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Abstract— Different classes of multipliers have been proposed
in the literature for obtaining stability criteria using passivity
theory, integral quadratic constraint (IQC) theory or Lyapunov
theory. Some of these classes of multipliers can be applied
with slope-restricted nonlinearities. In this paper the concept of
phase-containment is defined and it is shown that several classes
are phase-contained within the class of Zames–Falb multipliers.
There are two main consequences: firstly it follows that the
class of Zames–Falb multipliers remains, to date, the widest
class of available multipliers for slope-restricted nonlinearities;
secondly further restrictions may be avoided when applying
some of the other classes of multipliers.

I. INTRODUCTION

The investigation of absolute stability for the system in
Fig. 1, where G is a linear time-invariant (LTI) system
and φ is a nonlinearity within a given class, is known
as the Lur’e problem. For example, if one would like to
investigate the stability of a feedback control system with
saturation in the actuator, the closed-loop could be expressed
as Fig. 1. Because the saturation belongs to the class
of so-called sector bounded nonlinearities, simple analysis
conditions based upon the LTI part of the system can be
derived, i.e. strictly positive realness [1], and applied to anti-
windup synthesis [2]. However the conditions are inherently
conservative. In order to reduce such conservatism, saturation
can be more efficiently described as a slope-restricted and
odd nonlinearity; multiplier techniques may then be used.
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Fig. 1. Lur’e problem

In this paper, we are concerned with static nonlineari-
ties that are slope-restricted. In particular, for SISO slope-
restricted and odd nonlinearities several classes of multipliers
were proposed in the Sixties, summarized by Barabanov [3].
The most celebrated are the so-called “Zames–Falb multipli-
ers” [4]. However more conservative graphical criteria, such
as the circle [5], Popov [6] or off-axis circle criteria [7],
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were developed due to the lack of tools for searching for
Zames-Falb multipliers.

In [4], [8], the classical multiplier approach is developed
for any general application. Loosely speaking, if M has
a canonical factorization, then positivity of MG and M∗φ
is enough to prove stability. The multiplier technique can
be used for applying either passivity theory [4] or integral
quadratic constraint (IQC) theory [9]. Although the multi-
plier is not directly used when Lyapunov theory is used, the
results can also be interpreted in terms of multipliers [10]
by using the path integral approach developed by Brockett
(see [11], [12]). In summary, given a class of nonlinearities,
a class of multipliers preserving the positivity of the class
of nonlinearities must be defined; then for a particular linear
system, stability of the feedback interconnection of Fig. 1
is ensured if it can be found an element of the class of
multiplier such that MG is positive.

As appropriate computation tools have become available,
several works [13], [14], [15], [16], [17], [18] have proposed
different searches within the class of Zames–Falb multipliers.
Meanwhile several authors propose extensions to the Zames-
Falb class. [19] extends the class of Zames–Falb multipliers
by adding a Popov term, and [20] extends the class of
Zames–Falb multipliers by adding a quadratic term. [21]
proposes an LMI search for certain MIMO multipliers and
discusses their relation to the Zames-Falb multipliers in the
SISO case; the SISO version of [21] is also given by [3],
and was introduced by [22] via a Lyapunov approach and
by [23] via an input-output approach.

Dynamic multipliers such as Zames–Falb multipliers have
been used as an analysis tool [24], [25], [26]. Although their
use in synthesis is proposed by, for example, [27], [28], [29],
it is not yet understood how to exploit their full generality;
the above graphical criteria are still in use for antiwindup
techniques.

The aim of this paper is to demonstrate that the Zames–
Falb class is the widest available class of multipliers for
slope–restricted nonlinearities. Firstly, we define notions
of phase-containment and phase-equivalence. Secondly, we
show that Popov multipliers, Park’s multipliers [21], and
the extensions of the Zames–Falb multipliers are all phase-
contained within the class of Zames–Falb multipliers. Our
treatment is consistent with that of Falb and Zames [30] who
showed a similar relation for RC and RL multipliers. Note
that Popov and RL and RC classes of multipliers have been
described as belonging to (limiting) subsets of the class of
Zames–Falb multipliers [31]. But such statements have not
been rigorously proven; nor are they necessarily correct in
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all cases.
The most important consequences of this paper are as

follows. Firstly, Zames–Falb multipliers are the widest class
for analysing the stability of the class of slope-restricted
nonlinearities. If a new class of multipliers is proposed
containing multipliers which are not Zames–Falb multipliers,
it should not necessarily be concluded that this new class is
wider. Secondly, stability result for slope-restricted nonlin-
earities using the multipliers under discussion can be stated
as Corollaries of the Zames–Falb theorem. Therefore no extra
conditions are needed and L2 stability is obtained. Thirdly,
since the passivity theory and IQC theory are equivalent for
Zames–Falb multipliers [32]; it follows that the theories are
also equivalent for slope-restricted nonlinearities using any
of the multipliers under discussion.

II. NOTATION AND PRELIMINARY RESULTS

Let L m
2 [0,∞) be the Hilbert space of all square integrable

and Lebesgue measurable functions f : [0,∞)→ Rm. Sim-
ilarly, L m

2 (−∞,∞) can be defined for f : [−∞,∞] → Rm.
A truncation of the function f at T is given by fT (t) =
f (t) ∀t ≤ T and fT (t) = 0 ∀t > T . The function f belongs to
the extended space L m

2e[0,∞) if fT ∈L m
2 [0,∞] for all T > 0.

In addition, L1[−∞,∞] (henceforward L1) is the space of
all absolute integrable functions; given a function h :R→R
such that h ∈L1, its L1-norm is given by

‖h‖1 =
∫

∞

−∞

|h(t)|dt. (1)

A nonlinearity φ : L2e[0,∞] → L2e[0,∞] is said to be
memoryless if there exists N :R→R such (φv)(t) =N(v(t))
for all t ∈ R. Henceforward we assume that N(0) = 0. A
memoryless nonlinearity φ is said to be bounded if there
exists a positive constant C such that |N(x)| < C|x| for all
x ∈ R. The nonlinearity φ is said monotone if for any two
real numbers x1 and x2 we have

0≤ N(x1)−N(x2)

x1− x2
(2)

Moreover, φ is said to be slope-restricted or incrementally
bounded in the sector S[0,k], (henceforward we write φk), if

0≤ N(x1)−N(x2)

x1− x2
≤ k (3)

for all x1 6= x2. The nonlinearity φ is said to be odd if N(x) =
−N(−x) for all x ∈R.

This paper focuses the stability of the feedback inter-
connection of a stable LTI system G and a slope-restricted
nonlinearity φk, represented in Fig. 1 and given by{

v = f +Gw,
w =−φkv.

(4)

Since G is a causal, i.e. (Gu)T = (GuT )T , and stable LTI
system, the exogenous input in this part of the loop can
be taken as the zero signal without loss of generality. It is
well–posed if the map (v,w) 7→ (0, f ) has a causal inverse

on L 2
2 [0,∞), and this interconnection is stable if for any

f ∈L2[0,∞), and it is absolutely stable if it is L2-stable for
all φk within the class of nonlinearities. In addition, G( jω)
means the transfer function of the LTI system G. Finally,
given an operator M, then M∗ means its adjoint (see [8] for
a definition). For LTI systems, M∗(s) = M>(−s), where >

means transpose.
The standard notation L∞ (RL∞) is used for the space

of all (proper real rational) transfer functions bounded on
the imaginary axis; RH∞ is used for the space of all proper
real rational transfer functions such that all their poles have
strictly negative real parts. The H∞-norm of a SISO transfer
function G is defined as

‖G‖∞ = sup
ω∈R

(|G( jω)|) (5)

With some acceptable abuse of notation, given a rational
strictly proper transfer function H(s) bounded on the imagi-
nary axis, ‖H‖1 means the L1-norm of the impulse response
of H(s).

A. Zames–Falb theorem

The following theorem provides the absolute stability of
system (4) subject to the existence of an appropriate Zames–
Falb multiplier.

Theorem 2.1 ([4], [8]): Consider the feedback system in
Fig. 1 with G a stable LTI system, i.e. G(s) ∈ RH∞, and
a nonlinearity φk−ε slope-restricted in S[0,k− ε] for some
ε > 0. Assume that the feedback interconnection is well-
posed. Then suppose that there exists a noncausal convolu-
tion operator M : L2(−∞,∞)→L2(−∞,∞) whose impulse
response is of the form

m(t) = δ (t)−
∞

∑
i=0

ziδ (t− ti)− za(t), (6)

where δ is the Dirac delta function and
∞

∑
i=0
|zi|< ∞, za ∈L1, and ti ∈R ∀i ∈N. (7)

Assume that:
(i)

‖za‖1 +
∞

∑
i=0
|zi|< 1 (8)

(ii) either za(t)≥ 0 for all t ∈R and zi ≥ 0 for all i ∈N,
or φk−ε is odd; and

(iii) there exist δ > 0 such that

Re{M( jω)(1+ kG( jω))} ≥ δ ∀ω ∈R. (9)

Then the feedback interconnection (4) is L2-stable.

B. Zames–Falb multipliers

Equations (6), (7) and (8) in Theorem 2.1 provide the
class of Zames–Falb multipliers. It is a subset of L∞. i.e. it
is not limited to rational transfer functions. However in many
parts of this paper, we restrict our attention to such rational
multipliers, i.e. we set zi = 0 for all i ∈N.
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Definition 2.2: The class of SISO rational Zames–Falb
multipliers M contains all SISO rational transfer functions
M ∈RL∞ such that M(s)= 1+H(s), where H(s) is a rational
strictly proper transfer function and ‖H‖1 < 1.

Lemma 2.3: [17] Let M(s) ∈ RL∞ be a rational transfer
function with M(s) = M(∞)+ M̂(s), where M̂(s) denotes its
associated strictly proper transfer function. Then, M(s) is a
Zames–Falb multiplier if and only if ‖M̂‖1 < M(∞).

Remark 2.4: The corresponding Lemma given in [17] is
limited to M(s) ∈ RH∞, but its extension to M(s) ∈ RL∞ is
straightforward.

In this paper, we will often consider first order Zames–
Falb multipliers. These are by implication rational. It is worth
noting that the impulse response of a first order Zames–Falb
multiplier is always positive. Hence in this case condition
(ii) in Theorem 2.1 is always satisfied and the odd condition
on φk−ε is not needed.

C. Practicalities and absolute stability
In the original theorem [4], when the linear condition (9)

holds for some constant k, the nonlinearity is required to
belong to the sector S[0,k− ε], where ε can be arbitrarily
small but strictly positive. Nevertheless, its extension to the
sector S[0,k] is trivial since ‖M‖∞ < 1 (see [33], [17]). A
prior lemma is needed.

Lemma 2.5: Let M ∈ L∞ be a Zames–Falb multiplier
satisfying equations (6), (7), and (8). Assume that (9) is
satisfied for G ∈ RH∞, M, k > 0, and δ > 0. Then there
exist ξ > 0 and δ1 > 0 such that

Re{M( jω)(1+(k+ξ )G( jω))} ≥ δ1 > 0 ∀ω ∈R. (10)

The significance of Theorem 2.1 is that it can be applied
when the characterization of the nonlinearity is that it is
memoryless, slope-restricted, and odd (in some cases). An
absolute stability result can be stated as follows:

Corollary 2.6: Consider the feedback system in Fig. 1
with G ∈ RH∞ and any nonlinearity φk slope-restricted in
S[0,k]. Assume that the system is well-posed. Then suppose
that there exists M ∈M such that:

(i) either φk is odd or the inverse Laplace transform of
H(s) = M(s)−1, h(t), is negative for all t ∈R; and

(ii) there exists δ > 0 such that

Re{M( jω)(1+ kG( jω))} ≥ δ ∀ω ∈R. (11)

Then the feedback interconnection (4) is absolutely stable.

In this paper, we compare different criteria for absolute
stability. If a criterion guarantees the stability of feedback of
G ∈ RH∞ and any nonlinearity φk slope-restricted in S[0,k],
then the linear feedback interconnection of G(s) and any
linear gain 0≤K≤ k must be stable. The following definition
is used in works that focus on stability criteria, e.g. [13], [15].

Definition 2.7: Given G ∈ RH∞, the Nyquist value kN is
the supremum of the values k such that KG(s) satisfies the
Nyquist Criterion for all K ∈ [0,k], i.e.

kN = sup{k∈R+ : inf
ω
{|1+KG( jω)|}> 0 ∀K ∈ [0,k]}. (12)

As a result, we can restrict our attention to a subset of
RH∞ without loss of generality, which will be essential to
prove the relationship between Zames-Falb multipliers and
Popov multipliers.

Definition 2.8: The subset G ⊂RH∞ is defined as follows

G = {Ĝ ∈ RH∞ : Ĝ−1 ∈ RH∞ and Ĝ(∞)> 0}. (13)
Lemma 2.9: Assume that the feedback interconnection in

Fig. 1 with G∈RH∞ and any nonlinearity φk slope-restricted
S[0,k] is L2-stable. Then (1+ kG) ∈ G .

It follows that if 1+kG 6∈ G , with G∈RH∞ and k > 0, the
feedback interconnection of G and the class of nonlinearities
slope-restricted in S[0,k] cannot be absolutely L2-stable.

III. EQUIVALENCE OF MULTIPLIERS

In the literature of SISO bounded, monotone and odd non-
linearities, several classes of multipliers have been defined.
The equivalence between specific classes is discussed in [30]
and [31] but in neither is a general concept of equivalence
rigorously defined. Similarly alternative definitions of the
Popov multiplier in the early literature [10] implicitly assume
such equivalence. In the following, we define the terms
“phase-contained” and “phase-equivalent” with respect to
classes of multipliers.

Following our discussion in Section II.D, we restrict our
attention to the subset G without loss of generality for the
case of slope-restricted nonlinearities.

Definition 3.1: Let MA and MB be two classes of mul-
tipliers. The class MA is phase-contained within the class
MB if given a multiplier Ma ∈MA such that

Re
{

Ma( jω)Ĝ( jω)
}
≥ δ1 ∀ω ∈R (14)

for some δ1 > 0 and Ĝ ∈G, then there exists Mb ∈MB such
that

Re
{

Mb( jω)Ĝ( jω)
}
≥ δ2 ∀ω ∈R (15)

for some δ2 > 0.
Definition 3.2: Two classes of multipliers, MA and MB,

are phase-equivalent if MA is phase-contained within MB
and MB is phase-contained within MA.

In the rest of this paper, we will show relationships
between different classes of multipliers and the Zames–Falb
multipliers:
• The class of Popov multipliers is phase-contained within

the class of first order Zames–Falb multipliers, as
suggested in [31]. Here we confirm the relation with
mathematical rigour. In particular we show the class
of Popov multipliers with positive constant is phase-
contained within the class of causal first order Zames–
Falb multipliers while the class of Popov multipliers
with negative constant is phase contained within the
class of anti-causal first order Zames-Falb multipliers.

• The classes of RC and RL multipliers are respectively
phase-contained within the classes of anti-causal and
causal Zames–Falb multipliers, as shown in [30]. We
include the result for completeness.

2264



• We show the class of multipliers proposed by Park [21]
is phase-equivalent to the class of first order Zames–
Falb multipliers.

• We show the classes of multipliers generated by the
extensions of the Zames–Falb multipliers given in [19],
[20], [35] are all phase-contained within the class of
Zames–Falb multipliers.

IV. POPOV MULTIPLIERS

Popov multipliers were the first multipliers proposed in the
literature [6]. Moreover, the cited paper gives the first general
solution to the Lur’e problem when the nonlinearity is sector-
bounded and time invariant. However, the use of this class
of multiplier carries the restriction that the LTI system must
be strictly proper and the derivative of the input (depicted f
in Fig 1) must belong to L2 (see Section 6.6.2 in [34]).

Definition 4.1: The class of Popov multipliers MP is
given by M(s) = 1+qs where q ∈R.

Remark 4.2: An alternative definition is given in [10]:
M(s) = (1 + qs)±1, where q > 0. This gives a phase–
equivalent class of multiplier.

Since they are not biproper, these are not Zames–Falb
multipliers. They have been identified as a limiting case of
the Zames-Falb multiplier in [31] as follows:

1+qs = lim
ε→0+

1+qs
1+ εs

, (16)

1
1+qs

= lim
ε→0+

1+ εs
1+qs

. (17)

A detailed analysis of both limits shows that the transfer
function on the right in (16) is a Zames–Falb multiplier when
ε is sufficiently small. However, the transfer function on
the right in (17) is not a Zames–Falb multiplier for small
ε . Moreover the equivalence is not well-defined: at high
frequency the Popov multiplier in (16) is unbounded.

Let us first characterize the class of first order Zames–Falb
multipliers.

Corollary 4.3: Let M(s) be a first order transfer function
given by

M(s) =
1+νs
1+κs

. (18)

Then, M(s) ∈M if and only if νκ > 0 and
∣∣1− ν

κ

∣∣< ν

κ
.

It is clear that the limit in (16) is a Zames–Falb multiplier for
all ε > 0 since q

ε
−1 < q

ε
. The relation between multipliers

indicated by (16) can be formalized as follows:
Lemma 4.4: The class of Popov multipliers with positive

constant q is phase-contained within the class of causal first
order Zames–Falb multipliers.

However if ν < κ , Corollary 4.3 requires ν < κ < 2ν .
Thus, the limit in (17) is not a Zames-Falb multiplier as soon
as 2ε ≤ q. Nevertheless, an appropriate limit with ε < 0 can
be stated:

1+qs = lim
ε→0−

1+qs
1+ εs

, q < 0. (19)

Lemma 4.5: The class of Popov multipliers with negative
constant q is phase-contained within the class of anti-causal
first order Zames–Falb multipliers.

Remark 4.6: We may think of a Popov multiplier as a first
order Zames-Falb multiplier but with its pole at infinity.

As a result, a new version of the Popov Theorem can
be given as a corollary of Theorem 2.1. We require that
the nonlinearity be slope-restricted with k finite, whereas
the classical Circle and Popov criteria only require sector-
bounded. However the LTI system may be biproper and
input-output stability is established without further restriction
on the derivative of the input:

Corollary 4.7 (Popov Theorem): Let G ∈RH∞ and let φk
be a slope-restricted S[0,k] nonlinearity. If there exists q∈R
such that

Re{(1+q jω)(1+ kG( jω))} ≥ δ ∀ω ∈R, (20)

for some δ > 0 then the feedback interconnection (4) is L2-
stable.

V. RL AND RC MULTIPLIERS

The RL and RC multipliers are obtained in [10] as
an extension of the Popov multipliers for slope-restricted
nonlinearities using the Lyapunov theorem. They can be
defined as follows:

Definition 5.1: The class of RL multipliers is given by

MRL(s) =
(s+α1)(s+α2) . . .(s+αn)

(s+β1)(s+β2) . . .(s+βn)
, (21)

where 0 < α1 ≤ β1 < α2 < β2 < · · ·< αn < βn.
Definition 5.2: The class of RC multipliers is given by

MRC(s) =
(s+α1)(s+α2) . . .(s+αn)

(s+β1)(s+β2) . . .(s+βn)
, (22)

where 0 < β1 ≤ α1 < β2 < α2 < · · ·< βn < αn.
Definition 5.3: The class of RL and RC multipliers is

given by M(s) = MRL(s)MRC(s), where MRL(s) is an RL
multiplier and MRC(s) is an RC multiplier.

In [31], it is commented that RL and RC multipliers
are examples of Zames–Falb multipliers. This statement
is not completely correct: RL multipliers are Zames–Falb
multipliers; however there exist RC multipliers which are not
Zames–Falb multipliers. For example, consider the multiplier
given by:

M(s) =
s+3
s+1

= 1+
2

s+1
,

∥∥∥∥ 2
s+1

∥∥∥∥
1
= 2 > 1, (23)

This is an RC multiplier but it is not a Zames–Falb multiplier.
Nevertheless, in [30], the following result is given which
states (in our terminology) that the class of RC and RL
multipliers is phase-contained within a specific sub-class of
Zames–Falb multipliers:

Lemma 5.4 ([30]): Let M be a RL and RC multiplier.
Then there exists an RC multiplier MRC such that if M
is written in the form M( jω) = (1− Z( jω))|MRC( jω)|2,
with Z( jω) the Fourier transform of z(t), then z(t)≥ 0 and
‖Z‖1 < 1.

Remark 5.5: Given the multiplier MRL( jω)MRC( jω), the
object MRL( jω)(M∗RC( jω))−1 has the same phase and is a
Zames–Falb multiplier.
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Corollary 5.6: The class of RL and RC multipliers is
phase-contained within the class of Zames–Falb multipliers
for which the corresponding impulse response (i.e. z) is non-
negative. Then the feedback interconnection (4) is L2-stable.

Remark 5.7: The sub-class of Zames-Falb multipliers cor-
responds to that for which the nonlinearity need not be odd.
A more precise classification also follows immediately.

Corollary 5.8: The class of RL multipliers is phase-
contained within the class of causal Zames–Falb multipliers
for which the corresponding impulse response (i.e. z) is non-
negative. The class of RC multipliers is phase-contained
within the class of anti-causal Zames–Falb multipliers for
which the corresponding impulse response (i.e. z) is non-
negative.

VI. PARK’S MULTIPLIERS

Park [21] proposes a class of multipliers which corre-
sponds to a stability condition that can be tested by a convex
search. It is easy to show the phase-equivalence between this
class of multipliers and the class of first order Zames-Falb
multipliers. The multipliers are given by

M(s) =−s2 +a2 +bs, a ∈R,b ∈R. (24)

The quadratic term was introduced by Yakubovich [22]1

where the frequency condition was obtained by using Lur’e-
Postnikov type Lyapunov function. A similar result was
independently developed by Dewey and Jury [23] within an
embryonic passivity framework. In [3] the same multiplier
class is used to demonstrate the Kalman conjecture for third
order systems.

As commented in [21], a proper multiplier with the same
phase can be defined as follows:

Definition 6.1: The class of Park’s multipliers is given by
MP(s) = 1+ bs

−s2+a2 , where a and b are real numbers.
Not all multipliers in this class are Zames-Falb multipliers.

However the following result provides the equivalence to a
first order Zames–Falb multipliers.

Lemma 6.2: The class of Park’s multipliers is phase-
equivalent to the class of first order Zames–Falb multipliers.

Remark 6.3: If b > 0 the phase-equivalent Zames–Falb
multiplier is causal, whereas if b < 0, the phase-equivalent
Zames–Falb multiplier is anticausal.

The stability result proposed in [21] now follows as a
corollary of Theorem 2.1 and is stated in terms of L2-
stability without a requirement that the LTI plant be strictly
proper.

Corollary 6.4: Let G ∈ RH∞ and let φk be a slope-
restricted S[0,k] nonlinearity. If there exists a multiplier Mp
such that Re

{
Mp( jω)(1+ kG( jω))

}
≥ δ for all ω ∈R and

for some δ > 0, then the feedback interconnection (4) is L2-
stable.

1Other authors [3], [20] cite a conference paper in 1962 now unavailable.

In summary, the result given in [21] can be understood as
an LMI search over the whole class of first order rational
Zames–Falb multipliers.

VII. EXTENSION OF ZAMES–FALB MULTIPLIER

Two different extensions of the class of Zames–Falb
multipliers have been proposed in the literature: adding a
“Popov term”, i.e qs, [19], [35] and adding a “Yakubovich
term” i.e. −κ2s2 [20]. For SISO systems, we show that both
extensions are phase-contained within the original class, and
hence the additional conditions associated with the extra
terms are not needed.

Two ways of extending the class of Zames-Falb multipliers
by adding a Popov term are considered in the literature.
In [19] the term qs (henceforward, the “Popov term”) is
added to the Zames–Falb multiplier. Similarly, in [35] the
term 1+qs is added to the Zames-Falb multiplier.

A. Extension adding the Popov term

Definition 7.1: The class of Popov-extended Zames–Falb
multipliers is given by MpZF(s)= qs+M1(s) where q∈R and
where M1(s) belongs to the class of Zames–Falb multipliers.

Lemma 7.2: The class of Popov-extended Zames–Falb
multipliers is phase-contained within the class of Zames–
Falb multiplier.

We can state the result given in [19] as a corollary of
Theorem 2.1, avoiding further conditions normally imposed
by the use of a Popov multiplier.

Corollary 7.3: Let G ∈ RH∞ and let φk be a slope-
restricted S[0,k] nonlinearity. Assume that there exists a
Popov-extended Zames–Falb multiplier MpZF such that

Re
{

MpZF( jω)(1+ kG( jω))
}
≥ δ ∀ω ∈R, (25)

for some δ > 0. Then the feedback interconnection (4) is
L2-stable.

The extension in [35] is addressed in a longer version of
this paper. As result similar to Corollary 7.3 can be shown
provided sector and slope restrictions coincide. This does
not contradict results in [35]. The original search of [16] is
carried out within the class of causal Zames–Falb multipliers,
whereas the search over the class of Popov plus Zames–Falb
multipliers can result in a noncausal Zames-Falb multiplier
if q < 0, as shown in Lemma 4.5.

B. Extension with “Yakubovich term” [20]

Using Theorem 3 in [20] for SISO systems, the Zames–
Falb multipliers can be extended as follows:

Definition 7.4: The class of Yakubovich-extended Zames–
Falb multipliers is given by MyZF(s) =−κ2s2+M(s), where
κ ∈R and M(s) = 1+H(s) is a Zames–Falb multiplier.

Lemma 7.5: The class of Yakubovich-extended Zames–
Falb multiplier is phase-contained with the class of Zames–
Falb multipliers.

Finally, the following corollary of Theorem 2.1 is less
restrictive that the SISO version of the result given in [20].
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Corollary 7.6: Let G ∈ RH∞ and let φk be a slope-
restricted S[0,k] nonlinearity. Assume that there exists a
Yakubovich-extended Zames–Falb multiplier MyZF such that

Re
{

MyZF( jω)(1+ kG( jω))
}
≥ δ ∀ω ∈R, (26)

for some δ > 0. Then the feedback interconnection (4) is
L2-stable.

VIII. CONCLUSION

In order to analyze the relationships between different
classes of multipliers, notions of phase-containment and
phase-equivalence have been defined. Most of the classes
of multipliers defined in the literature for slope-restricted
nonlinearities, such as Popov multipliers, RC and RL mul-
tipliers, Park’s multipliers Zames–Falb multipliers and their
extension, are discussed in this paper. We have shown that
all these classes of multipliers are phase-contained within
the class of Zames–Falb multipliers. This provides new L2-
stability results as corollaries of Theorem 2.1. The only
conditions required are those which are given for the Zames–
Falb multipliers [4]. Corollary 4.7, Corollary 6.4, Corol-
lary 7.3, and Corollary 7.6 are all believed to be novel.

In principle, there is no need to search over any class
of multipliers other than those of the class of Zames–Falb
multiplier. However, no convex search over the whole class
of Zames-Falb multipliers has yet been found. This can be
largely ascribed to difficulties associated with the bound
on the L1-norm in the original definition. Hence from a
practical point of view, the classes of multipliers discussed in
this paper remain useful. The analysis of this paper indicates
that any improvement from their use should be interpreted as
arising from a convenient parameterization within the class
of Zames-Falb multipliers.
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