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Abstract—The negative imaginary (NI) property occurs in
many important applications. For instance, flexible structure
systems with collocated force actuators and position sensors
can be modeled as negative imaginary systems. Obtaining a
mathematical model for this class of systems using system
identification methods may result into inaccurate models that
poorly reflect the negative imaginary property. In this paper, a
modified subspace system identification algorithm that ensures
the negative imaginary property is presented. As an application
of these results, an example of modeling a flexible system with
a piezoelectric actuator and position sensor is presented.

I. INTRODUCTION

The negative imaginary (NI) property is defined, in the

single input single output (SISO), by considering the proper-

ties of the imaginary part of the system frequency response

G(jω) and requiring the condition j (G(jω)−G(jω)∗) ≥ 0
for all ω ∈ (0,∞). Often, systems with colocated force

actuators and position measurements are NI systems [1],

[2]. For instance, systems with flexible structure dynamics

such as flexible robot manipulators [3], ground and aerospace

vehicles [4], atomic force microscopes (AFMs) [5], [6] often

have colocated force actuators and position sensors and

hence, can be modeled as NI systems. Another area where

the underlying system dynamics are NI, are nano-positioning

systems; see e.g., [5], [7]–[15]. Also, the positive-position

feedback control scheme in [16], [17], can be considered

using the NI framework. Furthermore, other control method-

ologies in the literature such as integral resonant control

(IRC) [18] and resonant feedback control [19], [20], fit into

the NI framework and their stability robustness properties

can be explained by NI systems theory.

One important property of NI systems is the stability

robustness of interconnected NI systems. This property has

been studied in [1], [2]. It has been shown that a necessary

and sufficient condition for the internal stability of a positive-

feedback control system (see Fig. 1) consisting of an NI plant

with a transfer function matrix of G(s) and a strictly negative
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Fig. 1. A negative-imaginary feedback control system. If the plant transfer
function matrix G(s) is NI and the controller transfer function matrix Ḡ(s)
is SNI, then the positive-feedback interconnection is internally stable if and
only if the DC gain condition, λmax(G(0)Ḡ(0)) < 1, is satisfied.

imaginary (SNI) controller with a transfer function matrix of

Ḡ(s) is given by the DC gain condition

λmax(G(0)Ḡ(0)) < 1, (1)

where the notation λmax(·) denotes the maximum eigenvalue

of a matrix with only real eigenvalues. This stability result

has been used in a number of practical applications [5], [6],

[15], [21]–[23].

In [5], [6], the NI stability result is applied to nano-

positioning in an atomic force microscope. In [15], an IRC

scheme based on the stability results provided in [1], [2]

is used to design an active vibration control system for the

mitigation of human induced vibrations in light-weight civil

engineering structures, such as floors and footbridges via

proof-mass actuators. In [21], the NI stability result is applied

to the problem of decentralized control of large vehicle

platoons. A positive position feedback control scheme based

on the NI stability result provided in [1], [2] is used to design

a novel compensation method for a coupled fuselage-rotor

mode of a rotary wing unmanned aerial vehicle in [22]. In

addition, it is shown in [24] that the class of linear systems

having NI transfer function matrices is closely related to the

class of linear Hamiltonian input-output systems. Also, an

extension of the NI systems theory to infinite-dimensional

systems is presented in [25].

Obtaining a system model for such flexible structural dy-

namics by constructing differential equations from first prin-

ciples is often difficult. An alternative method for obtaining a

mathematical model for the system is by the means of system

identification. System identification methods are used to build

mathematical models of dynamical systems from measured

data using statistical methods. System identification methods
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are widely used in the field of control system design, signal

processing and many other areas [26]–[28]. However, the re-

sulting model may not exactly describe the true dynamics of

the underlying system, especially under noisy measurements

due to sensitivity to boundary conditions and environmental

effects. In such cases, the identified system models can

sometimes lead to mathematical models that do not reflect the

actual characteristics of the underlying system. For example,

the process of system identification when applied to linear

time-invariant (LTI) systems which are known to be NI from

physical conditions might lead to a model which is not NI. In

such cases, the system model should be perturbed to enforce

the underling NI dynamics.

This problem has been addressed in [23], [29]. In [29]

a first-order perturbation method is proposed for iteratively

collapsing the frequency bands where the negative imaginary

property is violated and finally displacing the eigenvalues

of the Hamiltonian matrix away from the imaginary axis,

thus restoring the negative imaginary dynamics. However,

the technique presented in [29] is found to be only successful

where the NI violated region in very small. A system identifi-

cation algorithm which enforces the NI constraint is proposed

in [23] for estimating model parameters. However, in [23],

the NI enforcement comes only in identifying the matrices

B and D in a state space model. In other words, no stability

constraint is enforced, which is one of the requirements of a

system to be NI.

In this paper, we impose constraints that guarantee negative

imaginariness and stability of the identified model. This has

been achieved by modifying the subspace system identifi-

cation algorithm by adding two constraints that guarantee

the NI property. Unlike the method presented in [23], the

NI property is considered when estimating the full state

space model at the beginning of the estimation process. Also,

[23] considers the frequency domain approach to a subspace

system identification whereas we consider the time domain

approach.

This paper is further organized as follows: Section II

recalls the definitions of NI systems. In Section III, introduces

the subspace system identification method. In Section IV, we

present a modified subspace system identification method that

guarantees the NI property. In Section V-A, an example is

presented to illustrate the results of the paper. Also, a prac-

tical example of modeling a flexible system with collocated

force actuator and position sensor is given in Section V-B.

Section VI concludes the paper.

II. NEGATIVE IMAGINARY SYSTEMS

In this section, we present the definition of negative

imaginary systems and also the negative imaginary lemma.

Consider the LTI system

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t), (2)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×n, D ∈ R

m×m,

and with the square transfer function matrix G(s) = C(sI −
A)−1B +D.

The notion of negative imaginary transfer functions and

several related results developed in [1], [30], are now re-

called.

Definition 1: (see [30]) A square transfer function matrix

G(s) is NI if the following conditions are satisfied:

1. G(s) has no pole at the origin and in Re[s] > 0,

2. For all ω > 0 such that jω is not a pole of G(s),
j (G(jω)−G(jω)∗) ≥ 0,

3. If jω0 with ω0 > 0 is a pole of G(s), it is at most a

simple pole and the residue matrix K0 = lims→jω0
(s−

jω0)sG(s) is positive semidefinite Hermitian.

A state-space characterization of NI systems in terms of

a pair of linear matrix inequalities (LMIs) has been given in

[1], [31]. This result is analogous to the positive-real lemma

[32], [33] and thus is referred to as the negative imaginary

lemma. This result is also generalized in [30] to include poles

on the imaginary axis except at the origin.

Lemma 1: (See [30]) Let

[

A B

C D

]

be a minimal state

space realization of a transfer function matrix G(s). Then

G(s) is NI if and only if det(A) 6= 0, D = DT and there

exists a real matrix P > 0 such that

AP + PA∗ ≤ 0, (3)

and

B = −APC∗. (4)

Definition 2: A square transfer function matrix G(s) is

SNI if the following conditions are satisfied:

1) G(s) has no pole in Re[s] ≥ 0;

2) For all ω > 0, j (G(jω)−G(jω)∗) > 0.

A linear time-invariant system is SNI if its transfer function

matrix is SNI.

Lemma 2: (See [34]) Let

[

A B

C D

]

a state space real-

ization of a transfer function matrix G(s). Suppose G(s) +
G(−s)T has normal rank m and (C,A) is observable. Then,

A is Hurwitz and G(s) is SNI with

lim
jω→∞

jω(G(jω)−G(jω)∗) > 0

and

lim
jω→0

j
1

ω
(G(jω)−G(jω)∗) > 0

if and only if D = DT and there exists a matrix Y > 0 such

that

AY + Y A∗ < 0 and B = −AY C∗. (5)

III. SUBSPACE SYSTEM IDENTIFICATION METHODS

In this section, we will give a brief introduction to the

subspace system identification method.

3181
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Fig. 2. Two types of system identification methods, the left hand side
explains the subspace system identification method. The right hand side
explains the classical method of system identification.

The discrete time system can be described as follows,

x(k + 1) = Adx(k) +Bdu(k), (6)

y(k) = Cdx(k) +Ddu(k), (7)

where Ad ∈ R
n×n, Bd ∈ R

n×m, Cd ∈ R
m×n, and Dd ∈

R
m×m. The main idea of the time domain system identi-

fication method uses set of time domain input U ∈ R
m×q

and output Y ∈ R
m×q measurements to estimate the system

matrices

[

Ad Bd

Cd Dd

]

, where m is the number of the inputs

and outputs and q is the number of measurements. According

to [28], there are two main methods of estimating the system

matrices

[

Ad Bd

Cd Dd

]

. These two methods are illustrated in

Fig. 2.

In this paper, we focus in the subspace system identifi-

cation approach. In the subspace system identification, there

are two major steps.

Step one: In this step, the input u(k : k + q) and output

y(k : k + q) measurements are used to estimate the states

of the system X(k : k + q) ∈ R
n×q. This is done using

block Hankel matrices formed from the input u(k : k + q)
and output y(k : k + q).

Step two: In this step, the estimated states X(k : k + q)
are used to setup a least squares problem to obtain the state

space matrices

[

Ad Bd

Cd Dd

]

. This least squares problem can

be formed as follows;

min
Ad,Bd,Cd,Dd

∥

∥

∥

∥

W

([

X(k + 1 : k + q)
y(k : k + q − 1)

]

−
[

Ad Bd

Cd Dd

] [

X(k : k + q − 1)
u(k : k + q − 1)

])

Ŵ

∥

∥

∥

∥

2

,

(8)

where W and Ŵ are weighting matrices. Note that u(k :

k + q) and y(k : k + q) are the given input and output and

X(k : k + q) is the estimated states from step one.

IV. NEGATIVE IMAGINARY SUBSPACE SYSTEM

IDENTIFICATION

In this section, we will introduce a subspace system

identification algorithm with NI property constraints as given

in the NI lemma, Lemma 1. The NI lemma is formulated in

continuous time. Therefore, a bilinear transformation [35] in

the following form,

A =
1

T
(I +Ad)−1(Ad − 1)

B =
1√
T
(I +Ad)−1Bd

C =
1√
T
Cd(I +Ad)−1

D = Dd − Cd(I + Ad)−1Bd, (9)

will be used to transform the conditions (3) and (4) into

corresponding discrete time conditions. The LMI (3) is trans-

formed from continuous to a discrete time form as follows:

AP + PAT ≤ 0

⇔(I +Ad)−1(Ad − 1)P + P (AdT

− 1)(I +AdT

)−1 ≤ 0,

⇔(AdP − P )(I +AdT

) + (P +AdP )(AdT − I) ≤ 0,

⇔AdP +AdPAdT

− P − PAdT

+ PAdT

+AdPAdT

− P −AdP ≤ 0,

⇔AdPAdT

− P +AdPAdT

− P ≤ 0,

⇔AdPAdT − P ≤ 0. (10)

Also, the equality (4) can be transformed to the following

corresponding discrete time form:

B = −APCT

⇔ Bd = − 1

T
(Ad − I)P (I +AdT

)−1CdT

, (11)

where the Lyapunov inequality in the discrete form (10) and

the equality (11) are non-convex conditions in the state space

matrices and P , which is a computational issue. We start by

replacing the matrix inequality (10) by a strict inequality. In

fact, we restrict the identified model to be strict stable NI

system. In other words, we use the SNI lemma, Lemma 2,

where Lyapunov inequality is AP + PAT < 0 rather than

Lemma 1. As in [36], we assume that there is exist an α > 0
such that;

P ≥ αI (12)

AdPAdT

− P ≤ −αI. (13)

Using Schur complements, (12) and (13) can be written as

follows;
[

P − αI AdP

PAdT

P

]

≥ 0

[

⇔ P − αI Q

QT P

]

≥ 0, (14)
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where Q = AdP . The LMI (14) is now convex in the

variables Q and P . Furthermore, the matrix Ad can be

recovered from Ad = QP−1.

Now, the optimization problem (8) can be separated into

two sub-optimization problems (see [36] for more expla-

nations why this is possible). The first sub-optimization

problem is to solve for the matrices (Ad, Bd) as follows;

min
Ad,Bd

W1

∥

∥

∥

∥

([

X(k + 1 : k + q)
]

−
[

Ad Bd
]

[

X(k : k + q − 1)
u(k : k + q − 1)

])

Ŵ

∥

∥

∥

∥

2

. (15)

The second sub-optimization problem is to solve for the

matrices (Cd, Dd) as follows;

min
Cd,Dd

∥

∥

∥

∥

W2

([

y(k : k + q − 1)
]

−
[

Cd Dd
]

[

X(k : k + q − 1)
u(k : k + q − 1)

])

Ŵ

∥

∥

∥

∥

2

. (16)

By choosing the weighting matrix W in (15) as follows;

Ŵ =

[

X(k : k + q − 1)
u(k : k + q − 1)

]T

×
(

[

X(k : k + q − 1)
u(k : k + q − 1)

] [

X(k : k + q − 1)
u(k : k + q − 1)

]T
)†

×
[

PR1 0
0 R2

]

. (17)

Note that

[

X(k : k + q − 1)
u(k : k + q − 1)

]

is assumed full row rank (as

q > n + 1) and this assumption reasonable when sufficient

data is collected. Also, R1 and R2 are new weighting

matrices that can be chosen by the designers to tune the

optimisation. This implies that the sub-optimization problem

(15) can be combined with the LMI (14) constraint as

follows;

min
P,Q,B

∥

∥

∥

(

W1

[

X(k + 1 : k + q)
]

Ŵ −
[

QR1 BdR2

]

)
∥

∥

∥

2

,

(18)

subject to
[

P − αI Q

QT P

]

≥ 0. (19)

By solving this optimization problem, we obtain the matrices

(Ad, Bd, P ). Then, using (11), we can calculate the matrix

Cd. The matrix Dd, can be obtained by solving the optimiza-

tion problem (16). Then the corresponding continuous time

state space models are obtained using (9).
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Fig. 3. Bode plot of models obtained using the NI constrained subspace
system identification algorithm (green line), standard subspace system iden-
tification algorithm [35] (blue line) and the original transfer function given
in (20).

V. EXAMPLES

A. Example 1

In this example, a fourth order transfer function in the

form;

2s4 + 1.2s3 + 78.18s2 + 22.6s+ 728

s4 + 0.6s3 + 38.09s2 + 11.4s+ 345
, (20)

is used to generate a set of outputs y(tk) corresponding to

a random set of inputs u(tk). Then, the inputs u(tk) and

the outputs y(tk) is used to test our proposed NI subspace

system identification algorithm and compare the algorithm

with the standard subspace system identification algorithm

presented in [35]. It is shown in Fig. 3 that the NI constrained

subspace system identification algorithm (green line) gives a

better fit to the data generated from the transfer function (20)

(red dashed line) compared with standard subspace system

identification algorithm [35] (blue line) for the same model

order. Also, the NI model obtained from the constrained

subspace method (green line) satisfies the NI property. This

fact can be easily verified from the phase plot in Fig. 3, since

the phase of this model lies between [0,−180o], see, [1],

[2]. However the system model obtained from the standard

subspace method (blue line) does not satisfy the NI property.

B. Example 2

This section presents an application of modeling a flexible

system with two colocated piezoelectric patches, see Fig. 4

and Fig. 5. Here, one piezoelectric patches acts as an actuator

while the other acts as a sensor. The system has one input

and one output: the input is the voltage Va applied to the

piezoelectric actuator, whereas the output is the voltage Vs

produced by the piezoelectric sensor. As this system involves

collocated force actuators and position sensors, its transfer

function should satisfy the NI property; e.g., see [2].

A DSPACE system is used to generate a random signal

as an input u(t) signal to the PZT-actuator through a high

voltage amplifier. Then, the PZT-sensor is used to measure

the output y(t) signal as shown in Fig. 4. The signals

(u(t), y(t)) are used in the identification process. In this
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Fig. 4. Flexible beam with piezoelectric actuator and piezoelectric sensor.

Fig. 5. Flexible beam with piezoelectric actuator and piezoelectric sensor.

example, we employ both the standard and the NI constrained

subspace system identification algorithms to identify the

transfer function of the given system. The weighting matrices

W1, R1, R2 are chosen to be identity matrices . A fifth order

model is identified using both algorithms. It is shown in

Fig. 6 that the NI constrained subspace system identification

algorithm (green line) gives a better fit to the data (red

dashed line) compared with the standard subspace system

identification algorithm [35] (blue line) for the same model

order. Also, the NI constrained subspace method (green line)

satisfies the NI property. This fact can be easily verified

using the phase plot in Fig. 6, since the phase of this model

lies between [0,−180o], see, [1], [2], whereas the standard

subspace system method (blue line) does not satisfy NI

property.

VI. CONCLUSION

In this paper, a modified subspace system identification

algorithm is provided. The new algorithm guarantees the

negative imaginary property in the identified model. This

subspace system identification algorithm can be used in the

systems where the dynamics are known to be negative imagi-

nary. An example of modeling a system with collocated force

actuator and position sensor is presented. In this example, it

has been shown that the modified algorithm gives a closer fit

compared with the standard subspace system identification

algorithm.
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