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Robust Output Feedback Consensus for Multiple Heterogeness
Negative-lImaginary Systems

Jianan Wang, Alexander Lanzon, and lan R. Petersen

Abstract— This paper investigates a robust output feedback It can be seen that the existing published literature on
consensus for a wide class of linear time-invariant (LTI) robust cooperative control of heterogeneous multi-aggs s
systems, namely Negative-Imaginary (NI) systems. A posi®- o is restricted to either only SISO plants, minimum phase

feedback interconnection with Strictly Negative-Imaginay (S- .
NI) controllers is applied through the network topology to LTI plants or full-state feedback second order plants. This

achieve robust output feedback consensus of heterogeneousPaper solves a more general problem, which is the robust
multi-input-multi-output (MIMO) NI systems. Robustness to  output feedback cooperative control of heterogeneous MIMO

external disturbances and model uncertainty is guaranteediia  N| systems (possibly with poles on the imaginary axis) under
NI system theory. Numerical examples for various scenarioare o external disturbances and SNI model uncertainty. We
given to demonstrate the effectiveness of proposed conseass . o . 7
algorithm. impose no minimum phase assumption. The communication
graph can be any general undirected and connected graph
|. INTRODUCTION rather than any specific graph, like the string connection in
NI systems theory has drawn much attention ([12], [1][3]. Towards this end, NI system theory is adopted to derive
[5], [7], [17], [18]) since it was introduced in [9], [19], conditions for robust output feedback consensus for a wide
[11] and [13]. It is vital because there are a wide class dilass of LTI systems, namely NI systems.
LTI systems with negative imaginary frequency response, I
for which applications can be easily found in a variety of
fields including aerospace, large space structures, fimkti- A Graph Theory
robotic arms usually with co-located position sensors and A graph can be mathematically expresseddoy- (V, €)
force actuators and nano-positioning [10], etc. Coopezati whereV = {v1,va,...,v,} iS @ nonempty finite set of
control of multiple NI systems arise with the developmennodes and an edge s&tC V x )V is used to model thecom-
of NI systems’ applications where one single NI system igunications links among nodes. A sequence of successive
incapable of achieving the mission goals, for example, thedges off in the form of { (v;, vx.), (v, v1), ..., (Vm,v5)} IS
load is too heavy to be carried by one multi-link robotic armdefined as a directed path from nodé nodej. An undi-
There are a number of existing works on robust coopected path in an undirected graph is defined analogously but
erative control of LTI systems, most of which appearedidirectionally. An undirected graph is said to be connécte
recently. In terms of heterogeneous network of systemi:there is a path from nodéto node; for all the distinct
[3] studies a cooperative control problem for a string ohodesv;,v; € V.
coupled heterogeneous NI subsystems. Such systems cafhe incidence matrix@ of G is a[V| x |£| (n x [) matrix,
arise in vehicle platoons. However, the systems consider#dich can be attained by first letting each edge in the graph
are constrained to SISO systems (due to the mathematlfdgve an arbitrary but fixed orientation and then
of continued fractions used) and do not allow poles on
the imaginary axis, and also the graph is only restricted to
string connections. [16] solves a cooperative robust dutpu~ "~ | dve =
regulation problem for a class of LTI systems with minimum qve =0, if v is not connected te.

phase dynamics. A combination of simultaneous high-gaify; an undirected grap, Q is not unique but the corre-
state feedback control and a distributed high-gain Observgponding Laplacian matrix is unique and given kj; —

is adopted to achieve cooperative output regulation undeT' and the edge-weighted Laplacian is also unique given
particular parameter uncertainty as well as particulagrent by: L. = QKQT, where X > 0 is the diagonal edge
disturbances. [21] discusses a full-state feedback ratmrst weighting matrix. It is also shown in [2] thatnk(Q) =
sensus protocol for heterogeneous second-order multitage, _ | _ rank(L,) when ¢ is connected andank(Q) =

systems. n —1 = rank(L,) wheng is connected andet(K) # 0. It
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. PRELIMINARIES

Que = 1, if v is the initial vertex of edge
—1, if v is the terminal vertex of edge



The following lemmas are needed for the main result ofip tom = max{mz} and the locations of padding zeros de-
this paper: pend on Wthlh output needs to be coordinated, for instance,
Lemma 1:Given an undirected and connected graph _[Pi(s) ©
any principle submatrix of the Laplacian matu, or L. is Pi(s) = [ 0 0
positive definite and thus full rank. ] 0 0
Proof: It can be directly seen from positive semi-"7% Outputs are to be coordinated, &(s) = | pi(s)]
definite matrices with a Kernel dimension bf B hasm dimension such that the last; outputs are to be
As a consequence, the following lemma is given as:  coordinated instead. Accordingly, the inpiit and outputy,
Lemma 2:Given an undirected and connected graph are extended to be; = [UZT O}T or [0 uﬂ e R™*1 and
any row removal ofQ or column removal of@” yields a
full row rank Q or a full column rankQ” respectively.
Proof: It is straightforward to see from Lemma 1 and
the relation of,, or £, with Q@ as shown above in [I-AR

} has m dimension such that the first

= [g] 0] or [0 gﬂT € R™*1, respectively. It can
be easily seen that the above manipulation would preseeve th
NI property by checking Definition 1. Therefore, the overall
plant can be described as Fig. 1:

B. Negative-Imaginary Systems

Before proceeding to the main result, let us first recall the u P(s) ~ 0 y
definitions of NI and SNI systems: _—
Definition 1: ([11]) A square, real, rational, proper trans- 0 = A

fer function matrixP(s) is NI if the following conditions are

satisfied: 1)P(s) has no pole iRe[s] > 0; 2) Vw > 0 such _ _

thatjw is not a poIe OfP( ) (P(jw) P(jw)*) > 0:; 3) If Fig. 1. Multiple Heterogeneous NI Plants
s = jwo Wherewy > 0 is a pole ofP(s), then it is a simple

_ T 7T nm —
pole and the residue matrik = hm (s — jwo)jP(s) is Whjere Yy = [ng oy ynl € R andw =
nmx1
Hermitian and positive semi- def|n|te 4)511‘_ 0 is a pole of [ul oo ug] € R*™%. In general, robust output
k _ 2 feedback consensus is defined as follows:
P(s), thenlim s"P(s) =0 Vk > 3 and P, = lim s*P(s) is -
5—0 5—0 Definition 3: A distributed output feedback control law

He|:Tm:nodbsgrsvlg\éetr?;{ntl)gﬁ:.?.gi 1 for NI systems Capac:hleves robust output feedback consensus for a network
of systems if for a family of plant dynamics and for all
tures earlier definitions in [9] and [19]. This definition als y I Y P y !

includes free body dynamics which often refers to dynamical 2[0, 00) disturbances on the plant input and/or plant output,
yay y Y — Yss € £2[0,00) Vi € {1,---,n}. Herey,, is the
models with poles at the origin, such

aﬁs s2+2) Examples final convergence trajectory, which can be a function of time

of NI systems can be found in [11], and these include 8epend|ng on the plant and controller dynamics. If there are
single-integrator system, a double-integrator systegrag- no,disturbances, theg,—y.. — 0i € {1, --- ,n} retrieves

1 1 S8 )
order systems such as those that arise in undamped g gtyplcal consensus meaning in the Ilterature.

?ampﬁd ﬂembl(;a strchJctutrres or inertial S);sttemts to name a few W Observe that if one were to construct the overall networked
ypically considered in the consensus literature. plant dynamics involving the heterogeneous multiple agent

Definition 2: A square, real, rational, proper transfer funcP
and the communications graph represented by a Lapla-
tion matrix Ps(s) is SNI if the following conditions are () 2 2pn rep y P

satisfied: 1)P,(s) has no pole inRe[s] > 0; 2) Vw > cian matrix£,, as(L, ® I,) - dlag{P( )}, then the overall

0,j(Ps(jw) — Ps(jw)*) > 0. networked plant is not NI any more due to the asymmetry
Examples of SNI systems includwse}r—a wherea > 0, despite each heterogeneous agent being individually N& Th

wherea,b,c > 0 or non-minimum phase systemswould then make NI systems theory inapplicable. Given

2

éuﬁlﬁ?f Sors- the preliminaries in Section Il, we can utilize the incidenc
matrix Q instead ofZ,, to reformulate the overall networked

Il M AIN RESULTS plant as shown in Fig. 2:
In this section, we will consider robust output feedback )

consensus for multiple heterogeneous NI systems ufder PG

external disturbance and additive SNI model uncertainty ) o -

(as would arise in spill-over dynamics for truncated order —* 0®I, 2 P Y @,

flexible structures). First of all, let us begin with the plexin ¢ RO

formulation:

For multiple heterogeneous NI systems (in general MIMO)
with n > 1 agents, the transfer function of agenis given
as gy, = Pi(s)w, i = 1,---,n, wheregy, € Rm™*!
and ; € R™>*! are the output and input of agent
respectively. In order to deal with the consensus of differe o =, n i
dimensional inputs/output$;(s) can be padded with zeros =Plu=(2 @ Im)(%lflg{Pi(s)}(Q ©In)u  (2)

Fig. 2. Overall Network Plant

The augmented networked system can be derived as



wherey = [g7 -, 7]" € R™! and a = i Ps) "
[af -, ﬂﬂT € R™x1 are the output and input for . | e o J>_
the overall system. It can be concluded that the overall 0@l b e +
systemP(s) is still NI due to the following lemmas:

Lemma 3:dir:1g{Pi(s)} is NI if and only if P;(s) are all
NIVie1-n e

Proof: It is straightforward to see by definition. = '5 ke

The same argument applies for SNI functions. The follow- e -
ing lemma is needed as well:

Lemma 4:Given any MIMO P(s) being NI, thenP(s) = Fig. 3. Positive-feedback interconnection with SNI congagars through

FP(s)F* is still NI for any constant matrix. the network topology
Proof: It is straightforward to see by definition. |

It can be seen that the outpyte R*™*! reaches consen-
sus wheny — 0 € R™*1 py noticing the properties of the feedback control law
incidence matrix@ given in (1). This formulation actually T
converts the output consensus problem to an internal gyabil =(Q® In)Ps(s)(Q" ® Im)y ©)
problem which is usually easier to tackle and investigaée thor in a distributed manner for agenvia
robustness property via standard control theoretic method n
We now impose jthe following assumptions throughout the u; = Z ain Py s ), 4)
rest of this paper:

Assumption 1:G is undirected and connected.

Another assumption is also needed throughout this paper

Assumption 2:.Let A;(s) Vi = 1,---,n be arbitrary
SNI systems satisfying\(A;(0)) < u, Ai(co) = 0 Vi =

gvhere a;, are the elements of the adjacency maétrand

is the edge connecting vertexto vertex k) under any
external disturbances; € Img,(Q ® I,,) andws € £, if
3i€{1,-~- n}: AP;(0)) >0andVi € {1,---,n},j €

1,---,n, whereyu is a constant value.
In the sequel, robust output feedback consensus will b [} all the following conditions 1h0|d
discussed along _two directions: NI plants without or with AP (0)A(Ps;(0)) < = 7 (5)
free body dynamics to cover all the heterogeneous types of ALn)
NI systems.

P;(c0)P; ;(00) = 0 (wherei is the vertex of edgej)
and P; j(c0) > 0. The output feedback consensus control
law (3) will be robust to all model uncertaint;(s),i =

In this subsection, the NI plants without free body dynaml, - - -, n satisfying Assumption 2 if the D.C. gain of the
ics will be firstly considered, which also meaRgs) has no SN' compensatoP (s) is tuned more stringently such that

A. NI plants without free body dynamics

poles at the origin. The following lemmas are needed: Vi € {1,---,n},j € {1,---,l}
Lemma 5:([8]) Given M € R™™ XMMT) = _ 1
A(MT M) M)+ < 57 550 ©
Lemma 6:Assumel is Hermitian with A\(M) > 0 and Proof: From Fig. 3, Lemmas 3 and 4, it can be seen
N >0, we haveA(MN) < A(M)A(N). that P(s) is NI without pole(s) at the origin and®s(s) is

Proof: Since M < A(M)I, we obtainNzMNz
(M)N. With the conditon ofA(M) > 0, N2MNz

< SNI. Applying Lemma 6, we obtain
A <
AM)N < X(M)X(N)I. Thus, \(MN) = A\(N2 MNz) <
A [ |
)

A(P(0)P:(0))

(M)A(N).

Lemma 7:([9], [19]) Given an NI transfer functiotP(s
and an SNI functionP,(s) with P(s) having no pole(s) at L N . )
the origin, P(co) Ps(00) = 0 and Ps(o0) > 0. [P(s), Ps(s)] mlax{A(P;(0))IA(Q" Q) max{A(Ps,3(0))} (requires3i : A(P;(0)) > 0)
is internally stable if and only ii\(P(0)P,(0)) < 1.

Next we present the first main result of this paper:

Theorem 1:Given a graphG with incidence matrixQ, since A(P(0)) > 0 (becausedi : A(P;(0)) > 0) and
satisfying Assumption 1 and modelling the communicatiouPSJ( ) > Psj(00) > 0Vj € {1,---,l} (due to Lemma
links among multiple NI agents”;(s) with no pole(s) at 2 in [9] with the assumption of’, ;(co) > 0). Thus, since
the origin which are appropriately padded with rows andi € {1,---,n}: A(P(0)) >0andVi=1,--- ,n andj =
columns of zeros to give?;(s) in Fig. 3. DefineP,(s) = 1,---,1, all of the following hold: A(P;(0))A(Ps;(0)) <
P;(00)Ps j(00) = 0 (wheres is the vertex of edge

=((Q7 © L) diag{ P (0)H(Q & L )diag{ Py, (0)})

SA(Q" ® In)diag{Pi(0)}(Q © In) mbx{X(P: ;(0))}

IN

— i {A(P;(0)} max(A(P.,; (0)}A(£,)  (by Lemmas)

-1
dlag{P,,( )} whereP; ;(s) are arbitrary SNI compensators. A(£x)’

Robust output feedback consensus is achieved via the outputSee [14] for definition



4) and Ps ;(0c0) > 0, [P(s), Ps(s)] is internally stable via 2 only imposes a restriction of,(s) only at the frequency
NI systems theory in Lemma 7. This then implies nominab = 0 andw = oo and the SNI class has no gain (as long as it
output consensus when the disturbanegesandw, are setto is finite gain) or order restriction [9]. The result in Thewre
zero by noting thay - 0 <y — 1,, ®y,,, i.e.,y, > y,, 1 is for additive perturbations, but similar analysis can be
since the grapld is undirected and connected. performed for other types of perturbations that preseree th
In addition, internal stability of P(s), P(s)] and super- NI class. A few examples of permissible perturbations that
position principle of linear systems ([20]) guarantee thapreserve the NI class include additive perturbations where
Y, — Y. + 0 with § € £5 for all £, exogenous signal the uncertainty is also NI [9], feedback perturbations wher
injections perturbing signala andy, which in turn means both systems in the feedback interconnection are NI [13] and
that anyw; € Imge,(Q ® I,,) and anyws € £9 can more general perturbations based Redheffer Star-products
be injected in Fig. 3. Hence, the control protocol (3) willand Linear Fractional Transformations [13]. For example,
achieve a perturbed, consensus signal on outpyt(due to S% and (52+2£is52)4(r58r11))(25+1) are both SNI with the same
superposition principle of linear systems) for all distmbes D.C. gain.
wy € Ime,(Q® I,,,) andws € Lo.
Additive model uncertainties\;(s) Vi € {1,---,n} B. NI plants with free body dynamics
satisfying Assumption 2 can be dealt with as in [15], which
is shown in Fig. 4.

In this subsection, we will consider more general NI plants
by including free body dynamics (i.e. poles at the origin)
_ under the assumption of strict properness, RPdoo) = 0.
A(s) .
b - 0 The NI class restricts the number of such poles at the
B 0 An}s)“w origin to be at most 2. The following residue matrices
carrying information about the properties of the free body

i { 0@ |4 ne motion for the NI systemy = P(s)u where P(s) €
0 R™*™ ([11]): Py = lim,_y0 s%P(s), P; = limg_,0 s(P(s) —
TaE £2), Py = limy,o(P(s) — £2 — L1 1t can be observed that
- P, = 0,P, = 0 means there is no free body dynamics,
T P, # 0,P, = 0 means there is free body dynamics
Il with 1 pole at the origin,P, # 0 means there is free
i | body dynamics with 2 poles at the origin. For the sake
. " of page limitation, we will omit the calculating process
[ ue | which can be found in [11] to obtain the following useful

matrices: Ny = P5(0) — Ps(0)F(FT P;(0)F) ' FT P(0)
where F = H,V, € R™*" WhenP, # 0, Ny = P,(0) —
P,(0)J(JT P,(0)J)"1JT P,(0) where J is a full column
_ _ ) ~ rank matrix factorisingP, # 0 as P, = JJ?. When P, =
Fig. 4 (top) can bg mampulqted to Fig. 4 (bottom) W|th0’P1 £0, Ny = P,(0) — P,(0)Fy(FL P,(0)F,)~ L FT P,(0)
M(s) = (Q & Inn)Ps(s)(I — P(s)Ps(5))"H(Q" @ Im).  whereF, = U, .

Internal stability already yields\/(s) € RHo. and M(s)  Next, the internal stability ofP(s), P, (s)] with free body
is NI via Lemma 7 and Lemma 19 in [6] in general, or Viagynamics can be summarised in the following lemma:

Lemma_? an_d Theor_em 2 _in [13] whe (s) h_ave no poles  * omma 8:([11]) Let P(s) be a strictly proper NI plant
on the imaginary axis. This NI systed/(s) is connected .4 p (s) be an SNI controller:

Fig. 4. Robustness to model uncertainty via NI system theory

with A(s) which fulfills Assumption 2. Now 1) SupposeP, # 0, N; is sign definite andF” P, (0)F

A(A(0)M (0)) is non-singular. Then, H(s), Ps(s)] is internall}/ stablle if
<MAONA(Q ® Iy P, (0)(I — P(0)P,(0)) (9T @ I,,)] anld only if FTP,(0)F <1 0 and either! — N7 PN} —
<L) A[P,(0)(I — P(0)P,(0))™Y NZPJ(JTJ)"2JTPIN} >0 when Ny > 0 or

:(0) N Y Y T \—2 1T pT N
< LA det(I + NtPoyNt+ N¢ P J(J*J)"“J" P{ N 0 (7
~1—X\(P(0)P,(0)) et( tPoNg + NP J(JTT) ' Np) #0(7)
HA(L,) max{A(Ps,;(0))} when Ny < 0 and Ny = (ZNyg)2. If furthermore Py =
< Jj=1 ' 0, N> is sign definite and/* Ps(0)J is non-singular, the
=T m%f({;\(ﬂ(o))};\(ﬁn) miax{X(Ps SO necessary and sufficient conditions for the internal stgbil

of [P(s), Ps(s)] reduce toJ” Ps(0)J < 0 and either] —
1 1 ~ ~
It is then clear that inequality (6) guaranteesV; PyN; > 0 when Ny > 0 or det(I + NaFPyN2) # 0
A(A(0)M (0)) < 1 which in turn implies robust stability for whenN, < 0 and N, = (—N5)z. If additionally Ker(P,) C
all uncertainties that satisfy Assumption 2. m  Ker(P]), the necessary and sufficient condition for the
Remark 1:There is clearly a huge class of permissible dyinternal stability of[P(s), Ps(s)] reduces ta/” P,(0).J < 0

namic perturbations to the nominal dynamics as Assumptiand if furthermoreP, > 0, the necessary and sufficient



condition for the internal stability ofP(s), Ps(s)] reduces flexible structure can be represented by Fig.2 in [9}:&; +

to PS(O) < 0. Cix; + Kix; = wuy, Yy, = x;, © = 1,---,3, where
2) SupposeP, = 0, P, # 0, Ny is sign definite and . _ |%i;1 N T o |man 0 o

T H . . . wl - . bl ul - X ) J\/[l - . ) Cl -
F}' Ps(0)Fy is non-singular[P(s), Ps(s)] is internally stable Zi,2 Uj,2 0 m2

1 1
if and only if F{ P,(0)F; < 0 and eithetl — N7 PoN? >0 |Girt e —ci | g (kinthe =k g
when Ny > 0 or det(I + N1PyNy) # 0 when N; < 0 —Ci Ciz2t ¢ 1L ki kio + ki
undamped flexible structure is given by letting the damped

and N, = (—Ny)z. If furthermoreKer(PT) C Ker(PT),
the necessary and sufficient condition for internal stibdf
[P(s), Ps(s)] reduces taFT P,(0)F, < 0 and if additionally ~ Sl k1 = k11 = k12 = 0.5, c1 = c11 = 12 =

term C; = 0. The parameters are given as follows:

P, is invertible, the necessary and sufficient condition for 0.2, mi1 = mip = 1 with initial condition of
internal stability of[P(s), P;(s)] reduces taP,(0) < 0. 0.5 01 1 0.2]

Next we present the second main result of this paper S2: ko = ko1 = koo = 1, c2 = c21 = c22 = 0.1,
with the following notation: P, = lim,_,s?P(s), P, = mo1 = 1,mpo = 0.5 with initial condition of
limy o s(P(s) — £2), and Py = lim,_,o(P(s) — & — 1), 1 01 15 02];

Theorem 2:Given a graphg with incidence matrixQ, S3: k3 = kg1 = kso = 1,3 = c31 = c32 = 0,
satisfying Assumption 1 and modelling the communication ms31 = 1,ms2 = 0.5 with initial condition of
links among multiple strictly proper NI agentéi(s) (al- [1_5 0.1 2 O.Q}T_
lowing possible poles at the origin) which are appropriatelrha communication topology is given in Fig. 5 and thus
extended toP;(s) as in Fig. 3, robust output feedback 1 0 1 0
consensus is achieved via the feedback control law in (3) — | -1 1| and £, = |-1 2 —1|. Both the
or (4) under any external disturbances € Img, (Q ® I,,,) 0 -1 0 -1 1
and wp € £, as well as under any model uncertaintysj controllers are chosen ag with an initial condition
A(s),i = 1,---,n satisfying Assumption 2 if and only of _1 sych that all the suppositions of Theorem 1 are
if the necessary and sufficient conditions in Lemma 8 argatisfied. As shown in Fig. 6, the robust output feedback
satisfied for[P(s), Ps(s)]. consensus can be achieved via controller in (3) and (4)

_ Proof: Lemma 8 guarantees the internal stability ofwithout or even under external disturbances as well as SNI
[P(s), Ps(s)]. Nominal output consensus is then achieveghodel uncertainties given by
without considering the external disturbanegsandw, via +

internal stability as discussed in the proof of Theorem 1.

Then, similar analysis as in the proof of Theorem 1 b - T b .
guarantees robustness against both external disturbasces @‘T’@‘Z—’@ 0 1 ° 5 e 3 o
well as additive SNI model uncertainty. |

Remark 2:When the SNI controllers are homogeneous, g §
the consensus law (3) simplifies 0 = (Q ® L,,)(I, ® _

Py(s))(QT @ In)y = L, @ Py(s)y, or in a distributed man- Fig. 5. Graph for 3 and 4 NI systems

ner,u; = Ps(s) Y ,_; air(y; —y;,). It can be seen that this
captures the main result of [18] in the homogeneous plant
case but also generalises the results to the heterogene
plant case. In the case of heterogeneous SNI controlle
the controller is given byu = (Q ® I,,)Ps(s)(QT ®
I.)y = L.(s)y, which can be interpreted as a weightec -
graphg with the edges weighted by the controller transfe e e w E
functions P, (s), 7 = 1,---,1, or in a distributed manner: R —
w; = Y p_yaiPsi(s)(y; — yi), wherej is the edge . .

connected vertexandk. The above facts give a nice intuitive 0

interpretation and explain why we adopt the incidence matri
for the distributed property rather than the Laplacian matr
as indicated earlier. e ool

3

Output 1
Output 2

Output 1
Output 2

8
8
8

IV. ILLUSTRATIVE EXAMPLES Fig. 6. Robust output consensus of heterogeneous NI systems

This section gives two numerical examples to validate the
main results of this paper, Theorems 1 and 2 respecnvelyB_ 1 single integrator, 1 double integrator, 1 undamped and
A. 2 lightly damped and 1 undamped flexible structures 1 lightly damped flexible structure

2 lightly damped flexible structures with different pa- A very complicated case containing 1 single integrator, 1
rameters and 1 undamped flexible structure are considergduble integrator, 1 undamped and 1 lightly damped flexible
to illustrate Theorem 1. The dynamics of the combinedtructure is considered in this example. For consistency of



dimension, the single integrator and the double integratemcertainty; c) only exploiting output feedback infornaati
are extended as follows! s 0 and 0 (1) . which In contrast to full_s_tate information commonly uged in the

0 0 0 = literature; d) providing a whole class of cooperative cohtr
also means that the output of single integrator will bgyys je. SNI controllers that can be tuned for performance
coordinated with first outputs of both the undamped and thg,q characterising conditions that can be easily checked fo
lightly damped flexible structures, while the output of deub opyst output feedback consensus; e) showing how consensus
integrator will be coordinated with second outputs of bottygplems can exploit powerful internal stability and rabus
the undamped and the lightly damped flexible structures. Thgapility results available in the control theory litenatw
parameters of all NI systems are as follows:
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