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Abstract— This paper presents a novel distributed adaptive
time-varying formation tracking protocol for general linear
multi-agent systems. In contrast to the existing distributed
methods that require global information of the interaction
graph, the proposed control strategy is fully distributed such
that each agent only requires its own information and the
information from its neighbors through switching directed
communication networks. Then, an algorithm to determine
the control parameters is presented, where feasible formation
condition for the followers to accomplish the desired time-
varying formation tracking is provided. Furthermore, the pro-
posed strategy is also guaranteed to achieve an optimal control
performance index by using the inverse optimal approach.
Simulation results are provided to verify the effectiveness of
the proposed strategy.

I. INTRODUCTION

In recent years, distributed cooperative control of multi-
agent systems have received significant attention from both
the practical engineering and academic communities due to
their broad prospect in applications, such as unmanned aerial
vehicles formation, multi-robot cooperation, distributed sen-
sor networks, etc. The research field includes consensus
control [1], rendezvous control [2], containment control [3],
and formation control [4]. Formation control of multi-agent
systems is hence a key active area of research, which has
experienced a rapid growth in the research efforts from the
international robotics community. Three main approaches of
formation control, namely, leader-follower based approach,
behaviour based approach, and virtual structure based ap-
proach, are unified in the framework of consensus problems
as shown in [5].

Recently, with the development of algebraic graph theory,
many consensus-based control methods have been applied to
solve formation control problems. Motion trajectory tracing
and formation control of first-order and second-order multi-
robot systems are presented in [6] and [7], respectively. It
is worth emphasizing that the dynamics of each agent can
only be described by high-order system in some practical
applications. [8] discusses the formation stability problems
for general high-order swarm systems, and the result is
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extended to deal with formation tracking for multiple high-
order autonomous agents by using a two-level consensus
approach in [9]. Static formation experiments on quadrotor
swarm systems based on consensus strategies is achieved
in [10], while time-varying formation control of multi-agent
systems is still a vigorously active research topic with much
progress still needed.

As a matter of fact, time-varying formation will bring
the derivative of the formation information to the analysis,
which presents a significant challenge to control system
design. Time-varying formation tracking analysis and design
for second-order and high-order multi-agent systems are
presented in [11] and [12], respectively. Furthermore, an
application to unmanned aerial vehicles is investigated in
[4]. However, in the aforementioned results, it is required to
know the smallest positive eigenvalue of the Laplacian matrix
of the graph topology before designing the controller, which
means the control strategies are not fully distributed. In order
to overcome the limitation of requiring global information
of the interaction topologies, distributed adaptive control
methods have been developed by researchers in recent years,
which only rely on local information and information from its
neighbors. The distributed adaptive control protocol proposed
in [13] requires a fixed undirected communication graph,
which is not robust and reliable when communication failure
occurs. Due to the presence of communication channel
disconnection in practical application, it is meaningful to
study time-varying formation control with switching directed
interaction topologies of networked systems.

Motivated by the challenges stated above, a fully dis-
tributed adaptive time-varying formation control protocol
for general linear multi-agent systems in switching directed
graphs is proposed. Compared with previous results on
formation control, the contributions in the study can be
summarized as follows:

1) A fully distributed time-varying formation tracking pro-
tocol for general multi-agent systems with switching
directed communication networks is first proposed, where
no global information of the communication topologies is
required.

2) In our proposed design, the adaptive control scheme
is also extended to achieve Linear Quadratic Regulator
(LQR) performance index of multi-agent systems by
solving algebraic Riccati equations, which ensures the
performance of the global system.
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The paper is organized as follows. Notation and prelimi-
naries on algebraic graph theory are presented in Section II.
Distributed adaptive time-varying formation control protocol
is designed in Section III. The proposed adaptive control pro-
tocol is proved to minimize certain global LQR performance
index in Section IV. Simulation results are provided to verify
the effectiveness of the proposed controller in Section V.
Conclusions are given in Section VI.

II. PRELIMINARIES

A. Notation and Definitions
Let In ∈ Rn×n denote the identity matrix of dimension

n and 1N ∈ RN be the vector with all entries equal to one.
diag{ai} represents a diagonal matrix with diagonal entries
ai. The Kronecker product is denoted by ⊗.

B. Graph Theory
Consider a weighted and directed graph G = (V, E ,A)

with a nonempty set of N nodes V ∈ {1, 2, . . . , N}, a set
of edges E ⊂ V × V , and associated adjacency matrix A =
[aij ] ∈ RN×N . An edge rooted at node i and ended at node j
is denoted by (i, j), which means information can flow from
node i to node j. aij is the weight of edge (j, i) and aij > 0
if (j, i) ∈ E . Assume that there are no repeated edges and no
self loops. Node j is called a neighbour of node i if (i, j) ∈
E . Define the in-degree matrix as D = diag{di} ∈ RN×N
with di =

∑N
j=1 aij . The Laplacian matrix L ∈ RN×N of G

is defined as L = D−A. A directed graph has or contains a
directed spanning tree if there exists a node, called the root,
such that there exists a directed path from this node to every
other nodes.

The interaction topology of the multi-agent system is as-
sumed to be switching. Let [tp, tp+1] be an infinite sequence
of uniformly bounded non-overlapping time interval, with
t1 = 0, 0 < τ0 ≤ tp+1 − tp ≤ τ1. The communication
topology changes at the switching sequence tp and remains
fixed during the time interval τ0. Let η : [0,+∞) →
{1, . . . , p} be a switching signal whose value at time t is the
index of the topology. The graph topology and the associated
Laplacian matrix at η(t) are denoted by Gη(t) and Lη(t),
respectively.

Lemma 1 ( [14]): If G contains a spanning tree, then zero
is a simple eigenvalue of L with associated right eigenvector
1N , and all the other N − 1 eigenvalues have nonnegative
real parts.

Lemma 2 ( [15]): Consider a nonsingular M -matrix L.
There exists a diagonal matrix G such that G =
diag{g1, . . . , gN} > 0 and GL+ LTG > 0

Lemma 3 ( [16]): If a and b are nonnegative real numbers
and p and q are positive real numbers such that 1

p + 1
q = 1,

then ab ≤ ap

p + bq

q , equality holds if and only if ap = bq .

C. Inverse Optimality of Linear Systems
Consider a linear quadratic regulator problem

ẋ = Ax+Bu, (1a)

J =

∫ ∞
0

(xTQx+ uTRu)dt, (1b)

where x ∈ Rn is the state vector, u ∈ Rm is the control
input. A ∈ Rn×n and B ∈ Rn×m are constant matrices such
that (A,B) is controllable and B is of full column rank m.

Lemma 4 ( [17]): Choosing Q > 0, R > 0, the state
feedback control input is given by u = Kx, where K =
−R−1BTP and P > 0 is a solution to the following Riccati
equation

ATP + PA+Q− PBR−1BTP = 0. (2)

Then, the feedback gain K minimizes performance index J
and −KB is simple positive definite.

Remark 1: A matrix H is called simple if it is diago-
nalizable, i.e. there exists nonsingular matrix T such that
THT−1 = Λ, where Λ is a diagonal matrix whose diagonal
elements are eigenvalues of H . As shown in [17], [18], a ma-
trix H is called simple positive definite if it is diagonalizable
and its diagonalized form Λ is positive definite.

Lemma 5 ( [19]): For the inverse optimal control prob-
lem, the feedback control gain K = −R−1BTP is optimal
to (1b) and P > 0 is a solution to the corresponding Riccati
equation (2) with some symmetric matrices R > 0 and
Q > 0, if the following two conditions are hold:
1) −KB is a simple positive definite matrix and

rank(KB) = rank(K). i.e. there exists some symmetric
matrices R > 0 and P > 0 such that K = −R−1BTP .

2) The feedback control gain K is stabilizing.

III. DISTRIBUTED ADAPTIVE TIME-VARYING
FORMATION CONTROL PROTOCOL DESIGN

Consider a group of N identical agents distributed on a
directed communication topology, with the dynamics

ẋi = Axi +Bui, ∀i ∈ {1, . . . , N} (3)

where xi ∈ Rn are the states, ui ∈ Rm are the control
inputs. A ∈ Rn×n and B ∈ Rn×m are constant matrices
with rank(B) = m.

The dynamics of the leader node, labeled 0, is described
by

ẋ0 = Ax0, (4)

where x0 ∈ Rn is the state of the leader. It can be considered
as a command generator, which generates the desired target
trajectory. The leader can be observed from a subset of agents
in a graph. If node i observes the leader, an edge (0, i) is
said to exist with weighting gain ai0 > 0 as a pinned node.

Assumption 1: All possible time-varying switching com-
munication topologies among each agent are assumed to
contain a directed spanning tree with the reference generator
as the root node.

Then the Laplacian matrix Lη(t) related to Gη(t) can be
partitioned as Lη(t) =

[
0 01×N

L2η(t) L1η(t)

]
.

The desired formation is specified by the vector h =[
hT1 , h

T
2 , . . . , h

T
N

]T
with hi ∈ Rn being a preset vector

known by the corresponding ith agent. Multi-agent system
is said to achieve time-varying formation tracking if for any
given bounded initial states

lim
t→∞

(xi(t)− hi(t)− x0(t)) = 0 ∀i ∈ {1, . . . , N}. (5)



Construct the following fully distributed adaptive time-
varying formation control protocol

ui = (ci + ρi)Kξi + γi,

ċi = ξTi Γξi ∀i ∈ {1, . . . , N},
(6)

where ξi =
∑N
j=0 aij(t)[(xi − hi)− (xj − hj)], ci(t) de-

notes the time varying coupling weight associated with the
ith agent with ci(0) ≥ 0, K ∈ Rm×n and Γ ∈ Rn×n are the
feedback gain matrices, and ρi and γi are smooth functions
to be determined.

Since the matrix B given in (3) is of full rank, there always
exists a nonsingular matrix [B̃T , B̄T ]

T
with B̃ ∈ Rm×n and

B̄ ∈ R(n−m)×n such that B̃B = Im and B̄B = 0.
Theorem 1: Suppose that Assumption 1 holds. If the

following formation feasibility condition is satisfied

B̄(Ahi − ḣi) = 0 ∀i ∈ {1, . . . , N}, (7)

the time-varying formation specified by hi ∈ Rn ∀i ∈
{1, . . . , N} can be achieved under the distributed adap-
tive control protocol (6) with K = −R−1BTP , Γ =
PBR−1BTP , γi = B̃(ḣi − Ahi) and ρi = ξTi Pξi, where
P > 0 is a solution to the following Riccati equation:

ATP + PA+Q− PBR−1BTP = 0 (8)

with Q > 0 and R > 0. Furthermore, each coupling weight
ci converges to some finite steady-state value.

Proof: Let the global consensus error ξ =
[ξT1 , . . . , ξ

T
N ]T . Define zi = xi − hi ∀i ∈ {1, . . . , N} and

z = [zT1 , . . . , z
T
N ]T . Therefore, the global error vector can be

written in a compact form as

ξ =(L1η(t) ⊗ In)z + (L2η(t) ⊗ In)x0

=(L1η(t) ⊗ In)(z − 1⊗ x0).
(9)

Substituting (6) into (3), the following dynamics of ξ and ci
can be obtained

ξ̇ =[IN ⊗A+ L1η(t)(C + ρ)⊗BK]ξ

+ (L1η(t) ⊗A)h− (L1η(t) ⊗ In)ḣ+ (L1η(t) ⊗B)γ,

ċi =ξTi Γξi ∀i ∈ {1, . . . , N},
(10)

where C = diag{c1, . . . , cN} , ρ = diag{ρ1, . . . , ρN}, and
γ =

[
γT1 , γ

T
2 , . . . , γ

T
N

]T
.

Consider the following Lyapunov function candidate

V1 =

N∑
i=1

1

2
gi(2ci + ρi)ρi +

1

2

N∑
i=1

gi(ci − α)
2 (11)

where G = diag{g1, . . . , gN} is a positive definite matrix
such that GL1η(t)+L

T
1η(t)G > 0, and α is a positive constant

to be determined later. According to Lemma 1 and the fact
that L1η(t) is a nonsingular M -matrix, the existence of such a
positive definite matrix G can be guaranteed from Lemma 2.
Because ci(0) > 0, it follows from ċi(t) ≥ 0 that ci(t) > 0
for any t > 0. Then, it is easy to conclude that V1 is positive
definite.

Thus, the time derivative of V1 along the trajectory of (10)
is obtained as

V̇1 =

N∑
i=1

[gi(ci + ρi)ρ̇i + giρiċi] +

N∑
i=1

gi(ci − α)ċi

=

N∑
i=1

2gi(ci + ρi)ξ
T
i P ξ̇i +

N∑
i=1

gi(ρi + ci − α)ċi

(12)

Note that
N∑
i=1

gi(ρi + ci − α)ċi = ξT [(C + ρ− αI)G⊗ Γ]ξ, (13)

and
N∑
i=1

2gi(ci + ρi)ξ
T
i P ξ̇i = 2ξT [(C + ρ)G⊗ P ]ξ̇

=ξT [(C + ρ)G⊗ (PA+ATP )

− (C + ρ)(GL1η(t) + LT1η(t))G(C + ρ)⊗ Γ]ξ

+ 2ξT [(C + ρ)GL1η(t) ⊗ PA]h

− 2ξT [(C + ρ)GL1η(t) ⊗ P ]ḣ

+ 2ξT [(C + ρ)GL1η(t) ⊗ PB]γ

≤ξT [(C + ρ)G⊗ (PA+ATP )

− λmin0 (C + ρ)
2 ⊗ Γ]ξ

+ 2ξT [(C + ρ)GL1η(t) ⊗ PA]h

− 2ξT [(C + ρ)GL1η(t) ⊗ P ]ḣ

+ 2ξT [(C + ρ)GL1η(t) ⊗ PB]γ

(14)

where λmin0 represents the minimum of the smallest positive
eigenvalues of GL1η(t) + LT1η(t)G for all Gη(t).

If condition (7) holds, then for all i ∈ {1, . . . , N}

B̄Ahi − B̄ḣi + B̄Bγi = 0. (15)

By letting γi = B̃ḣi − B̃Arhi, it follows that

B̃Ahi − B̃ḣi + B̃Bγi = 0. (16)

From (15) and (16) and the fact that
[
B̃T , B̄T

]T
is nonsin-

gular, one gets

Ahi − ḣi +Bγi = 0, (17)

which means that

(IN ⊗A)h− (IN ⊗ IN )ḣ+ (IN ⊗B) γ = 0. (18)

Pre-multiplying the both sides of (18) by (C+ρ)GL1η(t)⊗P
yields[

(C + ρ)GL1η(t) ⊗ PA
]
h−

[
(C + ρ)GL1η(t) ⊗ P

]
ḣ

+
[
(C + ρ)GL1η(t) ⊗ PB

]
γ = 0.

(19)

Therefore, we obtain

V̇1 ≤ξT [(C + ρ)G⊗ (PA+ATP + Γ)

− (λ
min
0 (C + ρ)

2
+ αG)⊗ Γ]ξ.

(20)



Algorithm 1 Procedure for construction of the control law
1: for each agent i ∈ {1, . . . , N} do
2: select the desired formation reference hi ∈ Rn;
3: if formation feasibility condition (7) is satisfied then
4: compute controller parameters K and Γ by solv-

ing Riccati equation (8);
5: compute smooth functions γi and ρi;
6: set the distributed adaptive formation control

protocol ui as in (6);
7: else
8: back to Step 2;
9: end if

10: end for

From Lemma 3, we have

− ξT (λ
min

0 (C + ρ)
2

+ αG)⊗ Γ]ξ

≤− 2ξT [
√
λmin0 αG(C + ρ)⊗ Γ]ξ.

(21)

Selecting α ≥ maxi∈{1,...,N}gi
λmin0

and substituting (21) into (20)
yields

V̇1 ≤ ξT [(C + ρ)G⊗ (PA+ATP − Γ)]ξ. (22)

Define ζ = (
√

(C + ρ)G ⊗ I)ξ. Therefore, it follows from
(22) that

V̇1 ≤ ζT [IN ⊗ (PA+ATP − PBR−1BTP )]ζ

≤ 0
(23)

where the last inequality comes immediately from the Riccati
equation (8). Since V1(t) ≥ 0 and V̇1(t) ≤ 0, V1(t) is
bounded, and so is each ci. Noting that ċi ≥ 0, it can be
concluded that each coupling weight ci converges to some
finite value. V̇1 ≡ 0 implies ζ ≡ 0, which in turn implies that
ξ ≡ 0. By using LaSalle’s invariance principle [20], we have
the formation tracking error ξ asymptotically converges to
zero. Therefore, the fully distributed time-varying formation
tracking problem is solved.

Remark 2: It should be noted that the formation control
problem reduces to a consensus problem when hi = 0 ∀i ∈
{1, . . . , N}, such that the protocol shown in [21] can be
viewed as a special case of the result in the current paper.

Remark 3: The proposed distributed adaptive formation
tracking protocol in this paper is different from that in [12],
where it is necessary to calculate the minimum positive
eigenvalue of the Laplacian matrix of the communication
topology. Our distributed cooperative controller allows each
agent only to access the information from its neighbors such
that the proposed controller is fully distributed regardless of
global information.

With the above analysis, the procedure to construct the
control law ui is given in Algorithm 1.

IV. ANALYSIS OF LQR-BASED GLOBAL OPTIMALITY

In this section, the essential constraints on graph topology
for global optimality of the proposed distributed control (6)
is provided.

Theorem 2: Under the Assumption 1 and condition (7),
the proposed distributed adaptive formation control protocol
minimizes the certain LQR performance index

J =

∫ ∞
0

(ξT Q̄ξ + vT R̄v)dt (24)

with Q̄ = Q̄T > 0, R̄ = R̄T > 0, and v = (IN ⊗
B)(L1η(t)(C+ρ)⊗K)ξ, if the Laplacian matrix of the graph
is simple.

Proof: If the graph Laplacian is simple, it is easy to
verify that L1η(t) is a simple positive definite matrix. Since
(C+ρ) becomes a constant positive definite matrix after the
time-varying formation is achieved, it can be concluded that
L1η(t)(C+ρ) is simple positive definite. Then the dynamics
of the global error system can be given by

ξ̇ = [IN ⊗A+ (IN ⊗B)(L1η(t)(C + ρ)⊗K)]ξ

= (IN ⊗A)ξ + (IN ⊗B)v,
(25)

Note that −KB is simple positive definite from Lemma 4,
we have rank(KB) = rank(K). It follows that L1η(t)(C +
ρ)⊗−KB is simple positive definite, such that

rank[(L1η(t)(C + ρ)⊗K)(IN ⊗B)]

=rank[L1η(t)(C + ρ)]rank(KB)

=rank[L1η(t)(C + ρ)⊗K]

(26)

It can be seen that Lemma 5 is satisfied. Therefore,
error dynamics (25) is optimal for the following global
performance index

J =

∫ ∞
0

(ξT Q̄ξ + vT R̄v)dt (27)

with Q̄ = Q̄T > 0 and R̄ = R̄T > 0.
According to [22], one obtains the optimal performance

index J̄ = min
∫∞
0

(ξT Q̄ξ + vT R̄v)dt = ξ(0)T P̄ ξ(0), and

Q̄− P̄ (IN ⊗B)R̄−1(IN ⊗B)T P̄+

P̄ (IN ⊗A) + (IN ⊗A)T P̄ = 0.
(28)

Furthermore, K̄ = L1η(t)(C + ρ) ⊗ K should have the
same form as K. Define Lσ(t) = L1η(t)(C + ρ), one has

K̄ = L1η(t)(C + ρ)⊗K
= −Lσ(t) ⊗R−1BTP
= −(IN ⊗R)−1(IN ⊗B)T (Lσ(t) ⊗ P ).

(29)

By letting R̄ = IN ⊗ R and P̄ = Lσ(t) ⊗ P , Q̄ can be
obtained by (28) as

Q̄ = (L2
σ(t) − Lσ(t))⊗ Γ + Lσ(t) ⊗Q. (30)

Remark 4: Different from the results shown in [19], we
prove that the global optimality of the distributed adaptive
control can be achieved in directed graphs with simple graph
Laplacian matrices. One way to find such a new class of
digraphs is to ensure that there exists no cycles in the
topologies, please refer to [17], [18] for more details.



V. SIMULATION RESULTS

In this section, we present some simulation results to
validate the performance of the proposed distributed adaptive
time-varying formation control protocol.

Consider a multi-agent system with eight agents and the
dynamics of each agent are described by (3) with

A =

 0 1 1
1 2 1
−2 −6 −3

 , B =

0
0
1

 .
The switching directed interaction topologies among the

eight agents are shown in Fig. 1, where the leader agent
0 provides the formation reference signal and the directed
topology is switched every 2.5 seconds in sequence. It can
be seen that all these graphs have simple Laplacian matrices.

Let B̃ =
[
0 0 1

]
and B̄ =

[
1 0 0
0 1 0

]
such that B̃B =

I and B̄B = 0. Recall that hi ∈ Rn is the formation offset
vector with respect to the formation reference x0 ∈ Rn,
which is given by

hi =

 15 sin (t+ 2(i−1)π
8 )

−15 cos (t+ 2(i−1)π
8 )

30 cos (t+ 2(i−1)π
8 )

 , (for i ∈ {1, 2, . . . , 8}).

It can be verified that the formation tracking feasibility
condition (7) in Theorem 1 is satisfied. Thus, if the pre-
defined time-varying formation hi(t) is achieved, the eight
agents will form a parallel octagon and keep rotating around
the leader with an angular velocity of 1 rad/s. Then according
to Algorithm 1, the controller gains can be calculated as

K =
[
−43.9086 −131.5675 −33.8775

]
,

Γ =

1.9276 5.7758 1.4872
5.7784 17.3143 4.4583
1.4885 4.4601 1.1484

 ,
by setting Q =

[
1 0 0
0 1 0
0 0 1

]
and R = 0.001. Based on the

solution of corresponding algebraic Riccati equation, ρi is
given by

ρi = ξTi

1.0036 0.5518 0.0439
0.5518 4.1963 0.1316
0.0439 0.1316 0.0339

 ξi.
Let initial value of coupling weight ci(0) = 0 for all i ∈

{1, . . . , 8} and initial states of each agent be pseudorandom
values with a uniform distribution on the interval (−0.5, 0.5).

The state trajectory snapshots of all agents in the multi-
agent system is illustrated in Fig. 2. The state response of
each agent is shown in Fig. 3. The values of the coupling
weight ci and time-varying formation error ξi are depicted in
Fig. 4 and Fig. 5 respectively. From all these figures, it can
be seen that all eight agents form a parallel octagon while
keeping rotating around the virtual leader which lies in the
center of the parallel octagon after 5 seconds. The coupling
weights are bounded and converge to some finite positive
constants. Therefore, it is concluded that the desired time-
varying formation tracking is achieved under the proposed
fully distributed adaptive protocol (6).
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Fig. 1. Switching directed interaction topologies.
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Fig. 2. State snapshots of all the agents: (a) t = 0 s. (b) t = 3 s. (c) t = 10
s. (d) t = 15 s.

Fig. 3. State responses of the multi-agent systems

VI. CONCLUSIONS

In this paper, a fully distributed time-varying formation
tracking problem of general linear multi-agent systems over



 

Fig. 4. The coupling weight ci.

 

Fig. 5. The time-varying formation tracking error.

switching directed graphs has been solved. An adaptive time-
varying formation tracking protocol was first proposed based
on relative state information, which made the proposed con-
trol design fully distributed regardless of global information.
Then, an algorithm was presented to construct the control
law by testing formation feasibility condition and solving
algebraic Riccati equation. The stability of the proposed
algorithm was proved by Lyapunov theory. Moreover, it was
shown that the proposed formation protocol can achieve
LQR-based global optimality via inverse optimal control
theory. Finally, the effectiveness of the proposed strategy was
verified by simulation results.

Future works will take time delays and heterogeneous
dynamics of multi-agent systems [23] into consideration, and
robust methods such as [24], [25] will be exploited in the
design of the distributed control protocol.
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