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Abstract— Flexible structure dynamics with collocated force
actuators and position sensors lead to negative imaginary (NI)
systems. However, in some cases, the models obtained for
these systems may not satisfy the NI property. This paper
provides a new method for enforcing such models to be NI.
The results are based on a study of the spectral properties
of related Hamiltonian matrices. A test for the negativity
of the imaginary part of a corresponding transfer function
matrix is first performed by checking for the existence of
imaginary eigenvalues of the associated Hamiltonian matrix.
In the presence of imaginary eigenvalues, the system is not NI.
In such cases, a first-order perturbation is presented for the
precise characterization of frequency bands where violations
of the NI property occur. This characterization is then used
for the design of an iterative perturbation scheme for state
matrices aimed at displacing the imaginary eigenvalues of the
Hamiltonian matrix away from the imaginary axis.

Index Terms— Negative imaginary systems, Positive real
systems, Hamiltonian matrices, and Passivity.

I. INTRODUCTION

Negative imaginary (NI) systems theory was introduced

by Lanzon and Petersen in [1], [2]. NI systems are defined

by considering the property of the imaginary part of a certain

frequency dependent transfer function matrix G(jω) = D +
C(jωI − A)−1B, where G(jω) belongs to the set of real-

rational stable transfer function matrices.

Flexible structure dynamics can be found in many systems,

such as in aircrafts, bridges, buildings, robots, and optical

systems. The resonant dynamics resulting from the flexibility

of these systems can affect their performance. Also, these dy-

namics can lead to structural modes that can limit the ability

of control systems in achieving the desired performance.

Precise modeling of structural dynamics is often difficult

as it is sensitive to boundary conditions and environmen-

tal effects. Therefore, using force actuators combined with

collocated measurements of velocity, position, or accelera-

tion can improve the performance of control systems by

increasing active damping [3]. Collocated here means that

sensors and actuators have the same location and direction.

Since flexible structures with collocated force actuators and

position sensors are typically strictly negative imaginary
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(SNI), the NI theory can be effectively applied to these

systems [3]. Also, it has been shown in [1], [2] that the

necessary and sufficient condition for the internal stability

of the positive-feedback interconnection of a NI and a SNI

system is for the corresponding closed-loop DC gain to be

less than unity.

For applications containing flexible structure dynamics,

it is hard to get an exact system model by construct-

ing differential equations for such systems. An alternative

method for obtaining the system model is by means of

system identification. However, the resulting mathematical

model may not completely describe the true dynamics of the

underlying system.

Identified system models can sometimes be misleading in

the sense that they might not reflect the actual characteristics

of the underlying system. For example, linear time-invariant

(LTI) systems which are known to be NI might be identified

as non-NI systems. In such cases, the system model can be

enforced to satisfy NI system characteristics. In this paper,

we achieve such an enforcement by using results from the

theory of passivation for LTI systems; see e.g., [4]–[9].

NI systems can be transformed into positive real (PR)

systems and vice versa under some technical assumptions.

However, this equivalence is not complete. For instance,

such a transformation applied to a strictly negative imaginary

(SNI) system always leads to a non-strict PR system. Hence,

the passivity theorem [10], [11] cannot capture the stability

of the closed-loop interconnection of a NI and a SNI system.

Also, any approach based on strictly PR synthesis cannot be

used for the control of a NI system irrespective of whether

it is strict or non-strict. Also, transformations of NI systems

to bounded-real systems for application of the small-gain

theorem also suffer from the exact same difficulty of giving

a non-strict bounded real system despite the original system

being SNI, see [12] for details.

This paper is further organized as follows: Section II

introduces the concept of PR and NI systems and presents a

relationship between them. In Section III, an algebraic pro-

cedure is presented that allows us to pinpoint the frequency

bands where the NI property for a given transfer function

is violated. Section IV shows how we can enforce such a

system model to be NI and Section V concludes the paper

with a note on future work.

II. PRELIMINARIES

A. Positive Real Systems

The definition of PR systems is motivated by the study

of linear electric circuits composed of resistors, capacitors,
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and inductors. The same definition applies for analogous

mechanical and hydraulic systems. This idea can be extended

to study electric circuits with nonlinear passive components

and magnetic couplings. Here, we present definitions and

a lemma describing PR systems in terms of their transfer

function matrices. For a detailed discussion on PR systems,

see [10], [11] and references therein.

Definition 1: A transfer function f(s) is said to be posi-

tive real if:

1. f(s) is analytic in Re[s] > 0.

2. Re(f(s)) ≥ 0 for all Re[s] > 0.

3. f(s) is real for positive real s.

Definition 2: A square transfer function matrix F (s) is

positive real if:

1. F (s) has no pole in Re[s] > 0.

2. F (s) is real for all positive real s.

3. F (s) + F (s)∗ ≥ 0 for all Re [s] > 0.

Here F (s)∗ denotes the complex conjugate transpose of

F (s).

B. Negative Imaginary Systems

Definition 3: [1], [2], [13], [14] A square transfer func-

tion matrix G(s) is NI if the following conditions are

satisfied:

1. G(s) has no pole at the origin and in Re[s] > 0.

2. For all ω > 0, such that jω is not a pole of G(s), and

j (G(jω) − G(jω)∗) ≥ 0.

3. If jω0 is a pole of G(jω), it is at most a simple pole

and the residual matrix K0 = lims→jω0
(s−jω0)sG(s)

is positive semidefinite Hermitian.

C. Relationship between Negative Imaginary and Positive

Real Systems

Since the theory of PR systems is well-researched, it is

useful to establish a relationship between PR and NI systems

to further develop the theory for NI systems. The following

lemma provides a relationship between NI an PR systems

[13], [14].

Lemma 1: [13], [14] Given a real rational proper transfer

function matrix G(s) with minimal state space realization
[

A B

C D

]

and the transfer function matrix G̃(s) = G(s)−

D, the transfer function matrix G(s) is negative imaginary

if and only if,

1) G(s) has no poles at the origin.

2) The transfer function matrix F (s) = sG̃(s) is positive

real.

III. CHARACTERIZATION OF FREQUENCY BANDS WHERE

NEGATIVE IMAGINARY PROPERTY IS VIOLATED

In this section, we describe an algebraic procedure

that allows us to pinpoint frequency bands where the

NI property is violated, i.e., frequency bands where,

j (G(jω) − G(jω)∗) < 0.

Theorem 1: Given a transfer function matrix with min-

imal realization

[

A B

C D

]

. Assume A has no imaginary
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Fig. 1. Eigenvalue distribution versus normalized frequency for the
Hermitian part of F (s) = sG(s), where G(s) = 0.5s+0.2

s
2+s+1.25

is NI.

eigenvalues and δ ≥ 0 is not an eigenvalue of CB+BT CT

2
.

Then, δ ∈ λ(H(jω0)) if and only if jω0 ∈ λ(Nδ). Here,

λ(·) denotes the set of eigenvalues of a matrix, H(jω) =
jω
2

(G(jω)−G∗(jω)) and the Hamiltonian matrix Nδ is given

by

Nδ =

[

A + BQ−1CA BQ−1BT

−AT CT Q−1CA −AT − AT CT Q−1BT

]

(1)

with Q = 2δI − CB − BT CT .

Proof: The proof of this theorem follows from the proof

of Theorem 3 in [15] for the PR case and then using Lemma

1.

Theorem 1 allows us to compute the frequencies at which

the eigenvalues of the Hermitian part of a transfer function

matrix cross or touch any given threshold (or a critical level),

δ = δ0. A NI property test can be readily designed by using

the critical level δ0 = 0.

To illustrate this theorem, as explained in [9] for the PR

case, consider the situation depicted in Fig. 1 which describes

the eigenvalues of the Hermitian part of the transfer function

F (s) = sG(s), where G(s) = 0.5s+0.2
s2+s+1.25

. G(s) is NI, except

in the shaded frequency band from ω0 to ω1. The number of

imaginary eigenvalues of the associated Hamiltonian matrix

are two, which corresponded to frequencies ω0 and ω1. The

frequency axis is therefore subdivided into two frequency

bands (ω0, ω1) and (ω1,∞).

From this example, we can conclude that using only the

number of imaginary eigenvalues of H(jω) does not allow

for the local characterization of the NI property in each

frequency band. In order to obtain such a characterization, we

need to consider the slope of the eigenvalue curve at points

crossing the critical level δ = 0. Since the eigenvalues are

continuous functions of frequency, the number of successive

crossings with positive (negative) slopes can be precisely

related to the number of eigenvalues crossing the threshold

in each frequency band.

Let us consider the set of all imaginary eigenvalues (with

positive imaginary part) of the Hamiltonian matrix at the
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critical level δ0 = 0, defined as

Ω = {ωi > 0 : jωi ∈ λ(N0)}. (2)

We will assume that the multiplicity of each eigenvalue

jωi is unity. Now, the perturbation of the original eigenvalue

jωi for δ0 ≃ 0, denoted by ωδ
pi

, can be computed as a

convergent power series,

ωδ
pi

= jωi + k′
iδ + h.o.t. (3)

Here, the first-order coefficient k′ is related to the slope

of the eigenvalue curve at the crossing and is given by

k′
i =

∂ωδ
pi

∂δ
|δ=0. (4)

Also, we need to express the Hamiltonian matrix Nδ as

a first-order expansion about the critical level δ = 0. A

straightforward calculation leads to the following expression

[9]:

Nδ = N0 + δN ′
0 + h.o.t., (5)

where,

N ′
0 =

[

−2BQ−2

0 CA −2BQ−2

0 BT

2AT CT Q−2

0 CA 2AT CT Q−2

0 BT

]

with Q0 = −(CB + BT CT ).
According to [9] k′

i in Eq. (4) can be given as,

k′
i =

υ∗
i JN ′

0υi

υ∗
i Jυi

, (6)

where J =

(

0 I

−I 0

)

, (·)∗ denotes the complex conjugate

transpose, and υi is the corresponding eigenvector of jωi.

Remark 1: determination of the set Ω requires structure-

preserving Hamiltonian eigensolvers. Perturbation theory re-

sults can be used to prove that only if the structure is

preserved, simple purely imaginary eigenvalues might remain

on the imaginary axis while unstructured solvers are used

see; [16]–[18]. Thus, it is recommended to use structured

solvers in determination of the set Ω.

Now, consider the following result:

Theorem 2: Let Ω (defined in (2)), be a set of all simple

positive imaginary parts of the imaginary eigenvalues of the

Hamiltonian matrix Nδ at the critical level δ = 0, sorted in

ascending order. Also, let ζi be defined as

ζi =
jυ∗

i Jυi

υ∗
i JN ′

0υi

. (7)

Then, G(jw) locally satisfies the NI property for ω ∈
(ωi−1, ωi), if and only if

Λi =
∑

k≥i

sgn(ζk) = 0, (8)

where sgn(·) extracts the sign of its argument and ω0 = 0.

Proof: The proof of this theorem follows from the proof

of Theorem 4 in [9] and then applying Lemma 1 which

transforms a NI transfer function matrix to a corresponding

PR transfer function matrix.

Using the above theorem, Algorithm 1 in [9] can be used

to determine the frequency bands where the NI property is

not satisfied. Also, in terms of considering the general case,

where multiplicity of the eigenvalues is more than one, the

generalization in [9] for PR systems holds in the case of NI

systems as well.

IV. ENFORCING A SYSTEM MODEL TO BE NEGATIVE

IMAGINARY

In this section, we address the problem of finding an

approximate NI system model for a given stable but non-

negative imaginary system model for some frequency bands.

Let us consider a state-space representation for Σ as

ẋ(t) = Ax(t) + Bu(t), (9)

y(t) = Cx(t) + Du(t), (10)

where, A ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×n, and D ∈

R
m×m. The aim is to find a perturbed state-space realization

Σp, which satisfies the NI property.

Since Σ is assumed to be stable, the A matrix will stay the

same in the new perturbed model Σp. Also, as we transfer

the model Σ to an equivalent PR system Σ̄ given by

ẋ(t) = Ax(t) + Bu(t), (11)

ȳ(t) = C̄x(t) + D̄u(t) (12)

via Lemma 1. In order to use the result in [9], we need to

perturb the matrix C̄ in Σ̄ which is achieved by perturbing the

matrix C in Σ. The state-space realization for the perturbed

model Σp is given by

ẋ(t) = Ax(t) + Bu(t), (13)

ȳ(t) = C̄px(t) + D̄u(t), (14)

where only the matrix C is perturbed in order to satisfy the

NI property.

Let

dC̄ = C̄p − C̄ = (Cp − C)A (15)

which is the perturbation of the state matrix C̄. The differ-

ence in the impulse response of the two systems induced by

this perturbation is expressed as

dh(t) = L−1{dF (s)} = dC̄eAtB = (C̄p − C̄)eAtB, (16)

where L−1()̇ is inverse laplace transform. The matrix C̄p is

selected to minimize the cumulative energy of the impulse

response perturbations which can be computed as [9]

E = tr(dC̄WdC̄T ), (17)

where, W is the controllability Gramian [19].

Then, substituting (15) into (17) gives

E = tr(dCAWAT dCT ) (18)

and the matrix AWAT can be factorized using Cholesky

factorization as AWAT = KT K. Now, we can express the
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perturbation of dC in a new coordinate system as dCk =
dCKT . This leads to,

E = tr(dCkdCT
k ) =‖ dCk ‖2

F =‖ vec(dCk) ‖2
2, (19)

where, vec(X) denotes a vector storing stacked columns of

the matrix X , ‖ · ‖2
F denotes the Frobenius norm, and ‖ · ‖2

2

denotes the Euclidean norm.

Now, we apply a first-order perturbation to the Hamilto-

nian matrix N0 in order to move the imaginary eigenvalues

off the imaginary axis. The perturbation on the Hamiltonian

matrix in N0 induced by small perturbations in the state

matrix C is given by

N0|p = N0 + dN0, (20)

where,

dN0 =

[

BQ−1

0 dCA 0

AT CT Q−1

0 dCA AT dCT Q−1

0 BT

]

.

The aim now is to find the matrix dC in order to displace

each imaginary eigenvalue jωi to a new location jωi,p, where

jωi,p − jωi ≃
υ∗

i JdN0υi

υ∗
i Jυi

. (21)

As in [9], (21) can be expressed as

2Re((υT
i1K

−1) ⊗ z∗i )vec(dCk) = Im(υ∗
i Jυi)(jωi,p − jωi),

(22)

where

zi = −Q−1

0 BT υi2 − Q−1

0 Cυi1. (23)

Here, (υi1, υi2) is a partition of the eigenvector υi using

the induced block partition of the Hamiltonian matrix, ⊗
is the Kronecker product, and Re(·),Im(·) are the real and

imaginary parts. The state matrix perturbation dCk that is

required to move the imaginary eigenvalue jωi to jωi,p

must satisfy the linear constraint (22). In summary, these

constraints can be described as a standard least squares

problem

Zvec(dCk) = r,

min ‖vec(dCk)‖2, (24)

where each row in matrix Z stores the left-hand side of

(22), satisfying CB +BT CT > 0 to ensure that the transfer

function G(jω) is asymptotically NI.

The determination of the location of new eigenvalues jωi,p

is explained in [9].

The method outlined in this paper can be executed step-

wise as

1) Set m = 0 and C0 = C;

2) Apply Algorithm 1 in [9] to form the set Ω;

3) Increase the iteration count m := m + 1;

4) Apply the bisection algorithm in [15] to each violation

bandwidth;

5) Determine the new eigenvalues locations jωi,p as in

[9];

6) Solve the linear least squares problem (24) and com-

pute dCm using (22);

7) Update the state matrix Cm = Cm−1 + dCm;

8) Apply Algorithm 1 in [9] using Cm and form the set

Ω;

9) Repeat from step 2) until Ω is empty.

V. CONCLUSION

In this paper, we have developed a method that allows

us to drive a system model to satisfy the NI property.

This was achieved by considering spectral perturbations of

certain Hamiltonian matrices associated with the system. The

main results of this paper were based on the assumption

that the imaginary eigenvalues of the system Hamiltonian

matrix were simple or characterized by complete sets of

eigenvectors.

For some applications with multiple eigenvalues, the

Hamiltonian matrix results presented here may not be valid.

In such cases, further investigations are needed for the

precise characterization of the NI property violations.
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