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Abstract— This paper generalises the notion of output strictly
negative imaginary systems and provides a complete character-
isation both in frequency domain and time domain. The paper
also reveals the missing link between the negative imaginary
theory and dissipativity. A new time domain supply rate is
introduced to characterise the class of output strictly negative
imaginary systems that consists of input to the system, the
derivative of an auxiliary output of the system and a real
parameter δ > 0. Further, in addition to the output strictly
negative imaginary systems, all stable negative imaginary sys-
tems are shown to be dissipative with respect to the same supply
rate with δ = 0. An equivalence is also established between the
output strictly negative imaginary systems property and time
domain dissipativity of this class of systems with respect to the
proposed supply rate and a specific positive definite storage
function. Several numerical examples are studied to elucidate
the essence of the theoretical developments.

I. INTRODUCTION

Negative imaginary (NI) systems theory has drawn atten-
tion from both control theorists and practising engineers over
the last decade due to its wide applicability in problems
such as vibration control of lightly damped flexible structures
[1], cantilever beams [4], large space structures [10], robotic
manipulators [10], control of nano-positioning systems [11],
control of large vehicle platoons [5], observer-based control
of non-square plants [15], etc. Negative imaginary systems
theory was first introduced in [1] inspired by the ‘positive
position feedback control’ [6] of highly resonant mechanical
systems. The negative imaginary framework offers a simple
internal stability criteria λmax[M(0)N(0)] < 1 for a positive
feedback interconnection of two NI systems M(s) and N(s)
of which one must be strictly negative imaginary (SNI)
[1], [2]. Since the SNI system N(s) must satisfy the strict
frequency domain condition j [N(jω)−N(jω)∗] > 0 for all
ω ∈ (0,∞), the existing stability results of NI-SNI intercon-
nection fail to capture the cases where both the imaginary-
Hermitian parts [M(s)−M(s)∗] and [N(s)−N(s)∗] have
transmission/blocking zeros on the jω axis for ω ∈ (0,∞).
Furthermore, due to this strict frequency domain condition
defined on the punctured jω axis (i.e., excluding ω = 0), NI
theory faces significant technical difficulties in both analysis
and synthesis involving SNI systems. In order to circumvent
these issues, a new class of strict negative imaginary systems,
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termed as the Output Strictly Negative Imaginary (OSNI)
systems class, has been introduced in [14] for which the
strictness property is defined in terms of Output Strictly
Passive (OSP) systems. An OSNI system is not required
to satisfy the same strict frequency domain condition of
SNI systems and hence, allows blocking/transmission zeros
on the jω axis for ω ∈ (0,∞). In this paper, the notion
of Output Strictly Negative Imaginary (OSNI) systems has
been generalised to capture an wider class of systems. In
contrast to [14], the present definition of OSNI systems
(say M(s)) does not impose the full normal rank constraint
on [M(s)−M(s)∗], which implies that the OSNI systems
defined in [14] is a subset of the OSNI class proposed in
this paper. It is found that the OSNI and SNI subclasses
intersect and the intersection contains the set of strongly
strict negative imaginary (SSNI [3]) systems as illustrated
via the Venn diagram (Fig. 1b). Apart from providing the
definition and characterisation for OSNI systems, this paper
also explores the connections between negative imaginary
theory and classical dissipativity [16].

The connections between negative imaginary theory and
classical dissipativity are not yet well explored. In the case of
passive systems, a complete characterisation already exists in
the literature using Willems’s dissipative framework [16] as
well as Hill-Moylan’s (Q,S,R)-dissipative framework [17],
[18]. In [24], the authors introduced the notion of ‘mixed’
input-output passive and finite-gain system properties using a
frequency domain dissipative approach and being inspired by
[24], in [8], a frequency domain (Q,S,R)-dissipative supply
rate was introduced to characterise the class of systems
with ‘mixed’ finite-gain and input-output (strictly) negative
imaginary properties. Later on, [9] and [12] have pursued
a similar approach alike [8] to establish internal stability
conditions for interconnected systems with ‘mixed’ NI, pas-
sive and finite-gain properties. Unlike [8], [9] and [12],
this paper theoretically proves that the OSNI systems with
reachable (from the origin) state-space are dissipative with
respect to a particular time domain supply rate w(u, ˙̄y) =
2 ˙̄yTu − δ ˙̄yT ˙̄y with δ > 0 by showing the existence of a
positive semidefinite storage function V (x). Note that the
auxiliary output ȳ = y − Du is considered particularly to
capture bi-proper OSNI systems; in strictly-proper cases the
supply rate simplifies to 2ẏTu−δ ẏT ẏ. This supply rate finds
an interesting physical interpretation for electrical networks
having voltage and charge flow as the input-output variables
and for mechanical systems having force and displacement
as the input-output pair. For example, in case of a spring-
mass-damper system (Fig. 1a) being strictly-proper, the term
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ẏTu gives the mechanical power input (velocity (ẏ) × force
(u)) while the term ẏT ẏ represents the power dissipated in
the damper (d ẏ2 assuming d = 1). But, for more general
systems, the supply rate provides an abstraction of the net
power inflow to the system and often, it is not possible to find
an exact physical interpretation. It is also shown in this paper
that, in addition to the OSNI systems, all stable NI systems
are dissipative with respect to the same time domain supply
rate w(u, ˙̄y) when δ = 0.
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Fig. 1: (a) A spring-mass-damper system; (b) Relationship
among the strict subclasses of the NI systems class.

II. PRELIMINARIES

In this section, some valuable technical preliminaries,
definitions and lemmas are presented which underpin the
proofs of the main results of the paper.

The finite dimensional, causal, LTI systems studied in this
paper are described by the equations1

M :

{
ẋ = Ax+Bu, x0 = x (0) ;

y = Cx+Du,
(1)

where the input u(t) ∈ Rm, the state x(t) ∈ Rn and the
output y(t) ∈ Rp for all t ∈ R≥0. The admissible inputs are
taken to be Rm-valued locally square integrable functions
of time t ∈ R≥0, that is,

∫ T

0
u(t)Tu(t) dt < ∞ for all T ∈

[0,∞). Note that the state trajectory x(t) and the output y(t)
will also be real-valued locally square integrable functions of
time t ∈ R≥0. Let us introduce the state transition function
Φ, associated with M , being a mapping from R≥0×R≥0×
Rn × Rm into Rn. Here, Φ(t1, 0, x(0), u) denotes the state
x(t1) at time t1 when the system M starts from an initial
state x(0) ∈ Rn at time t = 0 and an admissible input u(t)
is applied on M for all t ∈ [0, t1].

A. Dissipative systems notations and definitions

Let us recall the notion of dissipativity of finite dimen-
sional, causal, LTI systems introduced in [16].

Definition 1: (Dissipative systems) [16] A dynamical
system M , given in (1), is said to be dissipative with respect
to an energy supply rate w(u, y) if there exists a function
V : Rn → R≥0, called the storage function, such that

V (x(0)) +

T∫
0

w (u, y) dt ≥ V (x (T )) (2)

for any T ∈ [0,∞), any initial condition x(0) ∈ Rn and
any admissible input u(t) ∈ Rm for all t ∈ R≥0 where

1For simplicity of presentation, the dependence on time t ∈ R≥0 is
omitted.

x(T ) = Φ(T, 0, x(0), u) and w(u, y) have been evaluated
along any trajectory of (1).

Inequality (2) is known as the ‘dissipation inequality’ in
the sense of Willems. If V : Rn → R≥0 is a differentiable
storage function, then the dissipation inequality (2) can be
expressed in the differential form as

w(u, y) ≥ V̇ (x). (3)

Note that for finite dimensional LTI systems with minimal
state-space realisation, the storage function V (x) can be
characterized with a quadratic form xTPx, without loss of
generality, where P = PT > 0 [16], [22]. Moreover, in
the LTI setting, the storage function V (x) can always be
assumed to be a differentiable function of x ∈ Rn [17],
[26].

For a dissipative system with a reachable (from the origin)
state-space2, the ‘required supply’ is defined as [21]

Vr(x1) = inf
x∗→x1

u(·), T≤0

0∫
T

w (u, y) dt (4)

where x∗ ∈ Rn represents the point of minimum storage. In
general, the origin of a state-space is the point of minimum
storage where V (x∗) = V (0) = 0. The ‘required supply’
is the least amount of energy required to excite a system
to a desired state from the state of minimum energy level
[19]. Vr(x) is a possible storage function for any dissipative
system with a reachable (from the origin) state-space.

Definition 2: ((Q,S,R)-dissipativity in Hill-Moylan’s
framework) [17] A dynamical system M , given in (1) with
x0 = 0, is said to be (Q,S,R)-dissipative if there exist
Q = QT ∈ Rp×p, S ∈ Rp×m and R = RT ∈ Rm×m

such that
T∫

0

yTQy + 2yTSu+ uTRu dt ≥ 0 (5)

for all T ∈ [0,∞) and all admissible u(t) ∈ Rm for all
t ∈ R≥0.
If the supply rate function in Willems’s framework is spe-
cialized as w(u, y) = yTQy + 2yTSu + uTRu where
Q = QT ∈ Rp×p, S ∈ Rp×m and R = RT ∈ Rm×m,
then (3) takes the form

yTQy + 2yTSu+ uTRu ≥ V̇ (x). (6)

B. Definitions for negative imaginary systems theory

In this subsection, we recall the definitions of NI and SNI
systems.

Definition 3: (NI System) [10], [13] Let M(s) be the
real, rational, proper transfer function matrix of a square and
causal system without any poles on the open right-half plane.
M(s) is said to be Negative Imaginary (NI) if
• j[M(jω)−M(jω)∗] ≥ 0 for all ω ∈ (0,∞) except the

values of ω where jω is a pole of M(s);

2For LTI systems, reachability (to and from the origin) is equivalent to
complete state controllability [20].



• If s = jω0 with ω0 ∈ (0,∞) is a pole of M(s),
then it is at most a simple pole and the residue matrix
K0 = lim

s→jω0

j(s− jω0)M(s) is Hermitian and positive

semidefinite;
• If s = 0 is a pole of M(s), then lim

s→0
skM(s) = 0

for all k ≥ 3 and lim
s→0

s2M(s) is positive semidefinite
Hermitian.

Definition 4: (SNI System) [1] Let M(s) be the real,
rational, proper transfer function matrix of a square and
causal system. M(s) is said to be Strictly Negative Imaginary
(SNI) if M(s) has no poles in <[s] ≥ 0 and j[M(jω) −
M(jω)∗] > 0 for all ω ∈ (0,∞).

III. OUTPUT STRICTLY NEGATIVE IMAGINARY SYSTEMS

In this section, we define output strictly negative imagi-
nary (OSNI) systems3 in the frequency domain, discuss its
properties and depict the set-theoretic relationship between
OSNI and SNI subclasses. A state-space characterisation is
also provided to test the OSNI property of an LTI system
based on its minimal state-space realisation.

Definition 5: (OSNI systems) Let M(s) ∈ RH m×m
∞ .

Then, M(s) is said to be Output Strictly Negative Imaginary
(OSNI) if there exists a scalar δ > 0 such that

jω[M(jω)−M(jω)∗]− δ ω2M̄(jω)∗M̄(jω) ≥ 0 (7)

∀ω ∈ R ∪ {∞} where M̄(jω) = M(jω)−M(∞).
The parameter δ > 0 is an index which quantifies the level

of output strictness of a given OSNI system.
Remark 1: The index δ = 0 corresponds to all stable NI

systems because when δ = 0, the inequality (7) reduces
simply to the negative imaginary condition jω[M(jω) −
M(jω)∗] ≥ 0 for all ω ∈ R∪{∞} ⇔ j[M(jω)−M(jω)∗] ≥
0 for all ω ∈ (0,∞) since the latter implies M(0) = M(0)T

and M(∞) = M(∞)T . From inequality (7), it is evident
that the OSNI class is a subset of the stable NI class since
(7) with δ > 0 implies (7) with δ = 0.

Example 1: Consider the SNI transfer function N(s) =
s+ 4

s2 + 8s+ 32
. In this case, jω[N(jω) − N(jω)∗] − δω2

N̄(jω)∗N̄(jω) =
(2− δ)ω4 − 16δω2

(32− ω2)2 + 64ω2
≥ 0 for all ω ∈

R∪{∞} only when δ = 0. Therefore, N(s) is not an OSNI
(with δ > 0) system.
The above example shows that not all SNI systems are OSNI.
Furthermore, in contrast to [14], the definition for OSNI
systems in this paper does not explicitly invoke the OSP
property and moreover, the full normal rank constraint on
[M(s)−M(s)∗] has been removed. The following example
illustrates this fact.

Example 2: Let M(s) =
1

s+ 1

[
1 1
1 1

]
which violates

the full normal rank of [M(s)−M(s)∗]. To test whether
M(s) is OSNI or not, we apply the point-wise frequency do-
main condition given in Definition 5 to obtain jω[M(jω)−

3OSNI property is always defined for finite dimensional, causal and
asymptotically stable NI systems.

M(jω)∗]−δ ω2M̄(jω)∗M̄(jω) =
(2− δ)ω2

1 + ω2

[
1 1
1 1

]
≥ 0

for all ω ∈ R ∪ {∞} and all δ ∈ [0, 2]. Hence, it can be
concluded that the system M(s) is an OSNI system.
There are many SNI systems which are also OSNI systems,

e.g., the SNI system N(s) =
25

s2 + 5s+ 25
is also an OSNI

system with δ ∈ [0, 0.4]. There however exist also some
OSNI systems which are not SNI. In the SISO setting, the
OSNI systems that contain zeros on the jω axis for ω ∈
(0,∞) (see Example 3) are not SNI.
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Fig. 2: (a) A mechanical system realization of an OSNI
system which is not SNI; (b) Nyquist plot of the system
transfer function M(s) from U(s) to X1(s).

Example 3: Consider the spring-mass-damper system
shown in Fig. 2a. For the set of parameters m1 = 1kg,
m2 = 4kg, k1 = 30N/m, k2 = 20N/m and d1 =
1Ns/m, the above system has the transfer function M(s) =
X1(s)

U(s)
=

s2 + 12.5

s4 + s3 + 42.5s2 + 12.5s+ 150
. It can be read-

ily verified that M(s) is an OSNI system with δ ∈
[0, 2] since jω[M(jω) −M(jω)∗]− δ ω2M̄(jω)∗M̄(jω) =

ω2(2− δ)(12.5− ω2)2

(ω4 − 42.5ω2 + 150)2 + ω2(12.5− ω2)2
≥ 0 for all ω ∈

R ∪ {∞} and for all δ ∈ [0, 2]. However, this system is not
SNI since j[M(jω)−M(jω)∗] = 0 at ω =

√
12.5 rad/s (see

the Nyquist plot in Fig. 2b).
Based on these examples, it can be inferred that the sets of
SNI and OSNI systems intersect as depicted via the Venn
diagram in Fig. 1b but are not identical sets. The following
lemma is a pre-requisite to prove the OSNI Lemma given in
the sequel.

Lemma 1: Let M(s) ∈ RH m×m
∞ and M̄(s) = M(s) −

M(∞). Then, the following statements hold:
a) M(s) is OSNI with δ > 0 if and only if F (s) = sM̄(s)

is OSP4 and M(∞) = M(∞)T ;
b) M(s) is NI with δ = 0 if and only if F (s) = sM̄(s)

is passive and M(∞) = M(∞)T .
Proof. Since F (jω) + F (jω)∗ − δF (jω)∗F (jω) =

(jωM̄(jω)) + (jωM̄(jω))∗ − δ(jωM̄(jω))∗(jωM̄(jω)) =
jω[M(jω) − M(jω)∗] − δω2M̄(jω)∗M̄(jω) for all ω ∈
R ∪ {∞} by following [14, MIMO OSP Lemma] and on
exploiting the property M(∞) = M(∞)T , Part a) holds for
δ > 0, while Part b) holds for δ = 0. �

4A system F (s) ∈ RH m×m
∞ with F (s) + F (s)∗ having full normal

rank is Output Strictly Passive (OSP) if and only if there exists δp > 0
such that F (jω) + F (jω)∗ ≥ δpF (jω)∗F (jω) ∀ω ∈ R ∪ {∞} [14].



The following lemma derives a necessary and sufficient
condition for a system to be OSNI and is a generalized
version of [14, Lemma 6].

Lemma 2: (OSNI Lemma) Let M(s) ∈ RH m×m
∞ have

a minimal state-space realization (A,B,C,D). Let δ > 0 be
a scalar. Then, M(s) is OSNI with a level of output strictness
δ if and only if D = DT and there exists a real matrix
Y = Y T > 0 such that

AY+Y AT +δ(CAY )TCAY ≤ 0 and B+AY CT = 0. (8)
Proof: For the sake of convenience, we denote a shorthand

Π =


(
−PA−ATP

−δATCTCA

) (
−PB +ATCT

−δATCTCB

)
(
−PB +ATCT

−δATCTCB

)T (
CB +BTCT

−δBTCTCB

)
 . (9)

The proof proceeds through the following sequence of equiv-
alent statements:

M(s) is OSNI with a level of output strictness δ
⇔M(s)−D is OSNI with a level of output strictness δ

and D = DT

⇔F (s) = s[M(s)−D] = (A,B,CA,CB) is OSP with a

a level of output strictness δ and D = DT [via Lemma 1]

⇔D = DT and there exists P = PT > 0 such that
Π ≥ 0 [invoking [14, Lemma 2] with δ > 0 and ε = 0]

⇔D = DT and there exists Y = Y T > 0 such that

AY + Y AT + δ(CAY )TCAY ≤ 0 and B +AY CT = 0

[On letting Y = P−1 and following the same algebraic
manipulation as in the proof of [14, Lemma 5]].

This completes the proof. �
Note that the matrix inequality in (8) is not in LMI form

but can be readily converted into an LMI by applying the
Schur Complement Lemma [25, Appendix A.61].

IV. CONNECTIONS BETWEEN OSNI SYSTEMS PROPERTY
AND DISSIPATIVITY

This section is a main contribution of this paper. Sub-
section IV-A extends the classical notion of dissipativity to
include supply rates that involve time derivative of the sys-
tem’s output being inspired by [18], [21], [23] and introduces
a time domain dissipative framework for characterising the
OSNI as well as stable NI systems. While, subsection IV-B
shows the equivalence between the state-space characteri-
sation and time domain dissipativity of the class of OSNI
systems.

A. OSNI systems in time domain dissipative framework

The following theorem establishes that for an initially
relaxed OSNI system M with a reachable (from origin) state-
space, there always exists a positive semidefinite storage
function V (x) such that the system satisfies the dissipation
inequality (2) with a particular time domain supply rate
w(u, ˙̄y) = 2 ˙̄yTu − δ ˙̄yT ˙̄y with δ > 0, where ȳ = y −Du is
defined as an auxiliary output of M . Note that in this section,

the admissible inputs u(t) are taken to be Rm-valued locally
square integrable functions of time t ∈ R≥0 along with
sufficient smoothness properties such that ˙̄y(t) = Cẋ(t) =
CAx(t)+CBu(t) exists and belongs to Rm for all t ∈ R≥0,
and also, ˙̄y(t) remains locally square integrable.

Theorem 1: Let M be a causal, square, LTI system given
by the state-space equations ẋ = Ax+Bu and y = Cx+Du
with zero initial condition and the state-space being reachable
from the origin. Let the associated transfer function matrix
be M(s) ∈ RH m×m

∞ , δ > 0 and ȳ = y − Du. Then,
M is dissipative with respect to the supply rate w(u, ˙̄y) =
2 ˙̄yTu− δ ˙̄yT ˙̄y if M(s) is OSNI with the same δ.

Proof: To show that the OSNI system M with δ > 0
is dissipative with respect to the supply rate w(u, ˙̄y) =
2 ˙̄yTu − δ ˙̄yT ˙̄y, we have to establish that there exists a
storage function V : Rn → R≥0 such that M satisfies the
dissipation inequality (2). Since the state-space is assumed
to be reachable from the origin, there exists an admissible
input u(t) defined as

u(t) =

 0 when t < t−1;
ũ(t) when t−1 ≤ t ≤ 0;
0 when t > 0,

which steers the system from x(t−1) = 0 to any x(0) ∈
Rn. In this proof, let y(t) be the corresponding output;
Y (jω), Ȳ (jω) and U(jω) denote respectively the Fourier
Transform of the real-valued time domain signals y(t), ȳ(t)
and u(t). Ȳ (jω) = Y (jω) − DU(jω) = M̄(jω)U(jω)
where M̄(jω) = M(jω)−D. Now,∫ 0

t−1

w(u, ˙̄y) dt =

∫ 0

t−1

(2 ˙̄yTu− δ ˙̄yT ˙̄y) dt

=

∫ ∞
−∞

(2 ˙̄yTu− δ ˙̄yT ˙̄y) dt+ δ

∫ ∞
0

˙̄yT ˙̄y dt

[since M is causal and time-invariant]

≥
∫ ∞
−∞

(2 ˙̄yTu− δ ˙̄yT ˙̄y) dt [since δ > 0]

=
1

2π

∫ ∞
−∞

[(
jωȲ (jω)

)∗
U(jω) + U(jω)∗

(
jωȲ (jω)

)
−

δ ω2 Ȳ (jω)∗Ȳ (jω)
]

dω [applying Parseval’s identity [25]]

=
1

2π

∫ ∞
−∞

U(jω)∗ [jω{M(jω)−M(jω)∗}−

δ ω2M̄(jω)∗M̄(jω)
]
U(jω) dω

[since M(∞) = M(∞)T is implied by (7)]
≥ 0 [using Definition 5 and Remark 1].

Hence for arbitrary t−1 ≤ 0 and x(t−1) = 0, we have∫ 0

t−1
w(u, ˙̄y) dt ≥ 0. We now construct the required supply

function as Vr(x) = inf
x∗=0→ x

u(·), t−1≤0

0∫
t−1

w (u, ˙̄y) dt ≥ 0 where

origin is the point of minimum storage (i.e., x∗ = 0). Thus,
Vr(x) can be considered as a storage function candidate
associated with the OSNI system M .

It remains to be shown that Vr(x) satisfies the dissipation
inequality (2). Towards this end, note that in taking the



system from x = 0 at t = 0 to x1 ∈ Rn at t = t1, we
could first take it to x0 ∈ Rn at time t0 while minimizing
the energy, and then take it to x1 at time t1 along the
path for which the dissipation inequality is to be evaluated.
This is possible by virtue of M being a causal and time-
invariant system. Since Vr(x1) gives the infimum of the
amount of energy required to reach x1 at t = t1 from
x = 0 at t = 0, the energy required to reach the same
destination x1 from the same starting point x = 0 via any
other path will be greater than or equal to Vr(x1). Therefore,
Vr(x0) +

∫ t1
t0
w(u, ˙̄y) dt ≥ Vr(x1) follows. It can hence

be concluded that the OSNI system M is dissipative with
respect to the supply rate w(u, ˙̄y) = 2 ˙̄yTu − δ ˙̄yT ˙̄y for the
same δ > 0. �

Following Theorem 1, a similar dissipative characterisa-
tion can be given for all stable NI (i.e., with δ = 0) systems.

Lemma 3: Let M(s) ∈ RH m×m
∞ be the transfer function

matrix of an NI system M with δ = 0 and it has a reachable
state-space from the origin. Let M have time domain input u,
time domain output y and define ȳ = y−M(∞)u. Then, M
is dissipative with respect to the supply rate w(u, ˙̄y) = 2 ˙̄yTu.

Proof. The proof readily follows from Theorem 1 by
setting δ = 0 and applying the frequency domain criteria
jω[M(jω) − M(jω)∗] ≥ 0 for all ω ∈ R ∪ {∞} ⇔
j[M(jω) − M(jω)∗] ≥ 0 for all ω ∈ (0,∞), since the
latter implies M(0) = M(0)T and M(∞) = M(∞)T for
all stable NI systems via Remark 1. �

The following example shows that an OSNI system satis-
fies the time domain dissipation inequality with the proposed
supply rate w(u, ˙̄y) = 2 ˙̄yTu − δ ˙̄yT ˙̄y, once an appropriate
storage function is chosen.

Example 4: Consider the OSNI transfer function M(s) =
25

s2 + 5s+ 25
with a minimal state-space description ẋ1 =

x2, ẋ2 = −25x1 − 5x2 + 25u and y = x1 with x(0) = 0.
For this system, without loss of generality, we can choose a

positive definite storage function V (x) = x21 +
1

25
x22 such

that w(u, ˙̄y) − V̇ (x) = (2 ˙̄yTu − δ ˙̄yT ˙̄y) −
[
∂V (x)

∂x

]T
ẋ =

(0.4− δ)x22 ≥ 0 for all δ ∈ [0, 0.4] and all admissible inputs
u(t) ∈ R for all t ∈ R≥0. Therefore, M(s) is dissipative
with respect to the time domain supply rate w(u, ˙̄y) with
δ ∈ [0, 0.4]. Note, δ = 0 indicates that M(s) is also a stable
NI system (see Remark 1).

B. Equivalence between time domain dissipativity and state-
space characterisation of OSNI systems

We have already established that OSNI systems (with δ >
0) are dissipative with respect to the time domain supply
rate w(u, ˙̄y) = 2 ˙̄yTu− δ ˙̄yT ˙̄y where ȳ = y−Du is selected
as an auxiliary output of the system. In this subsection, we
will show that for a stable LTI system with a minimal state-
space realisation, the OSNI Lemma conditions are equivalent
to time domain dissipativity with respect to the proposed
supply rate w(u, ˙̄y) and a specific storage function given by
V (x) = xTPx with P = PT > 0 for all x ∈ Rn.

Theorem 2: Let M be a causal, square, LTI system de-
scribed by the state-space equations ẋ = Ax+Bu, x(0) = 0
and y = Cx + Du, where A is Hurwitz, D = DT and
(A,B,C,D) is minimal. Let the associated transfer function
matrix be M(s) and define ȳ = y−Du. Let a scalar δ > 0.
Then, the following statements are equivalent:
i) M(s) is OSNI with a level of output strictness δ;
ii) there exists a real matrix Y = Y T > 0 such that

AY+Y AT +δ(CAY )T (CAY ) ≤ 0 and B = −AY CT ;

iii) M is dissipative with respect to the supply rate
w(u, ˙̄y) = 2 ˙̄yTu− δ ˙̄yT ˙̄y.

Proof: i)⇔ ii) This equivalence is due to OSNI Lemma.
ii)⇒ iii) There exists a real matrix Y = Y T > 0 such that

AY + Y AT + δ(CAY )T (CAY ) ≤ 0 and B = −AY CT

⇔ there exists P = PT > 0 such that Π ≥ 0 [on letting

P = Y −1 and following the proof of Lemma 2. The
shorthand Π has been introduced in (9)]

⇔ there exists P = PT > 0 such that[
xT uT

]
Π

[
x
u

]
≥ 0 for all

[
x
u

]
∈ Rn+m

⇔ there exists P = PT > 0 such that 2(CAx+ CBu)Tu

− δ(CAx+ CBu)T (CAx+ CBu) ≥ xT (PA+ATP )x

+ 2xTPBu for all x ∈ Rn and u ∈ Rm

⇒ there exists P = PT > 0 such that the differentiable

storage function V (x) = xTPx satisfies 2 ˙̄yTu− δ ˙̄yT ˙̄y

≥ V̇ (x) evaluated along any trajectory of M subjected
to any admissible input u(t) ∈ Rm for all t ∈ R≥0
[Note x, y, ȳ all are now time variables, that is, x = x(t)

∈ Rn, y = y(t) ∈ Rm, ȳ = ȳ(t) ∈ Rm for all t ∈ R≥0]

⇔ there exists a differentiable storage function V (x) =

xTPx with P = PT > 0 such that
∫ T

0

2 ˙̄yTu− δ ˙̄yT ˙̄y dt

≥ V (x(T ))− V (x(0)) for all T ∈ [0,∞) and evaluated
along any trajectory of M subjected to any admissible
input u(t) ∈ Rm for all t ∈ R≥0

⇔M is dissipative with respect to the supply rate w(u, ˙̄y)

= 2 ˙̄yTu− δ ˙̄yT ˙̄y and a specific storage function V (x) =

= xTPx with P = PT > 0.

iii)⇒ ii) This follows via the necessity part of the proof of
[17, Theorem 1]. Suppose there exists a differentiable storage
function V (x) = xTPx with P = PT > 0 such that

2 ˙̄yTu− δ ˙̄yT ˙̄y ≥ V̇ (x) (10)

along any trajectory of M for any admissible input u(t) ∈
Rm for all t ∈ R≥0. To turn this inequality into equality, let
us introduce a function d : Rn × Rm → R so that

2 ˙̄yTu− δ ˙̄yT ˙̄y = V̇ (x) + d(·, ·). (11)



Note that x, y, ȳ and u all are now variables of time and
they take real vectored values at each t ∈ R≥0. As

(2 ˙̄yTu− δ ˙̄yT ˙̄y)− V̇ (x) =
[
xT uT

]
Π

[
x
u

]
, (12)

it is evident that d(·, ·) is a function of both x and u, and
d(·, ·) must be quadratic in x and u. Moreover, d(·, ·) ≥ 0 is
implied from (10). Based on these observations, d(x, u) can
be factored as

d(x, u) = (Lx+Wu)T (Lx+Wu) (13)

for some suitable choice of the matrices L ∈ Rm×n and
W ∈ Rm×m. Note, the choice of L and W may not be
unique. Substituting (12) and (13) into (11), we have[

xT uT
]

Π

[
x
u

]
=
[
xT uT

]
[
LTL LTW
WTL WTW

] [
x
u

]
. (14)

Since L and W are constant matrices, (14) holds for all
x ∈ Rn and all u ∈ Rm, not necessarily related by the state
equations. Equating the coefficients of the terms involving x
and u, we obtain the set of equality conditions

−PA−ATP − δATCTCA = LTL, (15a)

−PB +ATCT − δATCTCB = LTW, and (15b)

CB +BTCT − δBTCTCB = WTW, (15c)

which is equivalent to the set of conditions AY + Y AT +
δ (CAY )T (CAY ) ≤ 0 and B+AY CT = 0. This completes
the proof. �

V. CONCLUSIONS

This paper generalises the notion of output strictly negative
imaginary systems (OSNI) introduced in [14] to widen the
applicability of this theory to more general class of LTI
systems. The present work has also underpinned the connec-
tions between negative imaginary (NI) theory and classical
dissipativity. It is established that the class of OSNI systems
is equivalent to a class of dissipative systems with respect to
a particular supply rate comprised of the time domain input
(u), the time derivative of an auxiliary output of the system
( ˙̄y) where ȳ is defined as y−Du and a real parameter δ > 0.
This dissipative characterisation may be extended in future
to develop a unified framework for analysis and synthesis of
NI and SNI systems.
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