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Abstract— In this paper, we show that there exists an alter-
native transformation from the class of negative imaginary to
the class of positive real systems. We use this to offer a solution
to the problem of designing a controller such that the closed
loop is strongly strictly negative imaginary and its associated
linear fractional interconnection is internally stable.

I. INTRODUCTION
Negative imaginary (NI) systems is an important notion

within the area of robust control theory because an NI
uncertain system can be characterized only by the knowledge
of its phase [1] like positive real (PR) systems [2]. Examples
of NI engineering applications can be found in [3]. Also, it is
known that the negative interconnection of a PR system with
a weakly strictly positive real (WSPR) system is internally
stable [4], while the positive interconnection of an NI system
with a weakly strictly negative imaginary (WSNI) system
is internally stable as long as additional gain conditions
are satisfied [5]. Then, it is natural to try to relate NI to
PR systems. In fact, there exists a transformation from the
former to the latter by means of a blocking zero at the origin
[1]. However, this transformation has complicated the use of
existing solutions of the PR synthesis problem [6], [7], [8],
[9], [10], [11] to solve the corresponding NI problem. This
is because WSNI systems are transformed into non-strict PR
systems and not WSPR systems [1], [12]. For this reason,
most of the attempts to solve the NI synthesis problem have
produced a nominal closed-loop which is not strictly NI with
possible poles on the jω axis. Therefore, the internal stability
of the associated interconnection is not accomplished in
previous literature [12], [13], [14], [15]. Alternatively, [16],
[17] offered sufficient conditions based on the solution of
two algebraic Riccati equations (ARE) in order to guarantee
the closed loop is WSNI and the associated interconnection
is internally stable. However, due to the peculiarities of the
blocking zero at the origin, one of the involved AREs has
a singular Hamiltonian and consequently, its computation
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Fig. 1. Standard feedback connection

is numerically challenging. [10] and [11] consider a case
which includes performance objectives but the conservative
sufficient conditions provided there do not necessarily give
a WSNI closed-loop even though they guarantee internal
stability of the closed loop. In this paper, we are interested in
a WSNI closed-loop such that robust stability is guaranteed
against non-strict NI uncertainties such as the spillover
dynamics of undamped flexible structures [18]. Furthermore,
the conditions we provide are necessary and sufficient.

Notation: Let <(a) denote the real part of a complex
number a. Given two sets A and B, A\B denotes the relative
complement of B in A, i.e. the set of all elements that
belong to A but not to B. I stands for an identity matrix
of appropriate dimensions. Let rank(A), kerA denote the
rank and the kernel respectively of a matrix A, while λ(A)
denotes the maximum eigenvalue of a matrix A that has
only real eigenvalues. σ(A), σ(A) stand for the minimum
and maximum singular value of A respectively. We will
denote by herm(A) the Hermitian part of a square matrix,
i.e. herm(A) = (1/2)(A + A∗). For a matrix A ∈ Cn×m
with rank r, A⊥ ∈ C(n−r)×n denotes a matrix such that
A⊥A = 0 and A⊥A⊥∗ > 0. A−T and G∼(s) are shorthand
for (A−1)T and G(−s)T respectively. For simplicity of
notation, we write Fε(s) instead of F (s, ε), then Fε=0(s)
represents F (s, 0). A square transfer function G(s) such
that det(G(s)) 6= 0 for some s ∈ C is said to have full

normal rank. G(s) =

[
A B
C D

]
denotes the state-space

representation of a transfer function G(s). We shall also write
the state-space representation of G(s) in a matrix form as

G(s)
s
= G =

[
A B
C D

]
. Fl(G(s),K(s)) stands for the lower

fractional transformation of G(s) and K(s). 〈G(s),K(s)〉
denotes the lower linear fractional interconnection of Fig. 1.
We say 〈G(s),K(s)〉 is internally stable in the sense of [19,
Definition A.4.1].

Authors' Camera Ready Manuscript. To appear in the  
Proceedings of the 57th IEEE Conference on Decision and Control, Miami, FL, USA, Dec 2018, 
Please cite using bibliographic data of the associated published version.



II. PRELIMINARIES

The following technical results are useful to derive the
main results of this paper.

Lemma 1: Let X , Y , Z and W be real matrices of
compatible dimensions. Then, X = XT > 0, Y = Y T > 0
and W = 0 if and only if there exists ε0 > 0 such that[

X W
W 0

]
+ ε

[
0 Z
ZT Y

]
> 0 ∀0 < ε < ε0. (1)

Proof: ( =⇒ ) Note that if X = XT > 0 and Y =
Y T > 0 then [

X εZ
εZT εY

]
> 0

⇐⇒ ε > 0, Y − εZTX−1Z > 0

⇐⇒ ε > 0, ελ(ZTX−1ZY −1) < 1.

Therefore, if Z = 0 then (1) holds for all ε > 0. On
the other hand, when Z 6= 0, (1) holds for all 0 < ε <
λ(ZTX−1ZY −1)−1.

(⇐= ) It is easy to check that X > 0 and Y > 0 (since
ε > 0). Finally, by continuity[

X W
W 0

]
≥ 0

which yields W = 0.
Lemma 2: Considser a matrix C1 ∈ Cm×n. Let the

matrices X ∈ Cn×n, Y ∈ Cn×n, S ∈ Ck×n, W ∈ Ck×n,
N ∈ Ck×k, Ñ ∈ Ck×k be such that

P =

[
N W
WT X

]
> 0 and P−1 =

[
Ñ S
ST Y

]
(2)

and consider vectors u ∈ Cn and v ∈ Cm. Then, the
following two statements are equivalent:

1)
[
S 0
Y −CT1

] [
u
v

]
= 0.

2)
[
Y In
In X

] [
I 0
0 −CT1

] [
u
v

]
= 0.

Proof: First, note that Y −X−1 = ST Ñ−1S, then

0 =

[
S 0
Y −CT1

] [
u
v

]
⇐⇒ 0 =

[
Y −X−1 0

Y −CT1

] [
u
v

]
⇐⇒ 0 =

[
0 I
−X X

] [
Y −X−1 0

Y −CT1

] [
u
v

]
⇐⇒ 0 =

[
Y In
In X

] [
I 0
0 −CT1

] [
u
v

]
,

which is the desired conclusion.

III. REVIEW OF PR AND NI SYSTEMS

We start by recalling the definition of real, rational and
proper PR transfer functions. For a detailed discussion on
PR systems see [20], [4] and references therein. We remark
that in this paper we consider only transfer functions that are
real, rational and proper.

Definition 1: A real, rational and proper transfer function
matrix F : C→ Cm×m is positive real (PR) if the following
conditions are satisfied:

1) F (s) has no poles in {s ∈ C : < (s) > 0};
2) F (jω) + F (jω)∗ ≥ 0 for all ω ∈ R except for the

values of ω where jω is a pole of F (s);
3) if s = jω0 with ω0 ∈ R is a pole of F (s), then

it is a simple pole and the residue matrix of F (s),
K0 = lims→jω0

(s − jω0)F (s), is Hermitian and
positive semidefinite.

Next, we recall the weakest notion of strictly PR systems.
Definition 2: A real, rational and proper transfer function

F : C→ Cm×m is weakly strictly positive real (WSPR) if
1) F (s) has no poles in {s ∈ C : < (s) ≥ 0};
2) F (jω) + F (jω)∗ > 0 for all ω ∈ R.
As pointed out in [4] and [21], there are several definitions

for the notion of strictly positive real systems and there is no
consensus in the literature on this definition. By the definition
that we provide below, we propose to contribute with a
terminology that is self explanatory and avoids confusion
throughout the following sections.

Definition 3: [22] A real, rational and proper transfer
function F : C → Cm×m is strictly positive real with γ-
nullity at ∞ (SPR(γ)) if

1) F (s) is WSPR;
2) lim|ω|→∞ω

2γ det[F (jω) + F (jω)∗] 6= 0;
where γ is the dimension of the null space of F (∞) +
F (∞)T . Furthermore, the above limit in 2) is positive.

Lemma 3: The real, rational and proper transfer function
F : C→ Cm×m is

1) SPR(0) if and only if F (s) is WSPR and F (∞) +
F (∞)T > 0;

2) SPR(m) if and only if F (s) is WSPR, F (∞) =
−F (∞)T and lim|ω|→∞ω

2[F (jω) + F (jω)∗] > 0.
Some definitions of NI systems are next given below.
Definition 4: [18] A real, rational and proper transfer

function matrix G : C→ Cm×m is negative imaginary (NI)
if the following conditions are satisfied:

1) G(s) has no poles in {s ∈ C : < (s) > 0};
2) j[G(jω)−G(jω)∗] ≥ 0 for all ω ∈ (0,∞) except for

the values of ω where jω is a pole of G(s);
3) if s = jω0 with ω0 ∈ (0,∞) is a pole of G(s), then it

is a simple pole and the residue matrix of jG(s), K0 =
lims→jω0(s − jω0)jG(s), is Hermitian and positive
semidefinite;

4) if s = 0 is a pole of G(s), then it is at most a double
pole and lims→0 s

2G(s) is Hermitian and positive
semidefinite.

One important difference between NI and PR systems is
that the former allow up to a relative degree of two, while
the relative degree of the latter cannot be greater than one.

Next, the weakest notion of strictly NI systems is referred
to as WSNI which is the analogous counterpart of WSPR
systems.

Definition 5: [1] A real, rational and proper transfer func-
tion G : C → Cm×m is weakly strictly negative imaginary
(WSNI) if



1) G(s) has no poles in {s ∈ C : < (s) ≥ 0};
2) j[G(jω)−G(jω)∗] > 0 for all ω > 0.
Next, we define the analogous counterpart of SPR(γ)

systems.
Definition 6: A real, rational and proper transfer function

G : C→ Cm×m is strictly negative imaginary with γ-nullity
at ∞ (SNI(γ)) if

1) G(s) is WSNI;
2) lim
|ω|→∞

ω2γ+m det[j(G(jω)−G(jω)∗)] 6= 0;

where γ = dim ker
{

lim
ω→∞

jω[G(jω)−G(jω)∗]
}

. Further-
more, the above limit in 2) is positive.

Remark 1: Condition lim|ω|→∞ ω2γ+m det[j(G(jω) −
G(jω)∗)] 6= 0 can be easily checked using the state-space
realization of s[G(s)−G(∞)] as in [22, Corollary 1].

We now recall a definition of strongly strictly negative
imaginary systems.

Definition 7: [23] A real, rational and proper transfer
function G : C → Cm×m is strongly strictly negative
imaginary (SSNI) if

1) G(s) is SNI(0);
2) lim

ω→0+
j 1
ω [G(jω)−G(jω)∗] > 0.

Remark 2: G(s) is SNI(0) means G(s) is a WSNI system
with lim

ω→∞
jω[G(jω)−G(jω)∗] > 0, i. e. SNI(γ = 0).

Remark 3: Note that due to the extra condition 2), SSNI
systems are not direct counterparts of SPR(0) systems.

IV. RELATIONS BETWEEN SNI(γ) AND SPR(γ) SYSTEMS

The authors in [21] showed that there exist transformations
between SPR(γ) systems and symmetric SNI(γ) systems
with a departure condition limω→0+j

1
ω [G(jω)−G(jω)∗] >

0. Those results suggested the possibility of using SPR(γ)
controller synthesis methods [6], [7], [24] for the synthesis
of SNI(γ) systems. However, the symmetry condition would
complicate the direct use of such methods. Here we show
that it is possible to extend those results to include non-
necessarily symmetric SNI(γ) transfer functions which do
not necessarily satisfy the aforementioned departure condi-
tion.

A. SNI(γ) to SPR(γ)

The next theorem shows that a general non-symmetric
SNI(γ) system can be transformed into an SPR(γ) system
by means of a transmission zero away from the origin.

Theorem 1: Let G : C → Cm×m be a real, rational,
proper SNI(γ) transfer function such that V TG1V = 0,
where G1 = limω→∞jω [G(jω)−G(∞)] and the columns
of V ∈ Cm×γ form a basis for the null space of G1 +GT1 .
Then, there exists ε0 > 0 such that (s+ ε)[G(s)−G(∞)] is
SPR(γ) for all 0 < ε < ε0.

Proof: Assume, without loss of generality, that G(s)
is strictly proper and let Fε(s) = (s + ε)G(s). We need to
show that for all 0 < ε < ε0

1) Fε(s) has no poles in {s ∈ C : < (s) ≥ 0};
2) Fε(jω) + Fε(jω)∗ > 0 for all ω ∈ R;

3) lim|ω|→∞ω
2α det [Fε(jω) + Fε(jω)∗] > 0, where

α = dim ker{Fε(∞) + Fε(∞)T };
4) α = γ.

Note that Fε(s) and G(s) share the same set of poles with
the possible exception of a pole at s = −ε. Therefore
condition 1) is satisfied. Also, observe that Fε(∞) = G1,
then condition 4) holds.

Moreover, for each nonzero ω ∈ R, Fε(jω)+Fε(jω)∗ > 0
is equivalent to LFε

(jω) + LFε
(jω)∗ > 0 by [22, Lemma

4], where

LFε
(s) =


Fε(s) if γ = 0,

−s2Fε(s) if γ = m,[
UT

−sV T

]
Fε(s)

[
U sV

]
if 0 < γ < m,

(3)

and the columns of U form a basis for the range of G1+GT1 .
At ω = 0, Fε(0) + Fε(0)T > 0 for every ε > 0 since

G(0) = G(0)T > 0 [1]. Then, by continuity of functions
there exists a 0 < ω1 ∈ R such that Fε(jω) + Fε(jω)∗ >
0 ∀|ω| < ω1. Consequently,

LFε
(jω) + LFε

(jω)∗ > 0 ∀0 6= |ω| < ω1.

In addition, via [22, Corollary 1], if condition 2) is sat-
isfied, condition 3) is equivalent to lim|ω|→∞[LFε(jω) +
LFε(jω)∗] > 0.

As a result, since LFε is continuous, it only remains to
show that LFε(jω) + LFε(jω)∗ is nonsingular for all ω1 ≤
|ω| ∈ R ∪ {∞}. This will be done in four steps.

First, rewrite LFε as LFε(s) = LF (s) + εLG(s), where
F (s) = Fε=0(s) and LX(s) is defined as in (3) with X ∈
{F,G} instead of Fε.

Following this, observe that for all 0 6= ω ∈ R
we have F (jω) + F (jω)∗ > 0 [23, Lemma 3.1], so
LF (jω) + LF (jω)∗ > 0. Also, via [22, Corollary 1]
lim|ω|→∞ det[LF (jω) + LF (jω)∗] 6= 0 since

0 6= lim
|ω|→∞

ω2γ+m det [j(G(jω)−G(jω)∗)]

= lim
|ω|→∞

ω2γ det [F (jω) + F (jω)∗] .

Hence, there exists σ1 > 0 such that σ(LF (jω) +
LF (jω)∗) ≥ σ1 ∀|ω| ≥ ω1.

Next, notice that G(s) ∈ RH∞, sG(s) ∈ RH∞ and
−s2V TG(s)V ∈ RH∞ since G(s) is stable, strictly proper
and V TG1V = 0.

Thus, there exists k1 > 0 such that σ(LG(jω) +
LG(jω)∗) ≤ k1 for all |ω| ≥ ω1.

Finally, σ(LFε
(jω) +LFε

(jω)∗) ≥ σ1− εk1 for all |ω| ≥
ω1 and by choosing 0 < ε < ε0 = σ1/k1 we guarantee
det[LFε

(jω) + LFε
(jω)∗] 6= 0 and therefore conditions 2)

and 3) are satisfied, which is the desired conclusion.
Remark 4: Note that if the system (s+ ε)[G(s)−G(∞)]

is SPR(γ) for all 0 < ε < ε0, then, by continuity, s[G(s)−
G(∞)] is PR and stable or equivalently G(s) is NI and stable.
However, we cannot guarantee that G(s) is SNI(γ).

[11] suggested that any NI transfer function can be trans-
formed into a PR by means of a blocking zero away from



the origin by choosing a sufficiently small ε. However, the
following example shows that transforming an NI into a PR
by this transformation is not that simple.

Example 1: Consider the WSNI transfer function G(s) =
s+3

(s+1)3 . G(s) is not SNI(γ) since γ = 1 and

lim|ω|→∞ω
3j [G(jω)−G(jω)∗] = lim|ω|→∞

16ω4

(ω2+1)3 = 0.
Hence, we cannot guarantee by Theorem 1 that Fε(s) =
(s+ ε)G(s) is SPR(γ) for some ε > 0. A simple calculation
shows that Fε(s) is neither SPR(γ) nor WSPR since for all
ε > 0 there always exists a sufficiently large ω such that
Fε(jω) + Fε(jω)∗ = 16ω2−2ε(ω4+6ω2−3)

(ω2+1)3 is negative.
One might conjecture that the transformation in Theorem 1

suggests the following procedure for an SNI(γ) controller
synthesis:

1) Given a generalized plant G(s), find a controller K(s)
such that Fl((s+ ε)(G(s)−G(∞)),K(s)) is SPR(γ)
and 〈(s+ ε)(G(s)−G(∞)),K(s)〉 is internally sta-
ble.

2) The obtained controller K(s) will give Fl(G(s),K(s))
is SNI(γ) and 〈G(s),K(s)〉 is internally stable.

Unfortunately, as shown in the following example, the con-
jecture is wrong because it is not guaranteed to obtain an
SNI(γ) from an SPR(γ) system by removing the augmented
transmission zero. For this reason controller synthesis meth-
ods for SPR(γ) systems cannot be directly applied to solve
the SNI(γ) synthesis problem as it was suggested by [11].

Example 2: Consider the transfer functions G(s) and
F (s) such that G(s) = (s+1)

s2+5s+6 and F (s) = (s + 1)G(s).
It is easily seen that F (s) is SPR(γ) despite G(s) not being
NI since j [G(jω)−G(jω)∗] = 2ω(ω2−1)

(6−ω2)2+25ω2 < 0 for all
ω < 1 .

B. SPR(0) and SSNI Lemmas

It is shown that the SSNI lemma [23] is related to the
SPR(0) lemma [7]. These results are of key importance in
controller synthesis since we can use the solutions for the
SPR(0) synthesis problem [6], [7], [24] in the SSNI synthesis
problem. Synthesis is done in the next section.

Theorem 2: Let G : C → Cm×m be a real, rational,
proper transfer function with an arbitrary (i.e. minimal or

non-minimal) state-space realization
[
A B
C D

]
where D =

DT . Also, let Fε(s) = (s + ε)(G(s)−D)
s
= Fε. Then, the

following statements are equivalent:

1) There exist an ε0 > 0 and a real matrix P = PT > 0
such that herm{FεP} < 0 for all 0 < ε < ε0, where

P =

[
P 0
0 −I

]
.

2) CCT > 0 and there exists a real matrix P = PT > 0
such that herm{AP} < 0, B = −APCT .

Furthermore, whenever one of these conditions is satisfied,
Fε(s) is SPR(0) for all ε ∈ (0, ε0) (using same ε0 in
condition 1)) and G(s) is SSNI.

Proof: Note that Fε =

[
A B

C(A+ εI) CB

]
=

[
I
C

] [
A B

]
+ε

[
0
I

]
C
[
I 0

]
, then the relation between 1)

and 2) follows by a sequence of equivalent reformulations:

• There exist an ε0 > 0 and a real matrix P = PT > 0
such that herm{FεP} < 0 for all 0 < ε < ε0.

• There exist an ε0 > 0 and a real matrix P = PT > 0
such that for all 0 < ε < ε0,[

AP + PAT B + (A− εI)PCT

BT + CP (AT − εI) −2εCPCT

]
< 0.

[This equivalence follows on noting that[
I 0
C −I

]
2 herm

{
FεP

} [I CT

0 −I

]
=

[
AP + PAT B + (A− εI)PCT

BT + CP (AT − εI) −2εCPCT

]
.]

• There exists a real matrix P = PT > 0 such that
herm{AP} < 0, B + APCT = 0 and C is full row
rank.
[This equivalence follows by Lemma 1.]

Furthermore, Fε(s) is SPR(0) by 1) and the SPR(0) lemma
[7], while G(s) is SSNI by 2) and [23, Theorem 3.3].

Remark 5: Note that while condition 1) implies that Fε(s)
is SPR(0) for all 0 < ε < ε0, the converse does not
necessarily hold since P may not be constant for every
ε ∈ (0, ε0).

V. SSNI SYNTHESIS PROBLEM

Consider the uncertain linear system depicted in Fig. 1.
The plant G : C→ C(m+p)×(m+q) is described byẋz

y

 =

A B1 B2

C1 D11 D12

C2 D21 D22

xw
u

 (4)

where x is the state of the plant, w is the disturbance acting
on the system, u is the control input, z is the controlled
output signal, y is the measurement output, A ∈ Rn×n,
B1 ∈ Rn×m B2 ∈ Rn×q , C1 ∈ Rm×n, C2 ∈ Rp×n,
D11 ∈ Rm×m, D12 ∈ Rm×q , D21 ∈ Rp×m, D22 ∈ Rp×q ,
and q ≤ m, p ≤ m. We will assume D22 = 0 without loss
of generality.

The controller K : C→ Cq×p is described by[
ẋk
u

]
=

[
Ak Bk
Ck Dk

] [
xk
y

]
(5)

where xk is the state of the controller, Ak ∈ Rk×k, Bk ∈
Rk×p, Ck ∈ Rq×k and Dk ∈ Rq×p.

The closed-loop system Fl (G(s),K(s)) can be described
by [

ẋc
z

]
=

[
Ac Bc
Cc Dc

] [
xc
w

]
(6)



where xc =
[
xT xTk

]T
is the closed-loop state and[

Ac Bc
Cc Dc

]
=

[
Q R
Z F

]
+

[
J
H

]
K
[
M E

]
(7)

Q R J
Z F H
M E K

 =


0k 0 0 Ik 0
0 A B1 0 B2

0 C1 D11 0 D12

Ik 0 0 Ak Bk
0 C2 D21 Ck Dk

 . (8)

Our aim is to find conditions for the existence of an output
feedback controller K(s) such that the closed-loop system
Fl (G(s),K(s)) is SSNI and 〈G(s),K(s)〉 is internally
stable. When such a controller exists, we should provide a
way to construct it.

Theorem 3 ( SSNI dynamic output feedback synthesis):
Consider the system G in (4) and assume (A,B2) is
stabilizable, (C2, A) is detectable, D12 = 0 and D22 = 0.
Let U and V be matrices such that the columns of U form
a basis of ker

[
C2 D21

]
\ ker

[
A B1

]
while the columns

of V form a basis of ker

[
A B1

C2 D21

]
. Then, there exist a

controller K(s) of order k and a real matrix P = PT > 0
such that Fl (G(s),K(s)), as defined in (6) to (8), satisfies
CcC

T
c > 0,

herm{AcP} < 0 and Bc = −AcPCTc (9)

if and only if there exist real matrices X = XT > 0 and
Y = Y T > 0 satisfying all of the following conditions:

1) C1C
T
1 > 0;

2) when det(B2B
T
2 ) = 0, herm

{
B⊥2 AXB

⊥T
2

}
< 0 and

B⊥2 (B1 +AXCT1 ) = 0;

3) herm

{
UT

[
Y
−C1

] [
A B1

]
U

}
< 0;

4)
[
Y In
In X

] [
I 0
0 −CT1

]
V = 0;

5)
[
Y In
In X

]
≥ 0; and

6) rank(Y −X−1) ≤ k.

Furthermore, when these conditions hold, such a controller
K(s) can be constructed by solving the linear matrix in-
equalities (LMI) conditions (9) for the controller state-space

matrices K on using P =

[
N W
WT X

]
wherein W and N are

matrices that satisfy X−Y −1 = WTN−1W . If, in addition
D11 = DT

11, then Fl (G(s),K(s)) is SSNI and 〈G(s),K(s)〉
is internally stable.

Proof: This is a proof sketch. A more detailed
proof will be published in a journal publication. Let
U =

[
UT1 UT2

]T
and V =

[
V T1 V T2

]T
. Let L =

− herm{AcP} in (9). Note that Cc = Z and that (9) can
be rewritten as

−
[
L 0
0 0

]
= herm

{[
I
0

] [
Ac Bc

] [P PCTc
0 I

]}
= herm (ΓKΛ + Θ) ,

where[
Γ ΛT Θ

]
=

[
J PMT QP QPZT +R
0 ZPMT + ET 0 0

]
.

We will prove the statements in this theorem by a sequence
of equivalent reformulations:
• ZZT > 0, there exists real matrices P = PT > 0,
L = LT > 0 and a controller K(s) such that

herm {ΓKΛ + Θ} = −
[
L 0
0 0

]
.

• There exist a real matrix P = PT > 0, a controller
K(s) and an ε0 > 0 such that fo all 0 < ε < ε0

herm {ΓKΛ + Θ} − ε

2

[
0 PZT

ZP 2ZPZT

]
< 0.

[By Lemma 1]
• There exist a real matrix P = PT > 0 and an ε0 > 0

such that for all 0 < ε < ε0 the following two
conditions hold:

herm

{
Γ⊥
{

Θ− ε
[

0 0
ZP ZPZT

]}
Γ⊥T

}
< 0,

herm

{
ΛT⊥

{
Θ− ε

[
0 0
ZP ZPZT

]}
ΛT⊥T

}
< 0.

[By [25], [26]]

• There exist a real matrix P =

[
N W
WT X

]
> 0 with

P−1 =

[
Ñ S
ST Y

]
and an ε0 > 0 such that for all

0 < ε < ε0 the following two conditions hold:

herm

{[
B⊥2 AXB

⊥T
2 B⊥2

(
AXCT1 +B1

)
−εC1XB

⊥T
2 −εC1XC

T
1

]}
< 0,

herm

{[
UT

V T

] [
Y A Y B1

−C1 (A+ εI) −C1B1

] [
UT

V T

]T}
< 0.

[The equivalence follows by simple substitution and
also on noting that

Γ⊥ =


[

0 B⊥2 0

0 0 I

]
if det(B2B

T
2 ) = 0,[

0 0 I
]

if det(B2B
T
2 ) 6= 0,

ΛT⊥ =

[
MT

ET

]⊥ [
P−1 0
−Z I

]
and the columns of

U together with the columns of V form a ba-

sis of ker
[
C2 D21

]
which yields

[
MT

ET

]⊥T
= 0 0

U1 V1
U2 V2

.]

• There exist X > 0 and Y > 0 such that the six
conditions of Theorem 2 hold.
[Conditions 5) and 6) follow by [27, Lemma 7.5],
while conditions 1) and 2) via Lemma 1. Furthermore,
conditions 3) and 4) follow by Lemma 1, Lemma 2
and some algebraic manipulations, but because of space



limitation, details are not provided here although they
will be published elsewhere.]

The final part of the proof follows from Theorem 2 on also
noting that Ac is Hurwitz via (9) which gives an internally
stable 〈G(s),K(s)〉.

Remark 6: When rank(U) = 0, the associated condition
should be ignored. The same applies when rank(V ) = 0.

Remark 7: The previous theorem solves the SSNI prob-
lem under some mild technical assumptions on D12 and D22.
These assumptions can be easily circumvented as shown in
[28, Lemma 5].

VI. CONCLUSIONS

We have derived necessary and sufficient conditions for
the solution of SSNI synthesis problem. To achieve this,
we showed that there exists a transformation from SSNI
to SPR(0) systems and a relation between their lemmas.
The solution to the SSNI synthesis problem is based on
LMIs conditions which do not impose any restriction in
the uncertainty but some mild technical assumptions on the
generalized plant which can be easily circumvented. The
results of this paper have immediate applications in robust
control such as in the control of undamped flexible structures
[18], [29], which we are currently investigating.
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