}> δ ∀ω ∈R. (26)

Hence, the stability of the feedback interconnection is guar-
anteed. However, the use of Corollary 3.1 allows us to
replace the Popov-extended Zames–Falb multiplier, and the
stability of the feedback interconnection can also be ensured.

The multiplier proposed in [11] is

MPZF(s) = 0.04s+1+
0.92
s−1

= 0.04
s2 +24s−2

s−1
. (27)

Considering that the phase of G reaches a constant value
at approximately 103 rad/sec, a phase-substitute Zames–Falb
multiplier of that in (27) can be constructed as follows

M(s) = 0.01
4s+1

0.001s+1
+

(
0.99+

0.92
s−1

)
. (28)

The phase of both multipliers are shown in Fig. 4. We find
Re{G( jω)M( jω)−0.01G∗( jω)G( jω)}> 0 for all frequen-
cies (see Figures 3 and 5).
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Fig. 3. Nyquist plot of G( jω) and G( jω)M( jω)−0.01G∗( jω)G( jω).

V. CONCLUSIONS

This paper has analysed the apparent contradiction be-
tween different results in the literature for bounded and
monotone nonlinearities. The original version of the Zames–
Falb theorem has an inherent conservatism for strictly proper
plants. This conservatism has been exploited in the literature
to suggest that the class of Popov-extended Zames–Falb
multipliers is a wider class of multipliers. However, a slightly
modified version of the Zames–Falb theorem allows us to
extend the equivalence result presented in [9] for the case
of slope-restricted nonlinearities to the case of bounded and
monotone nonlinearities.

As a conclusion, the Zames–Falb multipliers is also the
widest available class of multipliers for bounded and mono-
tone nonlinearities. The example given by Jönsson [11] is
used for demonstrating our results.
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