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Abstract— This paper is concerned with robust output con-
sensus for networks of homogeneous negative imaginary (NI)
systems under L2 external disturbances and model uncertainty
in a generalised framework. By removing certain assumptions
which had been imposed in earlier studies, we derive generalised
conditions that guarantee robust output consensus of the
networked systems by means of recently published generalised
internal stability results for NI systems. The proposed condi-
tions are shown to reduce to earlier conditions in literature by
imposing the same assumptions. A convergence analysis is also
provided which is in agreement with the conclusions of previous
literature. An example that demonstrates the effectiveness of the
results is also provided.

I. INTRODUCTION

A dc loop gain condition has been the (one) condition
used to test the internal stability of two systems connected
in a positive feedback interconnection where one system
is negative imaginary (NI) and the other system is strictly
negative imaginary (SNI) provided two assumptions at in-
finite frequency hold. This result, which can be found in
[1] and [2], is applicable for the case when the NI system
may include poles on the imaginary axis but not at the
origin. For the case where the NI system may also include
poles at the origin, conditions for internal stability have
been proposed in [3] but with the disadvantage of being
proposed under restrictive assumptions. Recently, new results
for the internal stability of the same feedback interconnection
but with the aforementioned assumptions lifted have been
published in [4]. These new internal stability results involve
conditions that depend on both zero and infinite frequency
and generalise the existing results in literature. It is possible
therefore, with these new results, to extend the work in [5]
on robust output consensus for networked NI systems which
was mainly based on the previously existing internal stability
results, and this motivates our work in this paper.

Negative imaginary systems are systems with negative
imaginary frequency response. The NI systems theory was
first introduced in [1] in the interest to tackle stability issues
related to flexible structures with co-located force actuators
and position sensors in a systematic framework. This area of
research has been dominating the field of robust control over
the past decade and rapid developments have been witnessed
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in both theoretical and application sides such as [4], [6], [7],
[5], [8], to name a few.

Collective control of multi-agent systems is another area
of interest to the control systems community. In particular,
consensus control of networked systems has been the centre
of much attention over the past two decades. Consensus
control is concerned with the design of distributed control
laws (also known as protocols) such that all agents in
the network reach an agreement on a certain quantity of
interest. In relation to consensus/synchronization problems
for homogeneous multi-agent systems using relative output
measurements we mention [9], [10], [11], [12], [13]. The
problems in those papers were addressed from a state-space
perspective, observer-based consensus protocols were con-
sidered and protocol design involved the solution of Riccati
equations or/and linear matrix inequalities. More detailed and
comprehensive surveys relating to the topic in general can
be found in [14], [15], [16], [17].

In applications where an individual NI system is unable to
achieve a desired goal on its own, cooperation among several
agents is convenient. The work in [5], [8] explored this issue
where the robust output consensus problem was addressed
for networks of homogeneous and heterogeneous NI sys-
tems, respectively. Specifically, the issue was addressed by
reformulating the consensus problem into an internal stability
problem, owing to properties of Laplacian matrix of the
network graph, and thus providing a solution by means of
NI systems robust stability results. However, as mentioned
earlier, the results are applicable when certain assumptions
hold.

In this paper we address the robust output consensus prob-
lem for networks of NI systems by lifting the assumptions
imposed in [5]. In particular, we derive generalised results,
by use of the generalised internal stability results developed
in [4], such that robust output consensus is guaranteed for
a network of homogeneous NI systems under L2 external
disturbances and model uncertainty.

Notation: Let Rm×n denote the set of m×n real matrices.
Given a matrix A, AT and A∗ are the transpose and the
complex conjugate transpose of A respectively. λ̄(A) denotes
the largest eigenvalue (when the matrix has only real eigen-
values) of A. <[·] is the real part of a complex number. IN
is the identity matrix of dimension N × N and 1N is an
N × 1 vector with entries 1. A ⊗ B denotes the Kronecker
product of matrices A and B. diag(Ai) represents a block-
diagonal matrix with matrices Ai for all i ∈ {1, . . . , N}
on the main diagonal. [P,K] represents a positive feedback
interconnection between systems P and K. Finally, CLHP
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and OLHP stand for closed left half plane and open left half
plane, respectively.

II. PRELIMINARIES

A. Negative Imaginary Systems

Negative imaginary systems are defined as follows.
Definition 1 ([3]): A square real, rational, proper transfer

function matrix P (s) is termed negative imaginary if

1) P (s) has no poles in <[s] > 0;
2) j[P (jω) − P ∗(jω)] ≥ 0 for all ω ∈ (0,∞) except

values of ω where jω is a pole of P (s);
3) if jω0 with ω0 ∈ (0,∞) is a pole of P (s), then it is a

simple pole and the residue matrix K0 , lims→jω0
(s−

jω0)jP (s) is Hermitian and positive semidefinite;
4) if s = 0 is a pole of P (s), then lims→0 s

kP (s) = 0
∀k ≥ 3 and lims→0 s

2P (s) is Hermitian and positive
semidefinite.

Strictly negative imaginary systems are defined as follows.
Definition 2 ([1]): A square real, rational, proper transfer

function matrix K(s) is termed strictly negative imaginary
if

1) K(s) has no poles in <[s] ≥ 0;
2) j[K(jω)−K∗(jω)] > 0 for all ω ∈ (0,∞).

B. Graph theory

In this paper, we are concerned with undirected graphs. An
undirected graph G = (V, E) consists of a nonempty finite
vertex set V = {v1, v2, . . . , vN} and an edge set E ⊂ V ×V
of unordered pairs of vertices, called edges. An edge in G
is denoted by (vi, vj). If (vi, vj) ∈ E , then vertices (i.e.,
agents) vi and vj are adjacent (or neighbours) and can obtain
information from each other. The set of neighbours of vertex
vi is defined as Ni = {vj ∈ V : (vj , vi) ∈ E}. Self
edges are not allowed, that is, (vi, vi) /∈ E . A path in a
graph from vi to vj is a sequence of edges of the form
(vi, vi+1), (vi+1, vi+2), . . . , (vj−1, vj). An undirected graph
is connected if there is an undirected path between every
pair of distinct vertices. The adjacency matrix A = [aij ] ∈
RN×N of G is defined as aij = aji = 1 if (vi, vj) ∈ E , 0
otherwise. The Laplacian matrix L = [lij ] ∈ RN×N of G is
defined as lij = −aij , for i 6= j and lii =

∑N
j=1 aij for all

i ∈ {1, . . . , N}. It is well known that L is symmetric and
has nonnegative eigenvalues when the graph is undirected,
i.e., L is positive semidefinite. Furthermore, for undirected
graphs, zero is a simple eigenvalue of L and the associated
eigenvector is 1N if and only if the undirected graph is
connected [18], [17].
Let µi be the ith eigenvalue of an L associated with an
undirected and connected graph. Then the eigenvalues of L
can be arranged as

0 = µ1 < µ2 ≤ µ3 ≤ · · · ≤ µN = λ̄(L). (1)

III. PROBLEM DESCRIPTION

Consider a network of N negative imaginary systems with
external disturbances acting on each system. The dynamics
of the ith NI system are described as

yi = doi + P (s) (dini
+ ui) ∀i ∈ {1, . . . , N} (2)

where P (s) is an n×n transfer function matrix of the ith NI
system, ui, yi, dini and doi are all vector signals with “n”
elements and dini and doi are also energy-bounded in an H2

(or in the time domain L2[0,∞)) sense and are control input,
output of the ith NI system, input and output disturbances
respectively.

It is assumed that relative output measurements with
respect to neighbouring agents are available to each system.
The network graph which models the information exchange
among the systems is assumed fixed and satisfies the follow-
ing assumption.

Assumption 1: The network graph G is undirected and
connected.
Following [5], the distributed control protocol for the ith NI
system is given by

ui = K(s)zi,

zi =
∑N

j=1
aij(yi − yj),

∀i ∈ {1, . . . , N} (3)

where K(s) is the transfer function matrix of an SNI
feedback controller, zi represents the signal of relative mea-
surements of neighbouring agents with respect to system i
and aij are the elements of the adjacency matrix associated
with the network graph G.

The collective network dynamics can thus be written as

y = do + (IN ⊗ P (s)) (din + u) , (4)

and
u = (IN ⊗K(s))z,

z = (L ⊗ In)y,
(5)

where z =
[
zT1 , . . . , z

T
N

]T
, y =

[
yT1 , . . . , y

T
N

]T
, u =[

uT1 , . . . , u
T
N

]T
, din =

[
dTin1

, . . . , dTinN

]T
and do =[

dTo1 , . . . , d
T
oN

]T
are all vector signals with “nN” elements

and din and do are also energy-bounded in an H2 (or in the
time domain L2[0,∞)) sense. L ∈ RN×N is the Laplacian
matrix associated with the network graph G. A block diagram
of the closed loop networked multi-agent system is depicted
in Fig. 1. Let P̄ (s) = (L⊗In)(IN⊗P (s)) denote the transfer
function matrix from u to z and let K̄(s) = IN ⊗ K(s)
denote the transfer function matrix from z to u. According
to [5, Lemma 3], P̄ (s) is NI if and only if P (s) is NI with G
satisfying Assumption 1. Similarly, K̄(s) is SNI since K(s)
is SNI. We consider the robust output consensus problem for
networks of NI systems. Before stating a formal definition of
the problem, it is important to state how model uncertainties
are captured in this framework.

Remark 1: Model uncertainties are captured in this frame-
work by noting that any additive NI perturbations to a
nominal NI system results in an NI perturbed systems.



P (s) . . . 0
...

. . .
...

0 . . . P (s)

L ⊗
In

K(s) . . . 0
...

. . .
...

0 . . . K(s)

K̄(s)

u + + y z

P̄ (s)
dodin

Fig. 1. Closed loop networked multi-agent system.

Other forms of feedback uncertainties are also possible that
preserve NI properties (see e.g. [6], [19]). Hence, P (s) is
regarded interchangeably as a nominal or perturbed plant as
long as it fulfils the robust output consensus conditions which
will be shown to depend on the dc and infinite frequency
gains of the systems as well as the network graph but not
on the precise dynamics of the systems.

Definition 3 ([5], [8]): For a family of NI plant dynamics
and for all L2[0,∞) disturbances acting on the plant input
and/or output, robust output consensus is said to be achieved
with distributed control protocol (3) for a network of NI
systems when yi → yss ∀i ∈ {1, . . . , N} with no external
disturbances and when yi → yss + δ ∀i ∈ {1, . . . , N} with
δ ∈ L2[0,∞), where yss is the final convergence trajectory.
By properties of L, the output consensus problem can be
addressed as an internal stability problem for the intercon-
nection [P̄ (s), K̄(s)]. Our objective is therefore to derive
generalised conditions, by means of generalised internal
stability results in [4], for which robust output consensus is
guaranteed for a network of homogeneous NI systems under
L2 external disturbances and model uncertainty.

IV. ROBUST OUTPUT CONSENSUS

In this section, we address the robust output consensus
problem for networked NI systems with no poles at the
origin.

Theorem 1: Consider a network of homogeneous NI sys-
tems P (s) without poles at the origin, a network graph G
that satisfies Assumption 1 and an SNI feedback controller
K(s) for each NI agent. Let µi for all i ∈ {1, . . . , N} be
the eigenvalues of the Laplacian matrix L associated with G
ordered as in (1). Then, robust output consensus is achieved
via control protocol (5) for networked system (4) as shown
in Fig. 1 (or in a distributed manner (3) for each system
(2)) under any external disturbances din, do ∈ LnN

2 [0,∞)
and model uncertainty that retains the NI property of the
perturbed system P (s) if and only if for all i ∈ {2, . . . , N}

In − µiP (∞)K(∞) is nonsingular,

λ̄[[In − µiP (∞)K(∞)]−1P (∞)[K(0)−K(∞)]] <
1

µi
, and

λ̄[[In − µiK(0)P (∞)]−1K(0)[P (0)− P (∞)]] <
1

µi
.

Proof: Let P̄ (s) = L⊗ P (s) and K̄(s) = IN ⊗K(s).
Now P̄ (s) is NI by [5, Lemma 3] and has no poles at the
origin since P (s) has no poles at origin. Also, K̄(s) is SNI
since K(s) is SNI. As in the proof of [5, Th. 1], the internal
stability of [P̄ (s), K̄(s)] implies output consensus when
din = do = 0, by noting that z → 0⇔ y → 1N ⊗ yss since
Assumption 1 holds. According to [4, Th. 9], [P̄ (s), K̄(s)]
is internally stable if and only if

INn − P̄ (∞)K̄(∞) is nonsingular,
λ̄[[INn − P̄ (∞)K̄(∞)]−1[P̄ (∞)K̄(0)− INn]] < 0, and
λ̄[[INn − K̄(0)P̄ (∞)]−1[K̄(0)P̄ (0)− INn]] < 0.

Now L is a real symmetric matrix due to Assumption 1.
Thus, L can be written as L = UΛUT where U is an or-
thogonal matrix and Λ is a diagonal matrix with eigenvalues
of L on the diagonal. Then,

INn − P̄ (∞)K̄(∞)

= INn − (L ⊗ P (∞))(IN ⊗K(∞))

= INn − (L ⊗ P (∞)K(∞))

= INn − (UΛUT ⊗ P (∞)K(∞))

= (U ⊗ In)[INn − (Λ⊗ P (∞)K(∞))](UT ⊗ In)

= (U ⊗ In)diag(In − µiP (∞)K(∞))(UT ⊗ In)

∀i ∈ {1, 2, . . . , N}.

So,

INn − P̄ (∞)K̄(∞) is nonsingular
⇔ In − µiP (∞)K(∞) ∀i ∈ {2, . . . , N} is nonsingular

(due to the fact that U and UT are nonsingular matrices
and for µ1 = 0, In is nonsingular),

λ̄[[INn − P̄ (∞)K̄(∞)]−1[P̄ (∞)K̄(0)− INn]] < 0

⇔ λ̄[[INn − (L ⊗ P (∞)K(∞))]−1

× [(L ⊗ P (∞)K(0))− INn]] < 0

⇔ λ̄[[INn − (UΛUT ⊗ P (∞)K(∞))]−1

× [(UΛUT ⊗ P (∞)K(0))− INn]] < 0

⇔ λ̄[(U ⊗ In)[INn − (Λ⊗ P (∞)K(∞))]−1(UT ⊗ In)

× (U ⊗ In)[(Λ⊗ P (∞)K(0))− INn](UT ⊗ In)] < 0

⇔ λ̄[[INn − (Λ⊗ P (∞)K(∞))]−1

× [(Λ⊗ P (∞)K(0))− INn]] < 0

⇔ max
i=1,...,N

λ̄[[In − µiP (∞)K(∞)]−1

× [µiP (∞)K(0)− In]] < 0

(since the matrix in the previous step is block diagonal)
⇔ λ̄[[In − µiP (∞)K(∞)]−1[µiP (∞)K(0)− In]] < 0

∀i ∈ {2, . . . , N}
(since for µ1 = 0, the condition is trivally fulfilled)

⇔ λ̄[µi[In − µiP (∞)K(∞)]−1P (∞)K(0)

− [In − µiP (∞)K(∞)]−1] < 0 ∀i ∈ {2, . . . , N}



⇔ λ̄[µi[In − µiP (∞)K(∞)]−1P (∞)K(0)

− µi[In − µiP (∞)K(∞)]−1P (∞)K(∞)− In] < 0

∀i ∈ {2, . . . , N}
⇔ λ̄[µi[In − µiP (∞)K(∞)]−1P (∞)[K(0)−K(∞)]] < 1

∀i ∈ {2, . . . , N}
⇔ λ̄[[In − µiP (∞)K(∞)]−1P (∞)[K(0)−K(∞)]]

< 1/µi ∀i ∈ {2, . . . , N}
and

λ̄[[INn − K̄(0)P̄ (∞)]−1[K̄(0)P̄ (0)− INn]] < 0

⇔ λ̄[[INn − L⊗K(0)P (∞)]−1

× [L ⊗K(0)P (0)− INn]] < 0

⇔ λ̄[[INn − (UΛUT ⊗K(0)P (∞))]−1

× [(UΛUT ⊗K(0)P (0))− INn]] < 0

⇔ λ̄[(U ⊗ In)[INn − (Λ⊗K(0)P (∞))]−1(UT ⊗ In)

× (U ⊗ In)[(Λ⊗K(0)P (0))− INn](UT ⊗ In)] < 0

⇔ λ̄[[INn − (Λ⊗K(0)P (∞))]−1

× [(Λ⊗K(0)P (0))− INn]] < 0

⇔ max
i=1,...,N

λ̄[[In − µiK(0)P (∞)]−1

× [µiK(0)P (0)− In]] < 0

(since the matrix in the previous step is block diagonal)
⇔ λ̄[[In − µiK(0)P (∞)]−1[µiK(0)P (0)− In]] < 0

∀i ∈ {2, . . . , N}
(since for µ1 = 0, the condition is trivally fulfilled)

⇔ λ̄[µi[In − µiK(0)P (∞)]−1K(0)P (0)

− µi[In − µiK(0)P (∞)]−1K(0)P (∞)− In] < 0

∀i ∈ {2, . . . , N}
⇔ λ̄[µi[In − µiK(0)P (∞)]−1K(0)[P (0)− P (∞)]] < 1

∀i ∈ {2, . . . , N}
⇔ λ̄[[In − µiK(0)P (∞)]−1K(0)[P (0)− P (∞)]] < 1/µi

∀i ∈ {2, . . . , N}

The proof for robust output consensus under external
disturbances and model uncertainties then follows similar to
that in the proof of [5, Th.1].

Remark 2: We shall show that In − µiK(0)P (∞) in
the third condition of Theorem 1 is nonsingular ∀i ∈
{2, . . . , N} as for µi = 0 it is clear. From the
proof above for the second condition, we have λ̄[[In −
µiP (∞)K(∞)]−1P (∞)[K(0)−K(∞)]] < 1/µi if and only
if λ̄[[In − µiP (∞)K(∞)]−1[µiP (∞)K(0)− In]] < 0 ∀i ∈
{2, . . . , N}. From this condition and by the first condition of
Theorem 1, the matrix In − µiK(0)P (∞) ∀i ∈ {2, . . . , N}
is guaranteed nonsingular.

Remark 3: It turns out that removing the assumptions in
[5] makes the conditions more involved as they now depend
on all nonzero eigenvalues and not only on the largest
eigenvalue of L. However, this is not an issue since our

work is limited to fixed graphs and finite number of agents.
Moreover, since all nonzero eigenvalues are positive, then if
the left hand side of the inequalities of the second and third
conditions are negative ∀i ∈ {2, . . . , N}, the inequalities
need not be checked as they are clearly satisfied.

Remark 4: For special classes of undirected graphs, the
conditions simplify significantly. This includes complete and
star graphs (see e.g. [20]). For complete graphs, the nonzero
eigenvalues are all equal to N . Hence the conditions of
Theorem 1 reduce to In − NP (∞)K(∞) is nonsingular,
λ̄[[In −NP (∞)K(∞)]−1P (∞)[K(0)−K(∞)]] < 1

N , and
λ̄[[In − NK(0)P (∞)]−1K(0)[P (0) − P (∞)]] < 1

N . For a
star graph, µi = 1 ∀i ∈ {2, . . . , µN−1} and µN = N and
the conditions simplify accordingly.
The robust consensus conditions in Theorem 1 reduce to the
one in [5] by imposing the same two assumptions at infinite
frequency as follows.

Corollary 1: Let the hypotheses of Theorem 1 hold and
furthermore let P (∞)K(∞) = 0 and K(∞) ≥ 0. Then,
robust output consensus is achieved via control protocol (5)
for networked system (4) as shown in Fig. 1 (or in a dis-
tributed manner (3) for each system (2)) under any external
disturbances din, do ∈ LnN

2 [0,∞) and model uncertainty
that retains the NI property of the perturbed system P (s)
if and only if

λ̄[P (0)K(0)] <
1

λ̄(L)
.

Proof: The proof will be published elsewhere.
A different set of conditions for robust output consensus can
be obtained by applying [4, Th. 14] rather than [4, Th. 9] as
follows.

Theorem 2: Consider a network of homogeneous NI sys-
tems P (s) without poles at the origin, a network graph G
that satisfies Assumption 1, and an SNI feedback controller
K(s) for each NI agent. Let µi for all i ∈ {1, . . . , N} be
the eigenvalues of the Laplacian matrix L associated with G
ordered as in (1). Then, robust output consensus is achieved
via control protocol (5) for networked system (4) as shown
in Fig. 1 (or in a distributed manner (3) for each system
(2)) under any external disturbances din, do ∈ LnN

2 [0,∞)
and model uncertainty that retains the NI property of the
perturbed system P (s) if and only if ∀i ∈ {2, . . . , N}
In − µiP (∞)K(∞) is nonsingular,

λ̄[[P (0)− P (∞)]K(∞)[In − µiP (∞)K(∞)]−1] <
1

µi
, and

λ̄[[K(0)−K(∞)]P (0)[In − µiK(∞)P (0)]−1] <
1

µi
.

Proof: The proof is similar to the proof in Theorem 1
but we here apply [4, Th. 14] instead of [4, Th. 9].

V. CONVERGENCE ANALYSIS

In this section, we study convergence of the networked
systems under distributed control protocol (3). We show that
the same conclusion as in [5] for the final convergence can
be drawn here which states that the steady state behaviour



of the closed loop networked system is determined by the
eigenvalues of the closed loop networked system on the
imaginary axis. In doing so, the external disturbances and
model uncertainty will not be considered in this section.

Let a minimal realisation for the ith NI system P (s) be

ẋi = Axi +Bui

yi = Cxi +Dui
, i ∈ {1, . . . , N} (6)

and a minimal realisation for the ith SNI controller K(s) be

˙̄xi = Āx̄i + B̄ūi

ȳi = C̄x̄i + D̄ūi
, i ∈ {1, . . . , N} (7)

where A ∈ Rp×p, B ∈ Rp×n, C ∈ Rn×p, D ∈ Rn×n,
Ā ∈ Rq×q , B̄ ∈ Rp×n, C̄ ∈ Rn×q and D̄ ∈ Rn×n. Define
R = (INn − L ⊗DD̄). Unlike [5], the closed loop system,
with the assumption DD̄ = 0 removed, is now given by

[
ẋ

˙̄x

]
= Ψcl

[
x

x̄

]
(8)

where

Ψcl =

[
Ψcl11 Ψcl12

Ψcl21 Ψcl22

]
,

Ψcl11 = (IN ⊗A)+(L⊗BD̄)R−1(IN ⊗C), Ψcl12 = (IN ⊗
BC̄)+(L⊗BD̄)R−1(IN⊗DC̄),Ψcl21 = (L⊗B̄)R−1(IN⊗
C), and Ψcl22 = (IN⊗Ā)+(L⊗B̄)R−1(IN⊗DC̄). Define
R̃i = (In − µiDD̄) and S̃i = (In − µiD̄D). The following
Lemma yields information about the spectrum of Ψcl, which
can be considered a generalisation of [5, Lemma 5].

Lemma 1: Let µi be the ith eigenvalue of L associated
with eigenvector viL. The spectrum of Ψcl is given by the
union of the spectra of the following matrices:

ψi =

[
A+ µiBD̄R̃

−1
i C BC̄ + µiBD̄R̃

−1
i DC̄

µiB̄R̃
−1
i C Ā+ µiB̄R̃

−1
i DC̄

]

∀i ∈ {1, . . . , N}.

Furthermore, let
[
vi1
∗
vi2
∗ ]∗ be an eigenvector of ψi. Then,

the corresponding eigenvector of Ψcl is

[
viL ⊗ vi1
viL ⊗ vi2

]
.

Proof: The proof will be published elsewhere.
The importance of Lemma 1 is that it characterises the
spectrum of Ψcl which plays an essential role in determining
the final convergence of system (8). In what follows we
show that the steady-state behaviour of the closed loop
system (8) is in particular determined by the eigenvalues of

A on the imaginary axis. For µ1 = 0, ψ1 =

[
A BC̄
0 Ā

]
.

The eigenvalues of ψ1 are the union of the eigenvalues
of A and Ā which are in the CLHP excluding origin and
OLHP, respectively. For µi > 0 ∀i ∈ {2, . . . , N}, using [2,
Lemma 7] and [2, Lemma 8], ψi can be written as

ψi =

[
A BC̄

0 Ā

]
+ µi

[
BD̄

B̄

]
R̃−1i

[
C DC̄

]
= ΦTi

41

2 3

L =




2 −1 −1 0
−1 2 −1 0
−1 −1 3 −1
0 0 −1 1




Fig. 2. Network Graph and associated Laplacian matrix.

where Ti =

[
Y −1 − µiC

∗D̄R̃−1i C −C∗S̃−1i C̄

−µiC̄
∗R̃−1i C Ȳ −1 − µiC̄

∗R̃−1i DC̄

]
,

Φ =

[
AY 0

0 ĀȲ

]
, and in a similar manner as [4, Th. 9] ψi

is Hurwitz if and only if the three conditions in Theorem 1
are satisfied. Thus the eigenvalues of Ψcl on the imaginary
axis are the eigenvalues of A on the imaginary axis and
all the remaining eigenvalues of Ψcl are in the OLHP. Let
n0 be the number of eigenvalues of Ψcl on the imaginary
axis denoted by λA and let vrA and vlA be the right and
left eigenvectors of A associated with λA. The steady state
expression of system (8) is given in the following Lemma.

Lemma 2: The steady state trajectory of system (8) is
given by

[
x(t)

x̄(t)

]
t→∞−−−→

[
w1 . . . wn0

]
eJ
′t




v∗1
...
v∗n0




[
x(0)

x̄(0)

]
(9)

where J ′ is the Jordan block associated with λA, and ∀j ∈
{1, . . . , n0}

wj =

[
1N ⊗ vrA

0Nq×1

]
, vj =

[
1N ⊗ 1

N v
l
A

1N ⊗ 1
N (λAIq − Ā)−∗C̄∗B∗vl

A

]

are the right and left eigenvectors of Ψcl associated with λA.
Proof: Similar to proof of [5, Th. 2].

Since we are concerned with output consensus, internal
stability guarantees that y → 1N⊗yss. Thus, the final output
convergence is given by

y(t) = R−1(IN ⊗ C)x(t) +R−1(IN ⊗DC̄)x̄(t)

Ry(t) = (IN ⊗ C)x(t) + (IN ⊗DC̄)x̄(t)

1N ⊗ yss =
[

(IN ⊗ C) (IN ⊗DC̄)
]
[
x(t)

x̄(t)

]
.

VI. ILLUSTRATIVE EXAMPLE

Consider a group of N = 4 homogeneous NI systems
connected over the network topology shown in Fig. 2. The
Laplacian matrix L associated with the network graph is
also given in Fig. 2. The nonzero eigenvalues of L are
{1, 3, 4}. Data is borrowed from [4] where each NI system
is undamped and has a transfer function given by P (s) =

1
s2+1 + 2. The SNI feedback controller to each plant is
chosen to be K(s) = 1

s+1 + 5. Since P (∞)K(∞) =
10 6= 0, the results in [5, Th. 1] can not be used to



TABLE I
CONDITIONS OF THEOREM 1 CHECKED FOR ALL NONZERO

EIGENVALUES OF L

i µi
condition 1 condition 2 condtion 3

6= 0 < 1/µi < 1/µi

2 1 −9 −2/9 −6/11

3 3 −29 −2/29 −6/35

4 4 −39 −2/39 −6/47
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Fig. 3. Robust output consensus. (a) Without disturbances and (b) With
external output disturbances.

determine whether robust output consensus of the networked
NI systems can be achieved or not. On the other hand, robust
output consensus of the networked NI systems can be easily
concluded via Theorem 1 since the conditions are satisfied
for all nonzero eigenvalues as shown in Table I. Simulation
results are shown in Fig. 3. The initial conditions are chosen
as x(0) = [1, 2, 3, 4]T and ẋ(0) = [0.1, 0.2, 0.3, 0.4]T for the
NI systems and x̄(0) = [0, 0, 0, 0]T for the SNI controllers.
It can be seen from Fig. 3a and Fig. 3b that robust output
consensus is achieved when no external disturbances are
present and when external output disturbances are present,
respectively.

VII. CONCLUSION

In this paper we derived generalised conditions for which
robust output consensus is guaranteed for a network of
homogeneous NI systems with no poles at the origin under
L2 external disturbances and model uncertainty. We showed
that these results reduce to earlier results proposed in liter-
ature when imposing the same assumptions. A convergence
analysis for the NI systems’ outputs was also given. It was
shown that the final convergence depends on the eigenvalues
of the closed loop networked system on the imaginary axis
which is in agreement with the conclusion provided in earlier
literature. An illustrative example was given to demonstrate
the capability of the generalised results over earlier results
when earlier assumptions fail to hold. Finally, it is worth
mentioning that robust output consensus of Networked NI
systems with poles at the origin is currently being studied.
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