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Abstract 
A novel iterative procedure is proposed in this paper as a valu- 
able alternative/complement to D-K iterations frequently used in p- 
synthesis. This new procedure gives both a robustly stabilising con- 
troller and performance weights which together achieve a closed-loop 
w-value which is slightly less than unity, thereby immediately guar- 
anteeing robust performance. The performance weights given by this 
algorithm maximise the achieved performance for the particular plant 
set considered according to some sensible cost function. The designer 
is only required to specify the desired directionality of the optimisa- 
tion according to his engineering insight. Of course, a sensible plant 
set and a sensible directionality for the optimisation are still required 
for a sensible control problem. The algorithm proposed here thus 
eliminates the trial and error process usually adopted by designers in 
selecting such performance weights. 

Keywords: performance weights selection, maximise achieved 
performance, D-K iterations, XX-control, h-synthesis. 

1 Introduction 

It is well known that the choice of performance weights in 
3+‘& and p-synthesis frameworks is a non-trivial task. The re- 
sulting controller and closed-loop performance are very much 
dependent on the particular performance weights chosen and 
usually, the designer is required to find such suitable perfor- 
mance weights by a long and tedious trial and error process 
using his engineering experience and intuition. 

The D-K iteration procedure [5] is probably the most pop- 
ular method used in p-synthesis to design robustly stabilising 
controllers. Other methods with different computational ben- 
efits have later been proposed, such as F-K iterations in [9], 
E-K iterations in [4] and L-R iterations in [lo]. However, all 
these methods assume that the performance weights have al- 
ready been chosen. Some authors have suggested methods for 
choosing such performance weights for specific design prob- 
lems [ 8,l I]. However, all this work heavily relies on the de- 
signer’s experience and the final performance weights used al- 
ways come after a long trial and error process. 

In 1992, Fan and Tits [6] introduced a new mathemat- 
ical quantity, closely related to CL, which solves the prob- 
lem: “Determine the smallest cx such that for any uncertainty 
bounded by unity, an Xm performance level of 01 is guaran- 
teed”. Although this was an initial step towards maximising 
the achieved performance (i.e. the determination of the small- 
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est cz) for a given uncertainty set, the value cz is a constant 
bound over all frequency and spatial direction. This paper 
solves the more general problem: “Determine the largest per- 
formance weights (in some sense, over frequency and spatial 
direction) such that for any uncertainty bounded by unity, an 
XW performance level of unity is guaranteed”. 

2 Preliminaries 

Let Iw and @ be the fields of real and complex numbers re- 
spectively. Also let ll8+ @+) be the field of strictly-positive 
(non-negative) real numbers and cc+ be the closed right-half 
plane. Furthermore, define lR$ as the field of n-dimensional 
vectors with entries in Iw, and IW”~ (V”“) as the field of real 
(complex) matrices of dimension p x q. Let A* denote the 
complex conjugate transpose of matrix A and A > 0 denote a 
positive-definite matrix A. Moreover, F(A) is used to denote 
the largest singular value of matrix A and ]] A I] F is used to de- 
note the Frobenius norm of matrix A. Furthermore, let &?%& 
be the real-rational subspace of 3li”, and define & (., .) as 
the lower Linear Fractional Transformation (LFT). Denote by 
diag(Ai, AZ, . . . , A,) the block-diagonal matrix with matrices 

Ai on its main diagonal and let be shorthand no- 

A’ B 
. Finally, define C D [t-l as the state- 

space realisation C (sl - A)-’ B + D. All the rest is standard. 

3 Problem Formulation 

Consider the Linear Time-Invariant (LTI) system depicted in 
Figure 1. This LFT framework is very general as any linear 
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Figure 1: General 3’& or w-synthesis LFf framework 
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interconnection of systems, inputs, outputs and model uncer- Furthermore, the Robust Performance Theorem (e.g. [l]) 
tainties can be recast into this framework [12]. First, define states that robust performance is achieved for the setup shown 
the following sets: in Figure 1 for all A E BATF and Ap E BALF if and only if 

A := {diag(Si1,,, . . . ,SR&, At,. . . , AF) : 

6i E C, AJ E @J ““J } 

Ap:= {A, d-) 

suP PAT,, 
w 

[(‘; w;o))h(G(jw),K(jo))] < 1. 

ATOT := {diag(A, Ap) : A E A, AP E A,} 

BATF := {A(s) E 5+X& : A@,) E A V.s,> E c+, 

llAllca 5 ‘} 

BALF := {Ap(s) E 9%& : Ap(s,) E Ap Vs, E 3+, 

IIAPL 5 1). 

Now, define the function Fz: : ,9%3& -+ E+ with 0 < WL < 
mH < m as: 

For consistency in dimensions, xi”=, ai + C,“=, Bj = s and 
C,P_, ai + CT=, Uj = r. Th e results presented in this pa- 
per can be easily extended to the case where the set Ap has 
a block-diagonal structure and/or to the case where the uncer- 
tainty sets defined above have mixed real/complex uncertainty. 
This, however, will not be done here for the sake of simplicity. 
Now, let K denote the set of internally stabilising controllers 
and define the set W as: 

r:;(P) := /I. 

Fz; is a semi-norm which in some sense measures the size 
of P( jw) in the frequency range [WL, WH]. Logarithmic fre- 
quency is chosen as the variable of integration so that FEF( P) 
can have easy interpretation when the singular values of P are 
plotted on a Bode diagram. This follows from the fact that the 
square of the Frobenius norm of a matrix is equal to the sum 
of the squares of all singular values of that matrix. 

Now consider the following optimisation problem: 

W := {diag [m(s), p2@), . . . , pn6)I : 

pi(S)9 pi(s)-‘E sxw3 pi(So> E @. vfoE :+}. 

1 
max 
WEW r,“;(cw-1)2 

such that (1) 

Then in Figure 1, 

l G denotes the LTI generalised plant. Before forming this 
generalised plant, the designer should have already de- 
cided what “plant set” to design for. This “plant set” is 
determined from the nominal plant model, the structure, 
type and size of the uncertainty and any ‘a priori’ knowl- 
edge about the frequency content of the exogenous sig- 
nals. Here, it is assumed that all this has already been 
done and G(s) is already given. See [2] for a detailed 
explanation on how to construct such a generalised plant. 

Here, [WL, OH] is the frequency range where maximisation 
of W(s) is required. This frequency range should be chosen 
sensibly and a good rule-of-thumb is to consider two or three 
decades below and above the required closed-loop bandwidth. 

Also, the constraint of optimisation (1) states that max- 
imisation of the performance weight W(s) is limited by the 
fact that there must exist some internally stabilising controller 
K(s) which guarantees robust performance. 

l K E K: denotes an LTI controller which is to be de- 
signed. Besides achieving the required closed-loop CL- 
value, K(s) must also be internally stabilising. 

l W E W is a stable minimum-phase invertible (and hence 
bi-proper) diagonal square transfer function matrix de- 
noting the performance weight. It is required to find 
the “biggest” W(s), in some sense, such that some con- 
straints are not violated. 

l A E BATF is the uncertainty in the system. Thus, A is an 
unknown stable LTI system which has a block-diagonal 
structure and satisfies ]I A ]lo3 F 1. 

l Ap E BA, TF is the “performance uncertainty”. This un- 
certainty is fictitious and is only used to transform the ro- 
bust performance problem into an equivalent robust sta- 
bility problem. Thus, Ap is also an unknown stable LTI 
system which satisfies ]]Ap ]loo 5 1. 

Furthermore, C(s) is defined to be a diagonal stable trans- 
fer function matrix chosen by the designer so as to direction 
the maximisation as desired. Since maximisation will only 
take place in the frequency range [WL, WH], then C(jw) is 
only relevant in this frequency range. Each diagonal element 
of C(jw) influences the amount of maximisation required in 
the corresponding element of the performance weight W (jw). 
In fact, the i-th diagonal element of C(jw) will be chosen 
large (resp. small) where the corresponding diagonal element 
of W(jw) is required to be large (resp. small). This does 
not make C(jw) a substitute for the performance weights in 
normal p-synthesis, as here t‘(jo) only states the desired di- 
rectionality for the optimisation. The absolute size of each 
diagonal element in C(jw) is completely irrelevant, as this 
will only affect the value of the cost associated with optimi- 
sation (1). Only the shape across frequency and the relative 
sizes amongst the different diagonal entries of C( jw) are im- 
portant. Moreover, optimisation (1) will always give a closed- 
loop p-value which is slightly less than unity, as guaranteed 
by the constraint on the above maximisation. Sensible choice 
of C(jw) is of course still necessary (this is however much 
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easier than choosing the actual performance weights) so as to 
obtain a controller which performs sensibly and satisfies rea- 
sonable stability/performance requirements (e.g. small sensi- 
tivity at low frequency and small complementary sensitivity at 
high frequency). 

If ? and W were frequency independent, then justification 
for the choice of cost function in optimisation (1) would be 
simple. This is because 1 /rt;(c WP’)2 cx 1 / 11 c W-’ [It, and 
hence the steepest ascent is achieved by always maximising 
the smallest ]wi/Fi]2, where Wi (resp. c”;) is the i-th diagonal 
element of W (resp. c). This reasoning can be extended to 
the case where 6 and W are transfer function matrices and 
hence functions of frequency, but more elaborate arguments 
are required to justify the choice of cost function there. 

4 Deriving a Sub-Optimal Problem 

Optimisation (1) in the previous section is however non- 
convex (due to the p constraint) and hence not easily com- 
putable. In this section, a convex sub-optimal problem with 
tighter constraints is derived. The derivation is split up into 
several sub-sections for clarity. 

4.1 Transforming the Optimisation Problem 

Here, optimisation problem (1) is transformed to an equivalent 
problem which is easier to work on. First of all, since interest 
is in the arguments of the optimisation and not in the value of 
the maximum cost, then optimisation (1) can be rewritten as: 

mi; r;;(tw-'j' 

such that 3 K E K: satisfying (2) 

35 (G(jw), K(jw)) < 1 VW ] 
Now, partition the state-space representation of G(s) consis- 
tently with Figure 1 as follows: 

G= 

Standard Assumption Suppose (A, B?) is stabilisable and 
(C,, A) is detectable. 

This assumption is necessary and sufficient for the existence 
of an internally stabilising controller [7]. 

Fact 4.1 Let F and L be such that A + By F and A + LC3 are 
stable, and define T(s) as: 

r A+W -B3F I El B2 : fh 1 

Let G(s), K(s) and W(s) be the generalisedplant, controller 
and performance weight respectively as defined in Section 3. 
Then the following statements are equivalent: 

(a) 3K E K: satisfying 

FA, [(i w(:-,) 3 CWw), K(M))] < 1 VW. 

(b) 3Q E g& : I + 033 Q(m) is invertible and 

5 (T(jw), Q<jm>> -C 1 VW. ] 

Proof This immediately follows from the parametrisation of 
all stabilising controllers and closed-loops (see Theorems 12.8 
and 12.16 in [13]). 0 

Note that the transfer function matrix T(s) defined above is 
stable and Fl (T(s), Q(s)) is affine in Q(s). Moreover, T(s) 
can be computed before the optimisation. Using Fact 4.1, op- 
timisation (2) may be rewritten as: 

s 

~%I,, OH 
min 
WEW log,,, WI* 

IlC(jw)w(jw)-’ 11: d(log,o w) 

such that 3Q E Z-i?%& satisfying 

I + 033 Q(oo) invertible, 

In the following sub-sections, each different part of optimisa- 
tion (3) will be investigated separately. 

4.2 A Sufficient Condition so that 3Q E ?Z?‘& 

A sufficient condition which ensures that ElQ(s) E 9Z9& is 
obtained by parametrising a subspace of BP& as: 

Q(s) = ~.B(s) (4) 

in which 

(j := [Q. Ql Q2 . . . QN] E Rpx(N+l)q _ 

Here t is chosen sufficiently small so that all dynamics can be 
accurately captured and N is chosen sufJiciently large so that 
there are enough parameters Qi to be able to closely model 
most transfer functions in LX?&. 

4.3 A Sufficient Condition so that I + Dj3 Q(m) is invertible 

A sufficient condition which ensures that I + 033 Q(co~ is 
invertible is given by the following set of steps, where p E R+. 

I + 033 Q(W) is invertible 
es (p + 1)1 + (Q(co)D33 - pl) is invertible, 
e cr(Q(c~)Du - PO -== (P + 1). 
+ (Q(c~>h - PO* (Q(cQ)Du - PO -=z (P + U2L 

e (P + l>r (Q(cQ>&~ - PO 
* (p+l)I ‘O. I 

The above derivation makes use of Corollary 2.2.3 in [7] and 
Schur’s Inequality found in [3]. Note also that conservative- 
ness of the above sufficient condition reduces as p increases. 
Furthermore, if Q(s) is restricted to be of the form suggested 
in Section 4.2, then Q(oo) = QB(oo). 
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4.4 A Sufficient Condition so that p(.) < 1 

A sufficient condition which ensures that: 

is presented in this sub-section. The condition given here is 
also necessary whenever the uncertainty set A is such that 
2R + F ( 2. This can be seen by a straightforward appli- 
cation of Theorem 11.5 in [ 13 1. Now, define the set: 

ID := {diag (D’, D’, d) : 

D’ = diag(fi,, . . . , bR, 2, I,, , . . . , (2~1”~)’ 
D’ = diag(l>l, . . . , d,, 21 I,, , . . . , d,l,,), 
fii E (II?’ xaV, Oi = E,T > 0 and d, L?j E I$- }. 

Then, at each fired frequency w, choose a particular element 
D, := diag(Dh, DL, d,) E 2) with DL, 0: and d, having 
dimensions r x r, s x s and 1 x I respectively. Subsequently, 
define the left and right D-scales at eachfixed frequency w for 
the robust performance problem depicted in Figure 1 as: 

LeftD-scale := ($ d:IO), 

Right D-scale := (7 dWym) 

Now note that, at eachfixed frequency w, an upper bound for 
p is given by (see for example [ 131): 

Since w is not easily computable, this upper bound is used 
instead. Now define the set: 

X := {diag [f~, f2,. . . ,fnl withf,:R+b}, 

and let 

X(w) := [W(jw)*W(jw)]-’ 

= diag (lwl(j~)l-* , . . . , Iw,,(jw)l-2) E X. 
(5) 

inf zi K Di 0 

IA,, t P 0 d,W(jw) > 
3r (T(jw), Q(jw)) (7 dw:m~‘] 

tl vu, 

which is true if and only if 30, E D such that 

(D;D;)m’ 0 

0 d,-2X(w) 

> 

5 (T(jw), Q(j4) * (D:‘D;) 

0 

0 d: L > 1 z-0 VW. 
As before, if Q(s) is restricted to be of the form suggested in 
Section 4.2, then Q(jw) = oB(jw). 

Now, in order to reduce conservativeness in the above suffi- 
cient condition, D, E D (one D, for eachjxed frequency w) 
is chosen as the argument of the following minimisation: 

min F 
Dl, 0 

D&D 0 &W(jw) > 
fi (T(jwL OWw)) (7 d,o1,)1]’ 

This can be rewritten as: 

Minimise yO 
for each fixed o E R 

such that 

which after some algebra yields the equivalent minimisation: 

Minimise ~2 
for each fixed w E W 

such that (6) 

3 (T(jw), 4lWw))’ (“y O d;X(w)-’ 

<d 

4.5 An Equivalent Objective Function 

This sub-section presents an equivalent objective function to: 

given in optimisation (3). To this end, first define 

C(w) := [~(jo>*~(jw)] 

= diag(lG(jm)l*, lh(jw>12,. . . , lC,<jw>12). 

Then define the set Y := { f : lR + I& } and let 

E ‘Y and c(w) := C(w) 

Thus x(w) and c(o) are n-dimensional vector functions con- 
taining the II diagonal elements of the diagonal matrix func- 
tions X(o) and C(w) respectively. Also, since c(jw) is cho- 
sen by the designer prior to the optimisation, then so is c(w). 
Fact 4.2 gives such an equivalent objective function. 

Fact 4.2 Let x(w) and c(w) be as deJned above. Then, 

Proof Simple algebraic manipulations immediately show 
that the integrands are equivalent and the rest trivially follows 
from the definitions of the sets W and Y. 0 
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4.6 A Sub-Optimal Problem with Tighter Constraints 

Using the results obtained in Sections 4.2 to 4.5, it can be seen 
that the following problem: 

such that 

El0 E IWpx(Nf’)q, SD, E P satisfying 

(P + 1)I ~B(mWx.7 -PI > o 
* (P + 111 1 

(7) 

(DkD;)-' 
0 > 

3r (T(jw), OWw)) * (D;D:) 0 
0 &Ln > 1 >o VW, 

is sub-optimal to optimisation (3) presented in Section 4.1 as 
it has tighter constraints. Furthermore, restraining x(w) to 
be in set T in the above minimisation is superfluous as this 
is implicitly ensured by the last constraint. Recall also that 
Fl (T(jw), aB(jw)) appearing above is affine in 0, as seen 
from the definition of T(s) in Fact 4.1. 

5 The Solution Algorithm 

Since optimisations (6) and (7) are interdependent, then the SO- 

lution algorithm described below alternates between these two 
minimisations resulting into an iterative scheme. This iterative 
scheme is not guaranteed to converge to the global minimum 
(similarly to D-K iterations) but will at least be monotonically 
non-increasing as explained below. 

Furthermore, optimisations (6) and (7) involve a search 
over a functional set with constraints holding for all w E I!& 
Thus, in order to reduce these minimisation problems to finite- 
dimensional problems, frequency gridding is required. Of 
course, this gridding must be chosen dense enough so as not 
to miss rapid changes in the transfer function matrices. Also, 
the frequency gridding of the constraints can be chosen to be 
denser, if so desired, than that of the objective function in (7) 
and over a larger frequency range (say, from a decade below 
WL to a decade above WH), as this gives some better confidence 
that the actual functional constraints are not violated. Further 
details will be omitted from this paper for the sake of brevity. 
Hereafter, let the grid-point frequencies be denoted by w;. 

Then, the proposed iterative procedure is summarised by the 
following set of steps: 

1. Select a feasible initial starting point for the algorithm. 
That is, select some D, = diag(DL, , Dz , do,) E P VW! 
such that the constraints of the optimisation in Step 2 be- 
low are not violated. A systematic procedure for select- 
ing such a feasible initial starting point is available but 
will not be discussed here due to space restrictions. Set- 
ting D' = I,, D:, = Is and dwi as a sufficiently large 
numbe?for all w; is usually good enough. 

2. Solve the finite-dimensional LMI minimisation prob- 
lem obtained by frequency gridding optimisation (7) and 
holding Di,, DL, and d,; fixed at the values obtained in 
the previous step. This optimisation outputs the value of 

3. 

4. 

the minimum cost, and the LMI variables 0 and X(wi) 
for all wi. If the minimum cost has not decreased in the 
last few iterations, then STOP here. 

Solve the finite-dimensional LMI minimisation prob- 
lem obtained by frequency gridding optimisation (6) and 
holding 0 and X(wi) fixed at the values obtained in the 
previous step. This optimisation outputs the value of the 
minimum yo, at each frequency Oi, and the LMI variables 
D& , D& and dmi VWi. 

Go back to Step 2. 

Note that Step 2 ensures that max,, yo, i. 1 and Step 3 min- 
imises yw, further. This immediately guarantees Robust Per- 
formance. Moreover, as the iterations proceed, the minimum 
cost obtained at Step 2 is monotonically non-increasing. This 
is because the values of Q and X(wi) obtained at Step 2 in 
the current iteration always satisfy the constraints of the op- 
timisation in the same Step 2 during the next iteration. Fi- 
nally, the controller K(s) E K: which achieves this Robust 
Performance can be computed when the iterations are over us- 
ing Q(s) = oB(s) and the parametrisation of all stabilising 
controllers (see for example, Theorem 12.8 in [ 131). 

6 Numerical Example 

The iterative procedure proposed above will now be illustrated 
by a numerical example. Consider the block diagram shown 
in Figure 2. The actual plant is uncertain but is known to be- 

Figure 2: Block diagram for a typical S/T problem 

long to the plant set {P,(l + AW,) : A E 9?&&, ]]A]lm 5 1) 
parametrised by A. Here, the nominal plant P,, was chosen as 
& and the uncertainty weight W, as w. The chosen 
W,, allows the magnitude of the actual plant to differ from that 
of the nominal plant by as much as 50% in the low-frequency 
region and by as much as 1000% in the high-frequency region. 

It is required to find some internally stabilising controller 
K(s) such that the performance weights Ws and Wr are max- 
imised according to a pre-stated desired directionality. For a 
sensible control problem, this directionality should be chosen 
so that Ws is maximised in the low-frequency region and Wr 
is maximised in the high-frequency region, The directionality 
used in this example is shown in Figure 3. 

The frequency range [WL, WH] selected for maximising the 
performance weights was [ 10p2, lo*], whereas that selected 
for gridding the constraints was [lo-s, lo”]. Furthermore, 
T = 0.2 and N = 1 were found to be sufficiently good, as 
smaller values of T and larger values of N did not give any 
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Figure 3: Desired directionality for the optimisation 

improvement. The value of p was completely irrelevant here, 
as P,, is strictly proper. Five iterations were found to be suffi- 
cient and the total iteration time taken was 7 minutes. 

Figure 4 shows plots for the final 1 Wi’ ) and ) WF’ 1, ob- 
tained after completing the iterations. The Sensitivity func- 
tion for the actual plant will always be below the 1 WC’ ( plot, 
whereas that for Complementary Sensitivity will always be be- 
low the 1 W;’ 1 plot. 

Figure 4: Inverse of magnitude of performance weights 

The controller which achieves this maximised performance 
was computed after all five iterations have been completed and 
is given by the following state-space representation: 

-5.80 2.09 -5 1.63 26.83 -7.02 
-3.06 - 10.07 2.21 -0.87 0.28 

K(.x) = 0 1.00 -1.74 0 I -0.17 1 
0 0 20.00 -10.00 ) 2.00 

-3.06 -0.07 1.68 -0.87 1 0.23 

This controller, together with the above performance weights, 
gave a flat curve across frequency for the computed upper 
bound of I-L. This confirms that performance has been max- 
imised for the particular plant set considered while robust sta- 
bility was maintained. 

7 Conclusions 

The problem of maximising performance weights in the fre- 
quency range of interest while maintaining robust stability was 
posed as an optimisation problem, to which a sub-optimal so- 
lution was given. A major advantage of this procedure over 

existing methods (such as D-K iterations) is that the perfor- 
mance weights which maximise some sensible cost function 
and a robustly stabilising controller are synthesised simulta- 
neously by one algorithm. The resulting closed-loop p-curve 
is usually flat across frequency and very close to, but slightly 
less than, unity. This confirms that robust performance is max- 
imised without the need for a long and tedious trial and error 
process by the designer to select “good” performance weights. 

The proposed scheme does, however, have some impor- 
tant disadvantages. The Laguerre-like parametrisation Q(s) = 
QB(s) usually causes high-order controllers to be synthesised. 
Furthermore, frequency gridding causes loss of information 
between grid-points and hence a dense grid can only give con- 
fidence that w < 1 rather than absolute certainty. These issues 
are currently under investigation by the authors and state-space 
techniques are being developed to address these problems. 
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