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Abstract— This paper investigates a robust output feedback
consensus for a wide class of linear time-invariant (LTI)
systems, namely Negative-Imaginary (NI) systems. A positive-
feedback interconnection with Strictly Negative-Imaginary (S-
NI) controllers is applied through the network topology to
achieve robust output feedback consensus of heterogeneous
multi-input-multi-output (MIMO) NI systems. Robustness to
external disturbances and model uncertainty is guaranteedvia
NI system theory. Numerical examples for various scenariosare
given to demonstrate the effectiveness of proposed consensus
algorithm.

I. I NTRODUCTION

NI systems theory has drawn much attention ([12], [1],
[5], [7], [17], [18]) since it was introduced in [9], [19],
[11] and [13]. It is vital because there are a wide class of
LTI systems with negative imaginary frequency response,
for which applications can be easily found in a variety of
fields including aerospace, large space structures, multi-link
robotic arms usually with co-located position sensors and
force actuators and nano-positioning [10], etc. Cooperative
control of multiple NI systems arise with the development
of NI systems’ applications where one single NI system is
incapable of achieving the mission goals, for example, the
load is too heavy to be carried by one multi-link robotic arm.

There are a number of existing works on robust coop-
erative control of LTI systems, most of which appeared
recently. In terms of heterogeneous network of systems:
[3] studies a cooperative control problem for a string of
coupled heterogeneous NI subsystems. Such systems can
arise in vehicle platoons. However, the systems considered
are constrained to SISO systems (due to the mathematics
of continued fractions used) and do not allow poles on
the imaginary axis, and also the graph is only restricted to
string connections. [16] solves a cooperative robust output
regulation problem for a class of LTI systems with minimum
phase dynamics. A combination of simultaneous high-gain
state feedback control and a distributed high-gain observer
is adopted to achieve cooperative output regulation under
particular parameter uncertainty as well as particular external
disturbances. [21] discusses a full-state feedback robustcon-
sensus protocol for heterogeneous second-order multi-agent
systems.
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It can be seen that the existing published literature on
robust cooperative control of heterogeneous multi-agent sys-
tems is restricted to either only SISO plants, minimum phase
LTI plants or full-state feedback second order plants. This
paper solves a more general problem, which is the robust
output feedback cooperative control of heterogeneous MIMO
NI systems (possibly with poles on the imaginary axis) under
L2 external disturbances and SNI model uncertainty. We
impose no minimum phase assumption. The communication
graph can be any general undirected and connected graph
rather than any specific graph, like the string connection in
[3]. Towards this end, NI system theory is adopted to derive
conditions for robust output feedback consensus for a wide
class of LTI systems, namely NI systems.

II. PRELIMINARIES

A. Graph Theory

A graph can be mathematically expressed byG = (V , E)
where V = {v1, v2, . . . , vn} is a nonempty finite set ofn
nodes and an edge setE ⊆ V×V is used to model thel com-
munications links among nodes. A sequence of successive
edges ofE in the form of{(vi, vk), (vk, vl), . . . , (vm, vj)} is
defined as a directed path from nodei to nodej. An undi-
rected path in an undirected graph is defined analogously but
bidirectionally. An undirected graph is said to be connected
if there is a path from nodei to nodej for all the distinct
nodesvi, vj ∈ V .

The incidence matrixQ of G is a |V|× |E| (n× l) matrix,
which can be attained by first letting each edge in the graph
have an arbitrary but fixed orientation and then

Q :=











qve = 1, if v is the initial vertex of edgee

qve = −1, if v is the terminal vertex of edgee

qve = 0, if v is not connected toe.

For an undirected graphG, Q is not unique but the corre-
sponding Laplacian matrix is unique and given by:Ln =
QQT , and the edge-weighted Laplacian is also unique given
by: Le = QKQT , where K ≥ 0 is the diagonal edge
weighting matrix. It is also shown in [2] thatrank(Q) =
n − 1 = rank(Ln) when G is connected andrank(Q) =
n− 1 = rank(Le) whenG is connected anddet(K) 6= 0. It
is well-known [4] thatLn andLe will both have one unique
zero eigenvalue associated with the eigenvector1n and all
the other eigenvalues are positive and real, whendet(K) 6= 0,
G is undirected and connected. In this case,Ln ≥ 0, Le ≥ 0,
and

Ker(Ln) = Ker(Le) = Ker(QT ) = span{1n}. (1)
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The following lemmas are needed for the main result of
this paper:

Lemma 1:Given an undirected and connected graphG,
any principle submatrix of the Laplacian matrixLn or Le is
positive definite and thus full rank.

Proof: It can be directly seen from positive semi-
definite matrices with a Kernel dimension of1.

As a consequence, the following lemma is given as:
Lemma 2:Given an undirected and connected graphG,

any row removal ofQ or column removal ofQT yields a
full row rank Q or a full column rankQT respectively.

Proof: It is straightforward to see from Lemma 1 and
the relation ofLn or Le with Q as shown above in II-A.

B. Negative-Imaginary Systems

Before proceeding to the main result, let us first recall the
definitions of NI and SNI systems:

Definition 1: ([11]) A square, real, rational, proper trans-
fer function matrixP (s) is NI if the following conditions are
satisfied: 1)P (s) has no pole inRe[s] > 0; 2) ∀ω > 0 such
thatjω is not a pole ofP (s), j(P (jω)−P (jω)∗) ≥ 0; 3) If
s = jω0 whereω0 > 0 is a pole ofP (s), then it is a simple
pole and the residue matrixK = lim

s→jω0

(s − jω0)jP (s) is

Hermitian and positive semi-definite; 4) Ifs = 0 is a pole of
P (s), then lim

s→0
skP (s) = 0 ∀k ≥ 3 andP2 = lim

s→0
s2P (s) is

Hermitian and positive semi-definite.
It can be observed that Definition 1 for NI systems cap-

tures earlier definitions in [9] and [19]. This definition also
includes free body dynamics which often refers to dynamical
models with poles at the origin, such ass

2+1
s2(s2+2) . Examples

of NI systems can be found in [11], and these include a
single-integrator system, a double-integrator system, second-
order systems such as those that arise in undamped and
damped flexible structures or inertial systems, to name a few
typically considered in the consensus literature.

Definition 2: A square, real, rational, proper transfer func-
tion matrix Ps(s) is SNI if the following conditions are
satisfied: 1)Ps(s) has no pole inRe[s] ≥ 0; 2) ∀ω >

0, j(Ps(jω)− Ps(jω)
∗) > 0.

Examples of SNI systems include1
s+a

where a > 0,
a

s2+bs+c
wherea, b, c > 0 or non-minimum phase systems

such as1−s
2+s

.

III. M AIN RESULTS

In this section, we will consider robust output feedback
consensus for multiple heterogeneous NI systems underL2

external disturbance and additive SNI model uncertainty
(as would arise in spill-over dynamics for truncated order
flexible structures). First of all, let us begin with the problem
formulation:

For multiple heterogeneous NI systems (in general MIMO)
with n > 1 agents, the transfer function of agenti is given
as ŷi = P̂i(s)ûi, i = 1, · · · , n, where ŷi ∈ R

mi×1

and ûi ∈ R
mi×1 are the output and input of agenti

respectively. In order to deal with the consensus of different
dimensional inputs/outputs,̂Pi(s) can be padded with zeros

up tom =
n

max
i=1

{mi} and the locations of padding zeros de-

pend on which output needs to be coordinated, for instance,

Pi(s) =

[

P̂i(s) 0
0 0

]

hasm dimension such that the first

mi outputs are to be coordinated, orPi(s) =

[

0 0

0 P̂i(s)

]

hasm dimension such that the lastmi outputs are to be
coordinated instead. Accordingly, the inputûi and output̂yi

are extended to beui =
[

û
T
i 0

]T
or

[

0 û
T
i

]

∈ R
m×1 and

yi =
[

ŷ
T
i 0

]T
or

[

0 ŷ
T
i

]T
∈ R

m×1, respectively. It can
be easily seen that the above manipulation would preserve the
NI property by checking Definition 1. Therefore, the overall
plant can be described as Fig. 1:

Fig. 1. Multiple Heterogeneous NI Plants

where y =
[

y
T
1 , · · · , y

T
n

]T
∈ R

nm×1 and u =
[

u
T
1 , · · · , u

T
n

]T
∈ R

nm×1. In general, robust output
feedback consensus is defined as follows:

Definition 3: A distributed output feedback control law
achieves robust output feedback consensus for a network
of systems if for a family of plant dynamics and for all
L2[0,∞) disturbances on the plant input and/or plant output,
yi − yss ∈ L2[0,∞) ∀i ∈ {1, · · · , n}. Here yss is the
final convergence trajectory, which can be a function of time
depending on the plant and controller dynamics. If there are
no disturbances, thenyi−yss → 0 ∀i ∈ {1, · · · , n} retrieves
the typical consensus meaning in the literature.

Observe that if one were to construct the overall networked
plant dynamics involving the heterogeneous multiple agents
Pi(s) and the communications graph represented by a Lapla-

cian matrixLn as(Ln ⊗ Im) ·
n

diag
i=1

{Pi(s)}, then the overall

networked plant is not NI any more due to the asymmetry
despite each heterogeneous agent being individually NI. This
would then make NI systems theory inapplicable. Given
the preliminaries in Section II, we can utilize the incidence
matrixQ instead ofLn to reformulate the overall networked
plant as shown in Fig. 2:

Fig. 2. Overall Network Plant

The augmented networked system can be derived as

ȳ = P̄ (s)ū = (QT ⊗ Im)
n

diag
i=1

{Pi(s)}(Q⊗ Im)ū (2)



where ȳ =
[

ȳ
T
1 , · · · , ȳ

T
l

]T
∈ R

lm×1 and ū =
[

ū
T
1 , · · · , ū

T
l

]T
∈ R

lm×1 are the output and input for
the overall system. It can be concluded that the overall
systemP̄ (s) is still NI due to the following lemmas:

Lemma 3:
n

diag
i=1

{Pi(s)} is NI if and only if Pi(s) are all

NI ∀i = 1, · · · , n.
Proof: It is straightforward to see by definition.

The same argument applies for SNI functions. The follow-
ing lemma is needed as well:

Lemma 4:Given any MIMOP (s) being NI, thenP̄ (s) =
FP (s)F ∗ is still NI for any constant matrixF .

Proof: It is straightforward to see by definition.
It can be seen that the outputy ∈ R

nm×1 reaches consen-
sus whenȳ → 0 ∈ R

lm×1 by noticing the properties of the
incidence matrixQ given in (1). This formulation actually
converts the output consensus problem to an internal stability
problem which is usually easier to tackle and investigate the
robustness property via standard control theoretic methods.
We now impose the following assumptions throughout the
rest of this paper:

Assumption 1:G is undirected and connected.
Another assumption is also needed throughout this paper:
Assumption 2:Let ∆i(s) ∀i = 1, · · · , n be arbitrary

SNI systems satisfyinḡλ(∆i(0)) < µ,∆i(∞) = 0 ∀i =
1, · · · , n, whereµ is a constant value.

In the sequel, robust output feedback consensus will be
discussed along two directions: NI plants without or with
free body dynamics to cover all the heterogeneous types of
NI systems.

A. NI plants without free body dynamics

In this subsection, the NI plants without free body dynam-
ics will be firstly considered, which also meansP̂i(s) has no
poles at the origin. The following lemmas are needed:

Lemma 5: ([8]) Given M ∈ R
n×m, λ̄(MMT ) =

λ̄(MTM).
Lemma 6:AssumeM is Hermitian with λ̄(M) ≥ 0 and

N ≥ 0, we haveλ̄(MN) ≤ λ̄(M)λ̄(N).
Proof: SinceM ≤ λ̄(M)I, we obtainN

1

2MN
1

2 ≤
λ̄(M)N . With the conditon ofλ̄(M) ≥ 0, N

1

2MN
1

2 ≤
λ̄(M)N ≤ λ̄(M)λ̄(N)I. Thus,λ̄(MN) = λ̄(N

1

2MN
1

2 ) ≤
λ̄(M)λ̄(N).

Lemma 7: ([9], [19]) Given an NI transfer functionP (s)
and an SNI functionPs(s) with P (s) having no pole(s) at
the origin,P (∞)Ps(∞) = 0 andPs(∞) ≥ 0. [P (s), Ps(s)]
is internally stable if and only if̄λ(P (0)Ps(0)) < 1.

Next we present the first main result of this paper:
Theorem 1:Given a graphG with incidence matrixQ,

satisfying Assumption 1 and modelling the communication
links among multiple NI agentŝPi(s) with no pole(s) at
the origin which are appropriately padded with rows and
columns of zeros to givePi(s) in Fig. 3. DefineP̄s(s) =

l

diag
j=1

{Ps,j(s)} wherePs,j(s) are arbitrary SNI compensators.

Robust output feedback consensus is achieved via the output

Fig. 3. Positive-feedback interconnection with SNI compensators through
the network topology

feedback control law

u = (Q⊗ Im)P̄s(s)(Q
T ⊗ Im)y (3)

(or in a distributed manner for agenti via

ui =
n
∑

k=1

aikPs,j(s)(yi − yk), (4)

where aik are the elements of the adjacency matrix1 and
j is the edge connecting vertexi to vertex k) under any
external disturbancesw1 ∈ ImL2

(Q ⊗ Im) andw2 ∈ L2 if
∃i ∈ {1, · · · , n} : λ̄(Pi(0)) ≥ 0 and∀i ∈ {1, · · · , n}, j ∈
{1, · · · , l} all the following conditions hold:

λ̄(Pi(0))λ̄(Ps,j(0)) <
1

λ̄(Ln)
, (5)

Pi(∞)Ps,j(∞) = 0 (where i is the vertex of edgej)
and Ps,j(∞) ≥ 0. The output feedback consensus control
law (3) will be robust to all model uncertainty∆i(s), i =
1, · · · , n satisfying Assumption 2 if the D.C. gain of the
SNI compensator̄Ps(s) is tuned more stringently such that
∀i ∈ {1, · · · , n}, j ∈ {1, · · · , l}

λ̄(Pi(0)) + µ <
1

λ̄(Ln)λ̄(Ps,j(0))
. (6)

Proof: From Fig. 3, Lemmas 3 and 4, it can be seen
that P̄ (s) is NI without pole(s) at the origin and̄Ps(s) is
SNI. Applying Lemma 6, we obtain

λ̄(P̄ (0)P̄s(0))

=λ̄((QT ⊗ Im)
n

diag
i=1

{Pi(0)}(Q ⊗ Im)
l

diag
j=1

{Ps,j(0)})

≤λ̄((QT ⊗ Im)
n

diag
i=1

{Pi(0)}(Q ⊗ Im))
l

max
j=1

{λ̄(Ps,j(0))}

≤
n

max
i=1

{λ̄(Pi(0))}λ̄(Q
TQ)

l
max
j=1

{λ̄(Ps,j(0))} (requires∃i : λ̄(Pi(0)) ≥ 0)

=
n

max
i=1

{λ̄(Pi(0))}
l

max
j=1

{λ̄(Ps,j(0))}λ̄(Ln) (by Lemma5)

since λ̄(P̄ (0)) ≥ 0 (because∃i : λ̄(Pi(0)) ≥ 0) and
Ps,j(0) > Ps,j(∞) ≥ 0 ∀j ∈ {1, · · · , l} (due to Lemma
2 in [9] with the assumption ofPs,j(∞) ≥ 0). Thus, since
∃i ∈ {1, · · · , n} : λ̄(Pi(0)) ≥ 0 and∀i = 1, · · · , n andj =
1, · · · , l, all of the following hold: λ̄(Pi(0))λ̄(Ps,j(0)) <

1
λ̄(Ln)

, Pi(∞)Ps,j(∞) = 0 (where i is the vertex of edge

1See [14] for definition



j) and Ps,j(∞) ≥ 0, [P̄ (s), P̄s(s)] is internally stable via
NI systems theory in Lemma 7. This then implies nominal
output consensus when the disturbancesw1 andw2 are set to
zero by noting that̄y → 0 ⇔ y → 1n ⊗yss, i.e.,yi → yss

since the graphG is undirected and connected.
In addition, internal stability of[P̄ (s), P̄s(s)] and super-

position principle of linear systems ([20]) guarantee that
yi → yss + δ with δ ∈ L2 for all L2 exogenous signal
injections perturbing signals̄u and ȳ, which in turn means
that any w1 ∈ ImL2

(Q ⊗ Im) and anyw2 ∈ L2 can
be injected in Fig. 3. Hence, the control protocol (3) will
achieve a perturbedL2 consensus signal on outputy (due to
superposition principle of linear systems) for all disturbances
w1 ∈ ImL2

(Q⊗ Im) andw2 ∈ L2.
Additive model uncertainties∆i(s) ∀i ∈ {1, · · · , n}

satisfying Assumption 2 can be dealt with as in [15], which
is shown in Fig. 4.

Fig. 4. Robustness to model uncertainty via NI system theory

Fig. 4 (top) can be manipulated to Fig. 4 (bottom) with
M(s) = (Q ⊗ Im)P̄s(s)(I − P̄ (s)P̄s(s))

−1(QT ⊗ Im).
Internal stability already yieldsM(s) ∈ RH∞ and M(s)
is NI via Lemma 7 and Lemma 19 in [6] in general, or via
Lemma 7 and Theorem 2 in [13] whenPi(s) have no poles
on the imaginary axis. This NI systemM(s) is connected
with ∆̄(s) which fulfills Assumption 2. Now

λ̄(∆(0)M(0))

≤λ̄(∆(0))λ̄[(Q⊗ Im)P̄s(0)(I − P̄ (0)P̄s(0))
−1(QT ⊗ Im)]

≤µλ̄(Ln)λ̄[P̄s(0)(I − P̄ (0)P̄s(0))
−1]

≤
µλ̄(Ln)λ̄(P̄s(0))

1− λ̄(P̄ (0)P̄s(0))

≤

µλ̄(Ln)
l

max
j=1

{λ̄(Ps,j(0))}

1−
n

max
i=1

{λ̄(Pi(0))}λ̄(Ln)
l

max
j=1

{λ̄(Ps,j(0))}

It is then clear that inequality (6) guarantees
λ̄(∆(0)M(0)) < 1 which in turn implies robust stability for
all uncertainties that satisfy Assumption 2.

Remark 1:There is clearly a huge class of permissible dy-
namic perturbations to the nominal dynamics as Assumption

2 only imposes a restriction on∆i(s) only at the frequency
ω = 0 andω = ∞ and the SNI class has no gain (as long as it
is finite gain) or order restriction [9]. The result in Theorem
1 is for additive perturbations, but similar analysis can be
performed for other types of perturbations that preserve the
NI class. A few examples of permissible perturbations that
preserve the NI class include additive perturbations where
the uncertainty is also NI [9], feedback perturbations where
both systems in the feedback interconnection are NI [13] and
more general perturbations based Redheffer Star-products
and Linear Fractional Transformations [13]. For example,
1

s+5 and (2s2+s+1)
(s2+2s+5)(s+1)(2s+1) are both SNI with the same

D.C. gain.

B. NI plants with free body dynamics

In this subsection, we will consider more general NI plants
by including free body dynamics (i.e. poles at the origin)
under the assumption of strict properness, i.e.Pi(∞) = 0.
The NI class restricts the number of such poles at the
origin to be at most 2. The following residue matrices
carrying information about the properties of the free body
motion for the NI systemy = P (s)u where P (s) ∈
R

m×m ([11]): P2 = lims→0 s
2P (s), P1 = lims→0 s(P (s)−

P2

s2
), P0 = lims→0(P (s)− P2

s2
− P1

s
. It can be observed that

P1 = 0, P2 = 0 means there is no free body dynamics,
P1 6= 0, P2 = 0 means there is free body dynamics
with 1 pole at the origin,P2 6= 0 means there is free
body dynamics with 2 poles at the origin. For the sake
of page limitation, we will omit the calculating process
which can be found in [11] to obtain the following useful
matrices:Nf = Ps(0) − Ps(0)F (FTPs(0)F )−1FTPs(0)
whereF = H1V̂2 ∈ R

m×ñ. WhenP2 6= 0, N2 = Ps(0) −
Ps(0)J(J

TPs(0)J)
−1JTPs(0) where J is a full column

rank matrix factorisingP2 6= 0 asP2 = JJT . WhenP2 =
0, P1 6= 0, N1 = Ps(0)− Ps(0)F1(F

T
1 Ps(0)F1)

−1FT
1 Ps(0)

whereF1 = Ũ1S2.
Next, the internal stability of[P (s), Ps(s)] with free body

dynamics can be summarised in the following lemma:
Lemma 8: ([11]) Let P (s) be a strictly proper NI plant

andPs(s) be an SNI controller:
1) SupposeP2 6= 0, Nf is sign definite andFTPs(0)F
is non-singular. Then, [P (s), Ps(s)] is internally stable if

and only if FTPs(0)F < 0 and eitherI − N
1

2

f P0N
1

2

f −

N
1

2

f P1J(J
TJ)−2JTPT

1 N
1

2

f > 0 whenNf ≥ 0 or

det(I + ÑfP0Ñf + ÑfP1J(J
TJ)−2JTPT

1 Ñf ) 6= 0 (7)

when Nf ≤ 0 and Ñf = (−Nf)
1

2 . If furthermoreP1 =
0, N2 is sign definite andJTPs(0)J is non-singular, the
necessary and sufficient conditions for the internal stability
of [P (s), Ps(s)] reduce toJTPs(0)J < 0 and eitherI −

N
1

2

2 P0N
1

2

2 > 0 when N2 ≥ 0 or det(I + Ñ2P0Ñ2) 6= 0
whenN2 ≤ 0 andÑ2 = (−N2)

1

2 . If additionallyKer(P2) ⊆
Ker(PT

0 ), the necessary and sufficient condition for the
internal stability of[P (s), Ps(s)] reduces toJTPs(0)J < 0
and if furthermoreP2 > 0, the necessary and sufficient



condition for the internal stability of[P (s), Ps(s)] reduces
to Ps(0) < 0.
2) SupposeP2 = 0, P1 6= 0, N1 is sign definite and
FT
1 Ps(0)F1 is non-singular.[P (s), Ps(s)] is internally stable

if and only if FT
1 Ps(0)F1 < 0 and eitherI−N

1

2

1 P0N
1

2

1 > 0
when N1 ≥ 0 or det(I + Ñ1P0Ñ1) 6= 0 when N1 ≤ 0
and Ñ1 = (−N1)

1

2 . If furthermoreKer(PT
1 ) ⊆ Ker(PT

0 ),
the necessary and sufficient condition for internal stability of
[P (s), Ps(s)] reduces toFT

1 Ps(0)F1 < 0 and if additionally
P1 is invertible, the necessary and sufficient condition for
internal stability of[P (s), Ps(s)] reduces toPs(0) < 0.

Next we present the second main result of this paper
with the following notation:P̄2 = lims→0 s

2P̄ (s), P̄1 =
lims→0 s(P̄ (s)− P̄2

s2
), andP̄0 = lims→0(P̄ (s)− P̄2

s2
− P̄1

s
).

Theorem 2:Given a graphG with incidence matrixQ,
satisfying Assumption 1 and modelling the communication
links among multiple strictly proper NI agentŝPi(s) (al-
lowing possible poles at the origin) which are appropriately
extended toPi(s) as in Fig. 3, robust output feedback
consensus is achieved via the feedback control law in (3)
or (4) under any external disturbancesw1 ∈ ImL2

(Q⊗ Im)
and w2 ∈ L2 as well as under any model uncertainty
∆i(s), i = 1, · · · , n satisfying Assumption 2 if and only
if the necessary and sufficient conditions in Lemma 8 are
satisfied for[P̄ (s), P̄s(s)].

Proof: Lemma 8 guarantees the internal stability of
[P̄ (s), P̄s(s)]. Nominal output consensus is then achieved
without considering the external disturbancesw1 andw2 via
internal stability as discussed in the proof of Theorem 1.

Then, similar analysis as in the proof of Theorem 1
guarantees robustness against both external disturbancesas
well as additive SNI model uncertainty.

Remark 2:When the SNI controllers are homogeneous,
the consensus law (3) simplifies tou = (Q ⊗ Im)(In ⊗
Ps(s))(Q

T ⊗ Im)y = Ln⊗Ps(s)y, or in a distributed man-
ner,ui = Ps(s)

∑n

k=1 aik(yi − yk). It can be seen that this
captures the main result of [18] in the homogeneous plant
case but also generalises the results to the heterogeneous
plant case. In the case of heterogeneous SNI controllers,
the controller is given byu = (Q ⊗ Im)P̄s(s)(Q

T ⊗
Im)y = L̄e(s)y, which can be interpreted as a weighted
graphG with the edges weighted by the controller transfer
functionsPs,j(s), j = 1, · · · , l, or in a distributed manner:
ui =

∑n

k=1 aikPs,j(s)(yi − yk), where j is the edge
connected vertexi andk. The above facts give a nice intuitive
interpretation and explain why we adopt the incidence matrix
for the distributed property rather than the Laplacian matrix
as indicated earlier.

IV. I LLUSTRATIVE EXAMPLES

This section gives two numerical examples to validate the
main results of this paper, Theorems 1 and 2 respectively.

A. 2 lightly damped and 1 undamped flexible structures

2 lightly damped flexible structures with different pa-
rameters and 1 undamped flexible structure are considered
to illustrate Theorem 1. The dynamics of the combined

flexible structure can be represented by Fig.2 in [9]:Miẍi+
Ciẋi + Kixi = ui, yi = xi, i = 1, · · · , 3, where

xi =

[

xi,1

xi,2

]

, ui =

[

ui,1

ui,2

]

, Mi =

[

mi,1 0
0 mi,2

]

, Ci =
[

ci,1 + ci −ci
−ci ci,2 + ci

]

, Ki =

[

ki,1 + ki −ki
−ki ki,2 + ki

]

. The

undamped flexible structure is given by letting the damped
termCi = 0. The parameters are given as follows:

S1: k1 = k1,1 = k1,2 = 0.5, c1 = c1,1 = c1,2 =
0.2, m1,1 = m1,2 = 1 with initial condition of
[

0.5 0.1 1 0.2
]T

S2: k2 = k2,1 = k2,2 = 1, c2 = c2,1 = c2,2 = 0.1,
m2,1 = 1,m2,2 = 0.5 with initial condition of
[

1 0.1 1.5 0.2
]T

;
S3: k3 = k3,1 = k3,2 = 1, c3 = c3,1 = c3,2 = 0,

m3,1 = 1,m3,2 = 0.5 with initial condition of
[

1.5 0.1 2 0.2
]T

.

The communication topology is given in Fig. 5 and thus

Q =





1 0
−1 1
0 −1



 and Ln =





1 −1 0
−1 2 −1
0 −1 1



. Both the

SNI controllers are chosen as1
s+8 with an initial condition

of −1 such that all the suppositions of Theorem 1 are
satisfied. As shown in Fig. 6, the robust output feedback
consensus can be achieved via controller in (3) and (4)
without or even under external disturbances as well as SNI
model uncertainties given by1

s+4 .

1 2 3 1 2 3 4

Fig. 5. Graph for 3 and 4 NI systems
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Fig. 6. Robust output consensus of heterogeneous NI systems

B. 1 single integrator, 1 double integrator, 1 undamped and
1 lightly damped flexible structure

A very complicated case containing 1 single integrator, 1
double integrator, 1 undamped and 1 lightly damped flexible
structure is considered in this example. For consistency of



dimension, the single integrator and the double integrator

are extended as follows:

[

1
s

0
0 0

]

and

[

0 0
0 1

s2

]

, which

also means that the output of single integrator will be
coordinated with first outputs of both the undamped and the
lightly damped flexible structures, while the output of double
integrator will be coordinated with second outputs of both
the undamped and the lightly damped flexible structures. The
parameters of all NI systems are as follows:

S1: 1
s2

with initial condition of
[

1 0.1
]T

;
S2: 1

s
with initial condition of 2;

S3: k3 = k3,1 = k3,2 = 1, c3 = c3,1 = c3,2 = 0,
m3,1 = 1,m3,2 = 0.5 with initial condition of
[

3 0.1 3 0.2
]T

;
S4: k4 = k4,1 = k4,2 = 1, c4 = c4,1 = c4,2 = 0.1,

m4,1 = 1,m4,2 = 0.5 with initial condition of
[

4 0.1 4 0.2
]T

.
The communication topology is given in Fig. 5 and thus

Q =









1 0 0
−1 1 0
0 −1 1
0 0 −1









and Ln =









1 −1 0 0
−1 2 −1 0
0 −1 2 1
0 0 −1 1









All three SNI controllers are chosen as− s+1
s+2 with an

initial condition of 0.1. Therefore, the internal stability
of [P̄ (s), P̄s(s)] can be verified by calculatingdet(I +
Ñf P̄0Ñf + Ñf P̄1J(J

T J)−2JT P̄T
1 Ñf ) = 3.7813 6= 0

as shown in Theorem 2. As shown in Fig. 7, it can be
seen that robust output feedback consensus can be achieved
via controller (3) or (4) without or even under external
disturbances as well as model uncertainties.
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Fig. 7. Robust output consensus of heterogeneous NI systems

V. CONCLUSION AND FUTURE DIRECTIONS

A robust output feedback consensus algorithm for het-
erogeneous NI systems against external disturbances and
NI model uncertainty is proposed by using the incidence
matrix rather than the Laplacian matrix as well as NI
system theory. The key contributions of this paper can be
summarised as: a) solving robust cooperative problems for
general heterogeneous networks of MIMO NI systems under
any undirected and connected graph; b) directly address-
ing robustness to exogenous disturbances and SNI model

uncertainty; c) only exploiting output feedback information
in contrast to full state information commonly used in the
literature; d) providing a whole class of cooperative control
laws, i.e. SNI controllers that can be tuned for performance
and characterising conditions that can be easily checked for
robust output feedback consensus; e) showing how consensus
problems can exploit powerful internal stability and robust
stability results available in the control theory literature.
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