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Abstract— This paper is concerned with stability conditions
for the positive feedback interconnection of negative imaginary
systems. A generalization of the negative imaginary lemma is
derived, which remains true even if the transfer function has
poles on the imaginary axis including the origin. A sufficient
condition for the internal stability of a feedback interconnection
for NI systems including a pole at the origin is given and an
illustrative example is presented to support the result.

I. INTRODUCTION

Structural modes in machines and robots, ground and

aerospace vehicles, and precision instrumentation, such as

atomic force microscopes and optical systems, can limit the

ability of control systems to achieve the desired performance

[1]. This problem is simplified to some extent by using

force actuators combined with collocated measurements of

velocity, position, or acceleration.

The use of force actuators combined with velocity mea-

surements has been studied using the positive real (PR)

theory for linear time invariant (LTI) systems; e.g., see [2],

[3]. PR systems, in the single-input single-output (SISO)

case, can be defined as systems where the real part of

the transfer function is nonnegative. Many systems that

dissipate energy fall under the category of PR systems. For

instance, they can arise in electric circuits with linear passive

components and magnetic couplings. In spite of its success, a

drawback of the PR theory is the requirement for the relative

degree of the underlying system transfer function to be either

zero or one [3]. Hence, the control of flexible structures

with force actuators combined with position measurements,

cannot use the theory of PR systems.

Lanzon and Petersen introduce a new class of systems in

[4], [5] called negative imaginary (NI) systems, which has

fewer restrictions on the relative degree of the system transfer

function than in the PR case. In the SISO case, such systems

are defined by considering the properties of the imaginary

part of the transfer function G(jω) = D+C(jωI −A)−1B,

and requiring the condition j (G(jω) − G(jω)∗) ≥ 0 for all

ω ∈ (0,∞).
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In general, NI systems are stable systems having a phase

lag between 0 and −π for all ω > 0. That is, their Nyquist

plot lies below the real axis when the frequency varies in the

open interval (0,∞) (for strictly negative-imaginary systems,

the Nyquist plot should not touch the real axis except at zero

frequency or at infinity). This is similar to PR systems where

the Nyquist plot is constrained to lie in the right half of the

complex plane [2], [3]. However, in contrast to PR systems,

transfer functions for NI systems can have relative degree

more than unity.

NI systems can be transformed into PR systems and

vice versa under some technical assumptions. However, this

equivalence is not complete. For instance, such a transfor-

mation applied to a strictly negative imaginary (SNI) system

always leads to a non-strict PR system. Hence, the passivity

theorem [2], [3] cannot capture the stability of the closed-

loop interconnection of an NI and an SNI system. In addition,

any controller design approach based on strictly PR synthesis

cannot be used for the control of an NI system irrespective

of whether it is strict or non-strict. Also, transformations of

NI systems to bounded-real systems for application of the

small-gain theorem suffers from the exact same difficulty of

giving a non-strict bounded real system despite the original

system being SNI; see [6] for details.

Many practical systems can be consider as NI systems. For

example, when considering the transfer function from a force

actuator to a corresponding collocated position sensor (for

instance, piezoelectric sensor) in a lightly damped structure

[1], [4], [5], [7]–[9]. Also, stability results for interconnecting

systems with an NI frequency response have been applied

to decentralized control of large vehicle platoons in [10].

Here, the authors discuss the availability of various designs

to enhance the robust stability of the system with respect to

small variations in neighbor-coupling gains.

NI systems theory has been extended by Xiong et. al. in

[11]–[13] by allowing for simple poles on the imaginary

axis of the complex plane except at the origin. Further-

more, NI controller synthesis has also been discussed in

[4], [5]. In addition, it has been shown in [4], [5] that a

necessary and sufficient condition for the internal stability

of a positive-feedback interconnection of an NI system with

transfer function matrix M(s) and an SNI system with

transfer function matrix N(s) is given by the DC gain

condition λmax(M(0)N(0)) < 1. Here, the notation λmax(·)
denotes the maximum eigenvalue of a matrix with only real

eigenvalues.

A generalization of the NI lemma in [12], [13] to include

a simple pole at the origin was presented in [14]. In [14],
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stability analysis for a spacial class of generalized NI systems

with the inclusion of an integrator connected in parallel with

an NI system was discussed. The assumption in [14] restricts

the application of the proposed stability result to NI systems

which can be decomposed into the parallel connection of an

NI system and an integrator.

In this paper, we extend the results in [1], [4], [5], [11]–

[14] for NI systems to allow for the existence of a pole at the

origin with a more general structure than allowed in the result

of [14]. This extension allows us to stabilize any NI system

with a pole at the origin without any parallel decomposition

assumption. Also, stabilizing NI systems with a pole at the

origin can be used for controller design with integral action.

This paper is further organized as follows: Section II

introduces the concept of PR and NI systems and presents

a relationship between them. The main results of this paper

are presented in Section III. Section IV provides a numerical

example and the paper is concluded with a summary and

remarks on future work in Section V.

II. PRELIMINARIES

In this section, we introduce the definitions of PR and NI

systems. We also present a lemma describing the transforma-

tion between PR and NI systems, and some technical results

which will be used in deriving the main results of the paper.

The definition of PR systems has been motivated by

the study of linear electric circuits composed of resistors,

capacitors, and inductors. For a detailed discussion of PR

systems, see [2], [3] and references therein.

Definition 1: A square transfer function matrix F (s) is

positive real if:

1) F (s) has no pole in Re[s] > 0.

2) F (jω)+F (jω)∗ ≥ 0 for all positive real jω such that

jω is not a pole of F (jω).
3) If jω0, finite or infinite, is a pole of F (jω), it is

a simple pole and the corresponding residual matrix

K0 = lim
s−→jω0

(s − jω0)F (s) is positive semidefinite

Hermitian.

To establish the main results of this paper, we consider

a generalized definition for NI systems which allows for a

simple pole at the origin as follows:

Definition 2: A square transfer function matrix G(s) is NI

if the following conditions are satisfied:

1) G(s) has no pole in Re[s] > 0.

2) For all ω ≥ 0 such that jω is not a pole of G(s),
j (G(jω) − G(jω)∗) ≥ 0.

3) if s = jω0 is a pole of G(s) then it is a simple

pole. Furthermore if ω0 > 0, the residual matrix

K0 = lim
s−→jω0

(s − jω0)jG(s) is positive semidefinite

Hermitian.

Definition 3: A square transfer function matrix G(s) is

SNI if the following conditions are satisfied:

1) G(s) has no pole in Re[s] ≥ 0.

2) For all ω > 0, j (G(jω) − G(jω)∗) > 0.

Due to advances in the theory of PR systems and the

complementary definitions of PR and NI systems, it is

useful to establish a lemma which considers the relationship

between these notions to further develop the theory of NI

systems. In order to do so, we consider the possibility of

having a simple pole at the origin, and relax the condition

det(A) 6= 0 considered in [5], [11], [15]. This leads to a

modification of the relationship between PR and NI systems

as follows:

Lemma 1: (see also [14]) Given a real rational proper

transfer function matrix G(s) with state space realization
[

A B

C D

]

and the transfer function matrix G̃(s) = G(s)−

D, the transfer function matrix G(s) is NI if and only if

the transfer function matrix F (s) = sG̃(s) is PR. Here, we

assume that any pole zero cancellation which occurs in sG̃(s)
has been carried out to obtain F (s).

Proof: (Necessity) It is straightforward to show that

if G̃(s) is NI then G(s) is NI and vice-versa. Suppose

that j
(

G̃(jω) − G̃(jω)∗
)

≥ 0, for all ω > 0 such

that jω is not a pole of G(s). Then given any such

ω > 0, F (jω) + F (jω)∗ = jω
(

G̃(jω) − G̃(jω)∗
)

≥ 0,

and (F (jω) + F (jω)∗) ≥ 0. This means that F (−jω) +
F (−jω)∗ ≥ 0 for all ω > 0 which implies that F (jω) +
F (jω)∗ ≥ 0 for all ω < 0 such that jω is not a pole of

G(s). Hence, (F (jω) + F (jω)∗) ≥ 0 for all ω ∈ (−∞,∞)
such that jω is not a pole of G̃(jω).

Now, consider the case where jω0 is a pole of G̃(s) and

ω0 = 0. Since G̃(s) has only a simple pole at the origin,

F (s) = sG̃(s) will have no pole at the origin because of the

pole zero cancellation. This implies that F (0) is finite. Since

F (jω)+F (jω)∗ ≥ 0 for all ω > 0 and F (jω) is continuous,

this implies that F (0)+F (0)∗ ≥ 0. Also, if jω0 is a pole of

G̃(s) and ω0 > 0, then G̃(s) can be factored as 1
s2+ω2

0

R(s),

which according to the definition for NI systems implies that

the residual matrix K0 = 1
2ω0

R(jω0) is positive semidefinite

Hermitian. This implies that R(jω0) = R(jω0)
∗ ≥ 0. Now,

the residual matrix of F (s) at jω0 with ω0 > 0 is given by,

lim
s−→jω0

(s − jω0)F (s) = lim
s−→jω0

(s − jω0)sG̃(s),

= lim
s−→jω0

(s − jω0)s
1

s2 + ω2
0

R(s),

=
1

2
R(jω0)

which is positive semidefinite Hermitian. Hence, F (s) is

positive real.

(Sufficiency) Suppose that F (s) is positive real. Then,

F (jω) + F (jω)∗ ≥ 0 for all ω ∈ (−∞,∞) such that jω is

not a pole of F (s). This implies jω
(

G̃(jω) − G̃(jω)∗
)

≥ 0

for all ω ≥ 0 such that jω is not a pole of G(s). Then

G̃(jω)− G̃(jω)∗ ≥ 0 for all such ω ∈ [0,∞). In addition, if

jω0 is a pole of F (s), then it follows from the definition of

PR systems that the residual matrix lim
s−→jω0

(s− jω0)F (s) is
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positive semidefinite Hermitian. Also,

lim
s−→jω0

(s − jω0)F (s) = lim
s−→jω0

(s − jω0)sG̃(s),

= ω0 lim
s−→jω0

(s − jω0)jG̃(s).

Then using Definition 2, we can conclude that G̃(s) is NI.

Remark 1: Note that a pole zero cancellation at the origin

in F (s) = sG̃(s) will not affect the use of the PR lemma

when applied to F (s) since the minimality condition is

relaxed in the generalized version of the PR lemma [16],

[17].

Now, we present a generalized NI lemma, which allows

for a pole at the origin.

Consider the following LTI system,

ẋ(t) = Ax(t) + Bu(t), (1)

y(t) = Cx(t) + Du(t), (2)

where, A ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×n, and D ∈

R
m×m.

Lemma 2: (see also [14]) Let

[

A B

C D

]

be a minimal

realization of the transfer function matrix G(s) ∈ Rm×m for

the system in (1)-(2). Then, G(s) is NI if and only if there

exist matrices P = PT ≥ 0, W ∈ R
m×m, and L ∈ R

m×n

such that the following LMI is satisfied:
[

PA + AT P PB − AT CT

BT P − CA −(CB + BT CT )

]

=

[

−LT L −LT W

−WT L −WT W

]

≤ 0. (3)

Proof: Suppose that G(s) is NI, which implies from

Lemma 1 that F (s) = sG̃(s) with state space realization
[

A B

CA CB

]

is PR. It follows from Corollary 2 and

Corollary 3 in [17] that there exists a matrix P = PT ≥ 0,

such that the LMI in (3) is satisfied.

On the other hand, suppose that LMI in (3) is satisfied,

then F (s) is PR via Corollary 1 and Corollary 3 in [17],

which implies from Lemma 1 that G(s) is NI.

In studying the internal stability of an interconnection of

NI and SNI systems, we shall use the following SNI lemma:

Lemma 3: [5], [11], [15] Suppose that the proper transfer

function matrix G(s) = C(sI −A)−1B +D with a minimal

realization

[

A B

C D

]

is SNI, then the following conditions

are satisfied:

1) det(A) 6= 0, D = DT .

2) There exists a square matrix P = PT > 0, W ∈
R

m×m and L ∈ R
m×n such that the following LMI is

satisfied:

[

PA + AT P PB − AT CT

BT P − CA −(CB + BT CT )

]

=

[

−LT L −LT W

−WT L −WT W

]

.

(4)

Also, consider the following lemma, which will be used

to derive the main results of this paper in Section III,

Lemma 4: [5] Given A ∈ C
n×n with j(A−A∗) ≥ 0 and

B ∈ C
n×n with j(B − B∗) > 0, then det(I − AB) 6= 0.

III. MAIN RESULTS

The key result of this paper is a generalization of the result

in [14], which gives stability conditions for an interconnec-

tion between an NI system (which may contain a simple

pole at the origin) and an SNI system. The generalization

is stated in Theorem 1. Now, suppose the transfer function

matrix G1(s) with a minimal realization

[

A1 B1

C1 D1

]

is NI,

and G2(s) with a minimal realization

[

A2 B2

C2 D2

]

is SNI.

According to Lemma 2 and Lemma 3, we have,

P1A1 + AT
1 P1 = −LT

1 L1, P2A2 + AT
2 P2 = −LT

2 L2,

P1B1 − AT
1 CT

1 = −LT
1 W1, P2B2 − AT

2 CT
2 = −LT

2 W2,

C1B1 + BT
1 CT

1 = WT
1 W1, C2B2 + BT

2 CT
2 = WT

2 W2,

(5)

where P1 ≥ 0 and P2 > 0. The internal stability of the

closed-loop positive-feedback interconnection of G1(s) and

G2(s) can be guaranteed by considering the stability of the

transfer function matrix,

(I − G1(s)G2(s))
−1 = D̆ + C̆(sI − Ă)−1B̆,

where,

Ă =

[

A1 B1C2

0 A2

]

+

[

B1D2

B2

]

(I − D1D2)
−1

[

C1 D1C2

]

B̆ =

[

B1D2

B2

]

(I − D1D2)
−1,

C̆ = (I − D1D2)
−1

[

C1 D1C2

]

,

D̆ = (I − D1D2)
−1. (6)

Now, consider the following result, which is the main

result of this paper:

Theorem 1: Suppose that G1(s) is strictly proper and NI

and G2(s) is SNI. Then the closed-loop positive feedback

interconnection between G1(s) and G2(s) is internally stable

if G2(0) < 0 and the matrix A1+B1G2(0)C1 is not singular.

Proof: To prove this theorem, we prove that the matrix

Ă in (6) is Hurwitz; i.e., all of its poles lie in the left-half

of the complex plane.

Let T =

[

P1 − CT
1 D2C1 −CT

1 C2

−CT
2 C1 P2

]

be a candidate

Lyapunov matrix. Since G2(0) < 0, P1 ≥ 0, we claim that

P1 − CT
1 G2(0)C1 > 0. (7)

In order to prove this claim, consider M = P1 −
CT

1 G2(0)C1 ≥ 0 and N (M) = {x : Mx = 0}, where
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N (·) denotes the null space. Also, given any x ∈ N we

have P1x = 0 and C1x = 0. Now, consider the equations

P1A1 + AT
1 P1 = −LT

1 L1, (8)

BT
1 P1 − C1A1 = −WT

1 L1 (9)

outlined in (5). Now pre-multiplying and post-multiplying

(8) by xT and x respectively, we get,

L1x = 0. (10)

Also, post-multiplying (8) by x results in

P1A1x = 0. (11)

Subsequently, post-multiplying (9) by x, gives

C1A1x = 0. (12)

Now, let y = A1x, which from (11) and (12) gives

P1y = 0, C1y = 0 (13)

which implies y ∈ N (M). Thus, we have established that

A1 N (M) ⊂ N (M) and N (M) ⊂ N (C1) (14)

which leads to the fact that N (M) is a subset of the

unobservable subspace of (A1, C1); e.g., see Chapter 18 of

[18]. It now follows from the minimality of (A1, B1, C1,D1)
that N (M) = {0}. Hence, M = P1−CT

1 G2(0)C1 > 0. This

completes the proof of the claim.

Now, using this claim, we have

P2 > 0 and

P1 − CT
1 (D2 + G2(0) − D2)C1 > 0,

⇒P2 > 0 and

P1 − CT
1 D2C1 − CT

1 C2P
−1
2 CT

2 C1 > 0,

⇒

[

P1 − CT
1 D2C1 −CT

1 C2

−CT
2 C1 P2

]

> 0.

That is, T > 0.

Now, the corresponding Lyapunov inequality is given by,

TĂ + ĂT T =

[

P1 − CT
1 D2C1 −CT

1 C2

−CT
2 C1 P2

]

×

[

A1 + B1D2C1 B1C2

B2C1 A2

]

+

[

A1 + B1D2C1 B1C2

B2C1 A2

]T

×

[

P1 − CT
1 D2C1 −CT

1 C2

−CT
2 C1 P2

]

,

= −

[

(

CT
1 D2W

T
1 + LT

1

)

CT
1 WT

2

CT
2 WT

1

(

LT
2

)

]

×

[

(W1D2C1 + L1) W1C2

W2C1 (L2)

]

≤0.

This implies that Ă has all its poles in the closed left

half of the complex plane. We now show that det(Ă) 6= 0.

Indeed, using the assumption (A1 +B1G2(0)C1), we obtain

det(Ă)

= det(A2) det((A1 + B1D2C1 − B1C2 (A2)
−1

B2C1)

= det(A2) det(A1 + B1G2(0)C1)

= det(A2) det(A1 + B1G2(0)C1)

6= 0

since (A1 + B1G2(0)C1) is non singular and det(A2) 6= 0.

Also, using Lemma 4 and the fact that G1(s) is NI and G2(s)
is SNI, we conclude that det(I −G1(jω)G2(jω)) 6= 0. This

implies that Ă has no eigenvalues on the imaginary axis for

ω > 0. Hence, the matrix Ă is Hurwitz. This completes the

proof of the theorem.

IV. ILLUSTRATIVE EXAMPLE

To illustrate the main result of this paper, consider the

SNI transfer function G2(s) = 1
s+3 − 1, which satisfies

G2(0) = − 2
3 < 0 and the strictly proper NI transfer function

G1(s) = 1
s(s+1) , which has a pole at the origin. Thus, the

assumptions in Theorem 1 are satisfied and we can conclude

that the closed-loop system is stable. Also, the poles of the

closed-loop transfer function corresponding to G2(s) and

G1(s) are the roots of the polynomial (1 − G1(s)G2(s)) =
s3 + 4s2 + 4s + 2 which are {−2.84,−0.58 ± 0.61i}.

This verifies that the closed-loop transfer function is indeed

asymptotically stable.

V. CONCLUSION

In this paper, stability results for a positive-feedback

interconnection of NI systems have been derived. A gen-

eralization of the NI lemma, allowing for a simple pole at

the origin, has been used in deriving these results. This work

can be used in the controller design to allow for a broader

class of NI systems than considered previously. Also, the
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stability result for an NI system with a pole at the origin

connected with an SNI system can be used for controller

design including integral action. The validity of the main

results in this paper have been illustrated via a numerical

example.
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