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Abstract— This paper is concerned with negative imaginary
lemmas for descriptor systems. Without the minimal state-space
realization assumption, sufficient conditions are developed for
a negative imaginary lemma and a strictly negative imaginary
lemma, respectively. As corollaries, sufficient conditions are
derived to ensure the systems are both admissible and negative
imaginary. Also, new sufficient negative imaginary lemmas are
found for standard linear systems as special cases. The devel-
oped negative imaginary lemmas are applicable to descriptor
systems with impulse modes. Two examples are used to illustrate
the theory.

I. INTRODUCTION

Negative imaginary properties can be found in many
practical systems. For example, by choosing appropriate
system inputs and outputs, the resultant transfer functions
can exhibit such properties in vibration control systems [1]–
[3] and circuit networks [4], [5]. Many valuable theoretical
results have been developed for negative imaginary systems.
For instance, the concept of negative imaginary systems has
been refined in [6]–[9]; the negative imaginary lemmas for
standard linear systems have been developed in [6], [7],
[10]; applications of negative imaginary theory can be found
in [3], [5], [11]. On the other hand, descriptor systems
provide a suitable model for mechanical systems and circuit
systems [12], [13]. The study of descriptor systems has
attracted much attention. For instance, positive real theory
has been studied in [14], [15]; model reduction techniques
that can preserve the passivity have been investigated in [16],
[17]. Descriptor systems are currently still an active research
topic; see [18], [19].

Negative imaginary lemmas are an important class of the
results developed for standard linear systems [6], [7], [10].
These lemmas give necessary and sufficient conditions to test
the negative imaginary property of the systems according
to their state-space realizations, and these conditions can
be solved numerically efficiently. For a system with a de-
scriptor state-space description, several versions of negative
imaginary lemmas have been reported in [20]–[22]. In [20],
the negative imaginary lemma is based on the Weierstrass
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form of the system. However, the Weierstrass form is usually
difficult to obtain. In [21], a criteria to test the negative imag-
inary property is given in terms of a Kronecker canonical
decomposition of a matrix pencil. However, the proposed
conditions are numerically difficult to check. In [22], the
authors established a negative imaginary lemma, a strictly
negative imaginary lemma, and a lossless negative imaginary
lemma. Necessary and sufficient conditions were derived
based on the minimal realization assumption of the descriptor
state-space model [22]. However, because of the minimal
realization assumption and the properness requirement for
transfer functions, the results in [22] are only applicable to
systems that are impulse-free.

This paper follows the development in [22], but the
minimal state-space realization assumption is removed. As
a consequence, the developed negative imaginary lemmas
are applicable to descriptor systems with impulse modes.
Compared to the results in [21], our results can be tested
numerically efficiently. When compared to the results in [20],
the results here are not dependent on the Weierstrass form.
The organization of the paper is as follows. Section II
recalls basic concepts from descriptor systems and negative
imaginary transfer functions. The main results are presented
in Section III. Under an assumption on the fast subsystem,
sufficient negative imaginary lemmas are established based
on a decomposition of transfer functions. In addition, suffi-
cient conditions are established to ensure descriptor systems
are both admissible and negative imaginary. When descriptor
systems reduce to standard linear systems, new negative
imaginary lemmas for standard linear systems are deduced as
special cases. Section IV gives two examples to illustrate the
developed negative imaginary theory. Conclusions are drawn
in Section V.

Notation: Let Rm×n and Rm×n denote the set of m×n real
matrices and real-rational proper transfer function matrices,
respectively. AT and A∗ denote the transpose and the complex
conjugate transpose of a complex matrix A, respectively.
R∼(s) represents the adjoint of transfer function matrix R(s)
and is given by RT (−s). ℜ[·] is the real part of a complex
number. The notation X > 0 or X ≥ 0, where X is a real
symmetric matrix, means that the matrix X is positive definite
or positive semidefinite.

II. PROBLEM FORMULATION

This section reviews some basic concepts from descriptor
systems and negative imaginary transfer function matrices.
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Consider a class of dynamical systems described by{
Eẋ(t) = Ax(t)+Bu(t)

y(t) =Cx(t)+Du(t),
(1)

where x(t) ∈Rn is the system state, u(t) ∈Rm is the control
input and y(t)∈Rm is the measurement output. The matrices
E ∈Rn×n, A∈Rn×n, B∈Rn×m, C ∈Rm×n and D∈Rm×m are
constant matrices. The system in (1) is called a descriptor
linear system when E is a singular matrix. The pair (E,A) is
called regular if det(sE−A) ̸= 0 for some s∈C. When (E,A)
is regular, the descriptor system (1) has a transfer function

R(s) =C(sE −A)−1B+D. (2)

The regularity of (E,A) is a necessary and sufficient con-
dition for the existence and uniqueness of the solution to
descriptor system (1), and hence a common assumption in
almost every study of descriptor systems. Moreover, the
regularity of (E,A) ensures that there exist non-singular
matrices Q ∈ Rn×n, P ∈ Rn×n such that

QEP =

[
I 0
0 N

]
, QAP =

[
A1 0
0 I

]
, (3a)

QB =

[
B1
B2

]
, CP =

[
C1 C2

]
, (3b)

where N ∈ Rn2×n2 is a nilpotent matrix, A1 ∈ Rn1×n1 , B1 ∈
Rn1×m, B2 ∈Rn2×m, C1 ∈Rm×n1 , C2 ∈Rm×n2 and n1+n2 = n.
The matrices on the right sides of equations (3) are called
the Weierstrass form of the descriptor system (1).

Next, we recall some definitions of negative imaginary
transfer function matrices.

Definition 1: [7] A transfer function matrix R(s)∈Rm×m

is negative imaginary if
1) R(s) has no poles at the origin and in ℜ[s]> 0;
2) j[R( jω)−R∗( jω)]≥ 0 for all ω ∈ (0,∞) except values

of ω where jω is a pole of R(s);
3) If jω0, ω0 ∈ (0,∞), is a pole of R(s), it is at most a

simple pole, and the residue matrix K0 ≜ lims→ jω0(s−
jω0) jR(s) is positive semidefinite Hermitian.

Remark 1: In the above definition, the transfer function
matrix R(s) is required to have no poles at the origin. This
requirement can be removed by a careful modification of
the definition; see for example [23]. In [9], the authors
studied symmetric transfer function matrices, and generalized
the negative imaginary concept to the case of non-proper
symmetric transfer function matrices.

Definition 2: [6] A transfer function matrix R(s)∈Rm×m

is strictly negative imaginary if
1) R(s) has no poles in ℜ[s]≥ 0;
2) j[R( jω)−R∗( jω)]> 0 for ω ∈ (0,∞).
Remark 2: It deserves mentioning that the strict inequality

in Condition 2) of Definition 2 does not hold at both zero
and infinite frequencies for any real-rational proper transfer
functions. Actually, we always have j[R( jω)−R∗( jω)] = 0
at those two frequencies. This is different from the definition
of strictly positive real transfer functions. Also, because of
this difference, an equivalence relationship between strictly

negative imaginary transfer functions and strictly positive
real transfer functions cannot be established like those in
Lemma 3 of [7] for negative imaginary transfer functions
and Lemma 1 of [24] for lossless negative imaginary transfer
functions. This fact has complicated the strictly negative
imaginary control or synthesis problem considerably.

The descriptor system in (1) is called a negative imaginary
descriptor system if its transfer function matrix R(s) in (2)
is a negative imaginary transfer function.

The objective of the paper is to develop negative imaginary
lemmas for descriptor systems without minimal realization
assumptions.

III. SUFFICIENT NEGATIVE IMAGINARY LEMMAS

In this section, under an assumption on the fast subsystem,
sufficient conditions are developed for a negative imaginary
lemma and a strictly negative imaginary lemma, respectively.
Also, new versions of the negative imaginary lemma for
standard linear systems are obtained as special cases.

Assumption 1: The fast subsystem in (3) is observable.
Assumption 2: NB2 = 0.

Assumption 1 is equivalent to the requirement that the
pair (N,C2) is observable. A sufficient but not necessary
condition for Assumption 2 being true is that the system (1)
is impulse free.

The following lemma plays a critical role to obtain the
sufficient conditions in the negative imaginary lemmas for
descriptor systems.

Lemma 1: Consider a state-space realization
(E,A,B,C,D) of the transfer function R(s) ∈ Rm×m.
Suppose either Assumption 1 or Assumption 2 is satisfied
and that the following two conditions hold:

1) det(A) ̸= 0, R(∞) = RT (∞);
2) there exist matrices X ∈Rn×n, Y ∈Rn×m and L ∈Rn×n

such that

AT X +XT A+LT L = 0 (4)

CT +XT EA−1B = ATY (5)

ET X = XT E (6)

ETY = 0. (7)

Then

R(s)−R∼(s) =−sM∼(s)M(s) (8)

for all s with s not a pole of R(s), where

M(s) = LA−1E(sE −A)−1B. (9)
Proof: Firstly, the nonsingularity of A implies that the

transfer function R(s) in (2) has the Weierstrass form given
in (3). Therefore, one has that

R(s) =C1(sI −A1)
−1B1 +D−C2B2 −

h−1

∑
i=1

siC2NiB2,

where h is the smallest integer such that Nh = 0. Note
that h ≤ n2. Furthermore, the properness of R(s) leads to
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C2NiB2 = 0 for i = 1,2, . . . ,h−1; that is
C2

C2N
...

C2Nn2−1

NB2 = 0.

Because the fast subsystem is observable, it follows that the
observability matrix in the above equation has full column
rank. Hence, we have NB2 = 0. (that is, Assumption 1 implies
Assumption 2.) Note that N is not necessarily zero under
either Assumption 1 or Assumption 2. Hence the system
need not to be impulse-free.

Let

Q−T XP =

[
X1 X2
X3 X4

]
, Q−TY =

[
Y1
Y2

]
, LP =

[
L1 L2

]
.

Then

(6) ⇐⇒ (QEP)T Q−T XP = (Q−T XP)T QEP

⇐⇒
[

I 0
0 NT

][
X1 X2
X3 X4

]
=

[
XT

1 XT
3

XT
2 XT

4

][
I 0
0 N

]
⇐⇒

[
X1 X2

NT X3 NT X4

]
=

[
XT

1 XT
3 N

XT
2 XT

4 N

]
=⇒ X1 = XT

1 , X2 = XT
3 N.

Note that we are not interested in the definiteness of X1.
Similarly, it follows from (4) that

AT X +XT A+LT L = 0

⇐⇒ (QAP)T (Q−T XP)+(Q−T XP)T (QAP)+(LP)T LP = 0

⇐⇒
[

AT
1 X1 AT

1 X2
X3 X4

]
+

[
XT

1 A1 XT
3

XT
2 A1 XT

4

]
+

[
LT

1 L1 LT
1 L2

LT
2 L1 LT

2 L2

]
= 0

=⇒ AT
1 X1 +X1A1 +LT

1 L1 = 0.

Also, it can be verified that

(7) ⇐⇒ (QEP)T (Q−TY ) = 0

⇐⇒
[

Y1
NTY2

]
= 0

=⇒ Y1 = 0.

Moreover, from (5), one has

CT +XT EA−1B = ATY

⇐⇒ (CP)T +(Q−T XP)T QEP(QAP)−1QB

= (QAP)T Q−TY

⇐⇒
[
CT

1
CT

2

]
+

[
X1A−1

1 B1 +XT
3 NB2

NT X3A−1
1 B1 +XT

4 NB2

]
=

[
0
Y2

]
⇐⇒

[
CT

1 +X1A−1
1 B1

CT
2 +NT X3A−1

1 B1

]
=

[
0
Y2

]
.

The last equivalence holds because NB2 = 0.
Let R1(s) = C1(sI −A1)

−1B1. Then R(s) = R1(s)+R(∞).
The symmetric structure of R(∞) implies that

R(s)−R∼(s) = [R1(s)+R(∞)]− [R∼
1 (s)+RT (∞)]

= R1(s)−R∼
1 (s). (10)

Let

M1(s) = L1A−1
1 (sI −A1)

−1B1,

F1(s) = sR1(s) =C1A1(sI −A1)
−1B1 +C1B1,

W1(s) = sM1(s) = L1(sI −A1)
−1B1 +L1A−1

1 B1.

We prove that F1(s)+F∼
1 (s) =W∼

1 (s)W1(s) as shown in (11)
at the top of the next page, where the first equality follows
from the definition of W∼

1 (s); that is, W∼
1 (s) = BT

1 (sI +
AT

1 )
−1(−LT

1 )+BT
1 A−T

1 LT
1 , the second from the formula for

the product of two transfer function matrices; see Chapter 3
of [25], the third from replacing LT

1 L1 with −AT
1 X1 −X1A1,

the fourth from a similar transformation, the fifth from
replacing X1A−1

1 B1 with −CT
1 , the sixth from the formula for

the addition of two transfer function matrices; see Chapter
3 of [25], the last from the definition of F∼

1 (s); that is,
F∼

1 (s) = BT
1 (sI +AT

1 )
−1(−AT

1 CT
1 )+BT

1 CT
1 .

On the other hand, we have

W∼
1 (s)W1(s) =−s2M∼

1 (s)M1(s),

F1(s)+F∼
1 (s) = sR1(s)− sR∼

1 (s).

Therefore,

s[R1(s)−R∼
1 (s)] = F1(s)+F∼

1 (s)

=W∼
1 (s)W1(s)

=−s2M∼
1 (s)M1(s).

When s ̸= 0, one has that R1(s)−R∼
1 (s) = −sM∼

1 (s)M1(s).
When s = 0, using R1(0) =−C1A−1

1 B1 = BT
1 A−T

1 X1A−1
1 B1 =

RT
1 (0), one has that R1(0)−RT

1 (0) = 0. So we have

R1(s)−R∼
1 (s) =−sM∼

1 (s)M1(s) (12)

for all s with s not a pole of R(s).
On the other hand, one has that

M(s) = LA−1E(sE −A)−1B

= LP(QAP)−1(QEP)(sQEP−QAP)−1QB

= L1A−1
1 (sI −A1)

−1B1 +L2N(sN − I)−1B2

= M1(s)+L2(sN − I)−1NB2

= M1(s). (13)

By noting (10), (12) and (13), we have that (8) holds for all
s with s not a pole of R(s). This completes the proof.

Remark 3: On one hand, Lemma 1 is applicable to de-
scriptor systems that may have impulse modes. On the
other hand, when the descriptor systems are impulse-free
or reduced to standard linear systems, neither Assumption 1
nor Assumption 2 is needed for Lemma 1 to be true. This
remark is also applicable to the following results where
Assumption 1 is required.

Theorem 1: Consider a state-space realization
(E,A,B,C,D) of the transfer function R(s) ∈ Rm×m.
Suppose either Assumption 1 or Assumption 2 is satisfied
and that the following conditions hold:

1) (E,A) is stable, R(∞) = RT (∞);
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W∼
1 (s)W1(s) =

[
−AT

1 −LT
1

BT
1 BT

1 A−T
1 LT

1

][
A1 B1

L1 L1A−1
1 B1

]

=

 A1 0 B1
−LT

1 L1 −AT
1 −LT

1 L1A−1
1 B1

BT
1 A−T

1 LT
1 L1 BT

1 BT
1 A−T

1 LT
1 L1A−1

1 B1


=

 A1 0 B1
AT

1 X1 +X1A1 −AT
1 AT

1 X1A−1
1 B1 +X1B1

−BT
1 A−T

1 X1A1 −BT
1 X1 BT

1 −BT
1 X1A−1

1 B1 −BT
1 A−T

1 X1B1


=

 A1 0 B1
0 −AT

1 AT
1 X1A−1

1 B1

−BT
1 A−T

1 X1A1 BT
1 −BT

1 X1A−1
1 B1 −BT

1 A−T
1 X1B1


=

 A1 0 B1
0 −AT

1 −AT
1 CT

1
C1A1 BT

1 C1B1 +BT
1 CT

1


=

[
A1 B1

C1A1 C1B1

]
+

[
−AT

1 −AT
1 CT

1
BT

1 BT
1 CT

1

]
= F1(s)+F∼

1 (s). (11)

2) there exist matrices X ∈Rn×n and Y ∈Rn×m such that

AT X +XT A ≤ 0 (14)

CT +XT EA−1B = ATY (15)

ET X = XT E (16)

ETY = 0. (17)

Then R(s) is negative imaginary.
Proof: The proof is completed by verifying the

conditions in Definition 1. First, because the pair
(E,A) is stable, the first and third conditions in Def-
inition 1 hold. Next, in view of Lemma 1, one
has R( jω) − R∗( jω) = − jωM∗( jω)M( jω). Therefore,
j[R( jω)−R∗( jω)] =ωM∗( jω)M( jω)≥ 0 for all ω ∈ (0,∞);
that is, the second condition in Definition 1 is true. According
to Definition 1, we conclude that R(s) is negative imaginary.

Remark 4: The condition of (E,A) being stable may be
further relaxed since it is only used to show that R(s) is
analytic in ℜ[s]≥ 0. Once this condition is relaxed to allow
purely imaginary poles, it may be possible to derive new
versions of lossless negative imaginary lemmas.

Similarly, a sufficient strict negative imaginary lemma can
be obtained as follows.

Theorem 2: Consider a state-space realization
(E,A,B,C,D) of the transfer function R(s) ∈ Rm×m.
Suppose either Assumption 1 or Assumption 2 is satisfied
and that the following conditions hold:

1) (E,A) is stable, R(∞) = RT (∞);
2) there exist matrices X ∈ Rn×n, Y ∈ Rn×m, such that

(14)–(17) hold.
3) rank(M( jω)) = m for all ω ∈ (0,∞), where M(s) =

LA−1E(sE −A)−1B is defined in (9).
Then R(s) is strictly negative imaginary.

Proof: Firstly, the condition that (E,A) is stable means
that R(s) has no poles in ℜ[s] ≥ 0. Secondly, in view
of Theorem 1, the first and the second conditions in the
theorem imply that R(s) is negative imaginary. Furthermore,
according to Lemma 1 we have

R( jω)−R∗( jω) =− jωM∗( jω)M( jω), ∀ω ∈ (0,∞).

Multiplying both sides of the above equation by j leads to

j[R( jω)−R∗( jω)] = ωM∗( jω)M( jω), ∀ω ∈ (0,∞).

The third condition implies that M∗( jω)M( jω)> 0. There-
fore j[R( jω)−R∗( jω)]> 0 for all ω ∈ (0,∞). According to
Definition 2, R(s) is strictly negative imaginary.

The following corollary gives a sufficient condition to
check if the system is both admissible and negative imagi-
nary.

Corollary 1: Consider a state-space realization
(E,A,B,C,D) of the transfer function R(s) ∈ Rm×m.
Suppose that the following conditions hold:

1) R(∞) = R(∞)T ;
2) there exist matrices X ∈Rn×n and Y ∈Rn×m such that

AT X +XT A < 0

CT +XT EA−1B = ATY

ET X = XT E ≥ 0

ETY = 0.

Then R(s) is both admissible and negative imaginary.
Proof: In view of Lemma 2 of [26], the two conditions

ET X = XT E ≥ 0 and AT X +XT A < 0 guarantee that the pair
(E,A) is admissible. Moreover, according to Theorem 1, R(s)
is negative imaginary.
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Corollary 2: Consider a state-space realization
(E,A,B,C,D) of the transfer function R(s) ∈ Rm×m.
Suppose that the following conditions hold:

1) R(∞) = RT (∞);
2) there exist matrices X ∈ Rn×n, Y ∈ Rn×m, such that

AT X +XT A < 0

CT +XT EA−1B = ATY

ET X = XT E ≥ 0

ETY = 0;

3) rank(M( jω)) = m for all ω ∈ (0,∞), where M(s) =
LA−1E(sE −A)−1B is defined in (9).

Then R(s) is both admissible and strictly negative imaginary.
When E = I, we have the following negative imaginary

lemmas for standard linear systems without minimal state-
space realization assumptions.

Corollary 3: Suppose that the following conditions hold:
1) A is Hurwitz, D = DT ;
2) there exists a matrix X = XT ∈ Rn×n, such that

AT X +XA ≤ 0

CT +XA−1B = 0.

Then R(s) =C(sI −A)−1B+D is negative imaginary.
Proof: When E = I, the conditions in Theorem 1 reduce

to the conditions in this corollary. Therefore, according to
Theorem 1, R(s) =C(sI −A)−1B+D is negative imaginary.

Remark 5: Other versions of negative imaginary lemmas
for standard linear systems without minimality assumptions
have been reported in [10]. Corollary 3 may be considered
as a dual of Lemma 2 in [10]. The main difference between
Corollary 3 and Lemma 2 of [10] is that X is not required
to be positive definite in Corollary 3. The reason is that we
require the matrix A is Hurwitz.

Corollary 4: Suppose that the following conditions hold:
1) A is Hurwitz, D = DT ;
2) there exists a matrix X = XT ∈ Rn×n, such that

AT X +XA ≤ 0

CT +XA−1B = 0;

3) rank(M( jω)) = m for all ω ∈ (0,∞), where M(s) =
LA−1(sI −A)−1B, and L is defined to satisfy AT X +
XA+LT L = 0.

Then R(s) =C(sI−A)−1B+D is strictly negative imaginary.

IV. ILLUSTRATIVE EXAMPLES

Two examples are presented in this section. The first
illustrates that the negative imaginary lemma developed in
this paper is applicable to descriptor state-space realizations
with impulse modes. The other illustrates the application of
the negative imaginary theory to circuit networks.

Example 1: Consider the transfer function R(s)= b
(s+1)2+1

with b > 0. On one hand, it follows from Definition 1 that
R(s) is negative imaginary. The Nyquist plot of R(s) with
b = 10 is shown in Fig. 1.

-2 -1 0 1 2 3 4 5 6
-5

-4

-3

-2

-1

0

1

Nyquist Diagram

Real Axis

Im
a

g
in

a
ry
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x
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Fig. 1. Nyquist plot of closed-loop system R(s) = 10
s2+2s+2 .

On the other hand, the underlying dynamical system might
be a descriptor system that is not impulse free. For instance,
a state-space realization is given by

E =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0

 , A =


−1 −1 0 0
1 −1 0 0
0 0 1 0
0 0 0 1

 ,

B =


b
0
1
0

 , C =
[
0 1 0 1

]
, D = 0.

This realization is of the Weierstrass form. So we have

N =

[
0 1
0 0

]
, B2 =

[
1
0

]
.

Because N ̸= 0, the system is not impulse-free. Because
NB2 = 0, Theorem 1 holds and can be used to test the
negative imaginary property of the system. A set of solutions
to equations (14)–(17) of Theorem 1 is given by

X =


1
b − 1

b 0 0
− 1

b
3
b 0 0

0 0 0 0
0 0 0 0

 , Y =


0
0
0
1

 .

Therefore, R(s) is negative imaginary for any b> 0 according
to Theorem 1.

Example 2: Consider the single-loop circuit depicted in
Fig. 2, which was used in [12], [13] as a motivation example
for the study of descriptor systems.

The input of the circuit is the output of the controlled
voltage source Vs(t), the output of the circuit is the charge
on the capacitor Qc(t). Let I(t) be the current through the
circuit, VR(t), VL(t) and VC(t) the voltages across the resistor,
the inductor and the capacitor, respectively. A descriptor
state-space system model (1) can be established, where

x(t) =


I(t)

VL(t)
VC(t)
CR(t)

 , u =Vs(t), y(t) = Qc(t),
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Vs(t)
−

+

R1 L1

C1 Qc(t)

I(t)

Fig. 2. A single-loop circuit network.

E =


L1 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , A =


0 1 0 0
1

C1
0 0 0

−R1 0 0 1
1 1 1 1

 ,

B =


0
0
0
−1

 , C =
[
0 0 C1 0

]
, D = 0.

Because the equality degdet(sE −A) = 2 = rank(E) holds,
the system is impulse free in view of Theorem 7.1 of [13].
As a result, Theorem 1 is applicable to check the negative
imaginary property of the system. A set of solutions to
equations (14)–(17) was found to be

X =


1 0 0 0
0 0 C1 0
1 0 0 0
−1 0 0 0

 , Y =


0
0
0
0

 .

We can conclude that the system is negative imaginary
according to Theorem 1.

V. CONCLUSIONS

This paper studied negative imaginary lemmas for descrip-
tor linear systems. The state-space realization is not needed
to be a minimal realization, and impulse modes may exist.
Sufficient negative imaginary lemmas have been developed in
terms of the state-space realization of the system. As corollar-
ies, sufficient conditions have been derived to guarantee the
system is both admissible and negative imaginary. Moreover,
when descriptor systems reduce to standard linear systems,
new negative imaginary lemmas have been found. Finally,
two examples have been used to illustrate the developed
theory.
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