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Abstract— Negative-imaginary systems appear quite often in
engineering applications, for example, in flexible structures with
collocated position sensors and force actuators, in electrical
circuits, in system biology, etc. In this paper, a strongly
strict negative-imaginary lemma is proposed to ensure the
strict negative-imaginary property of an LTI system. This
result will facilitate both robustness analysis and controller
synthesis for interconnected negative-imaginary systems. In the
proposed characterization, numerical advantages are achieved
by avoiding a minimality assumption, a non-convex rank con-
straint and a non-strict inequality condition present in previous
literature. Two numerical examples are provided to illustrate
the effectiveness of the proposed results.

I. INTRODUCTION

Negative-imaginary (NI) systems are found in many en-
gineering applications, for example, the transfer function
from force actuator to collocated position sensor (for in-
stance, piezoelectric sensor) in mechanical systems [1]–[6],
in electrical filters [7], or in system biology [8], etc. Also,
there are some uncertain systems that can equivalently be
presented into systems with the uncertain part being NI
[1]–[3]. An intuitive definition of (strictly) NI systems lies
in the fact that, in an SISO setting, the imaginary part of
the frequency response in the positive frequency interval
is (negative) non-positive. Formally (both for SISO and
MIMO), the definitions of NI systems and SNI systems are
given as follows:

Definition 1: (NI Systems) [5] A real-rational proper
transfer function matrix R(s) ∈ Rm×m is said to be NI
if
1) R(∞) = RT (∞);
2) R(s) has no poles at the origin and in Re[s] > 0;
3) j[R(jω) − R(jω)∗] ≥ 0 for all ω ∈ (0,∞) except the
values of ω where jω is a pole of R(s);
4) If jω0 is a pole of R(s), it is at most a simple pole and
the residue matrix K0 � lims→jω0

(s−jω0)s(R(s)−R(∞))
is positive-semidefinite Hermitian;
where Rm×m denotes the set of all proper real-rational
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transfer function matrices of dimension m×m, Re[·] denotes
the real part of a complex number, and (·)∗ denotes the
complex conjugate transpose of a complex matrix.

Definition 2: (SNI Systems) [1], [5] A real-rational proper
transfer function matrix R(s) ∈ Rm×m is said to be SNI if
1) R(∞) = RT (∞);
2) R(s) has no poles in Re[s] ≥ 0;
3) j[R(jω)−R(jω)∗] > 0 for all ω ∈ (0,∞).
The concept of NI systems is similar to that of positive-real
(PR) systems, where the frequency response is constrained
in one half of the complex plane. However, NI systems
can have a maximum relative degree of two, whereas PR
systems cannot have more than unity. Most importantly, the
frequency dependent condition for NI systems is fulfilled
on the punctured jω-axis; i.e., it excludes zero frequency
whereas the PR condition is satisfied for all frequencies [9].

In practice, one may want to synthesize an SNI controller
interconnected via positive feedback with an NI plant as
shown in Fig. 1, since a recent stability analysis result shows
that internal stability of a positive feedback interconnection
of an NI system and an SNI system is established provided
the DC gain of the loop is contractive [1], [5]. Most impor-
tantly, robust stability is retained for arbitrary plant variations
as long as the plant satisfies the NI property and the DC loop
gain condition [1], [5]. Also, in the LFT framework as shown
in Fig. 2, it is desirable to render the nominal closed-loop
system to be SNI in order to robustly stabilize systems with
NI uncertainties. For robust stability, the DC loop gain should
be strictly less than unity.

To this end, ensuring an SNI property is hence essential
in both robustness analysis and controller synthesis related
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to NI systems. Note that, a state-space characterization for
SNI systems is proposed in [2], [5], which is referred to
as the “Weakly Strict Negative-Imaginary (WSNI) Lemma”
as it is derived via an underpinning weakly strict positive-
real (WSPR) property of the system [10]. This WSNI lemma
in [2], [5] is difficult to apply for NI controller synthesis
as it requires a minimality assumption and a non-convex
rank condition to be fulfilled on a punctured jω-axis. By
circumventing these difficulties, this paper gives a new
state-space characterization for strictly negative-imaginary
systems (SNI). The proposed SNI lemma is referred to as
the “Strongly Strict Negative-Imaginary (SSNI) lemma” as
it is developed via an underpinning strongly strict positive-
real (SSPR) result [11].

II. NI LEMMA AND STABILITY OF
INTERCONNECTED LOOP

This section presents some background material that aids
the understanding of the key components of this paper.

First, we recall the Negative-Imaginary Lemma, which
gives a necessary and sufficient state-space characterization
for NI systems. It is restated as follows:

Lemma 1: (NI Lemma) [1], [5] Let (A,B,C,D) be a
minimal state-space realization of an m × m real-rational
transfer function matrix R(s), where A ∈ R

n×n, B ∈ R
n×m,

C ∈ R
m×n and D ∈ R

m×m. Then, R(s) is NI if and only
if
(i) det(A) �= 0, D = DT ;
(ii) there exists a matrix Y = Y T > 0, Y ∈ R

n×n, such
that

AY + Y AT ≤ 0, and B = −AY CT ,

where det(A) denotes the determinant of matrix A.
The next result gives a characterization for the strictly

negative-imaginariness of a system. We will refer to it as
WSNI Lemma throughout this paper.

Lemma 2: (WSNI Lemma) [5] Let (A,B,C,D) be a
minimal state-space realization of an m × m real-rational
transfer function matrix R(s), where A ∈ R

n×n, B ∈ R
n×m,

C ∈ R
m×n and D ∈ R

m×m. Then, R(s) is SNI if and only
if
(i) A is Hurwitz, D = DT , rank(B) = rank(C) = m;
(ii) there exists a matrix Y = Y T > 0, Y ∈ R

n×n, such
that

AY + Y AT ≤ 0, and B = −AY CT ;

(iii) the transfer function matrix M(s) ∼

[
A B

LY −1A−1 0

]

has full column rank at s = jω for any ω ∈ (0,∞). Here,
LTL = −AY − Y AT . That is, rank(M(jω)) = m for any
ω ∈ (0,∞).

The above versions of NI lemma and WSNI lemma are
built on the requirement that the state-space representation
of the system is minimal. However, from controller syn-
thesis point of view, the minimality assumption cannot be
computed ‘a priori’ for a synthesized closed-loop system as
it is involved with unknown controller matrices. Moreover,
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Fig. 3. Positive-feedback interconnection.

the state-space characterizations posed in Lemma 1 and
Lemma 2 involve non-convex conditions and those are the
determinant condition in Lemma 1 and the rank constraint
for the punctured jω-axis in Lemma 2. These non-convex
conditions are hard to implement numerically in controller
synthesis, especially the latter rank condition of Lemma 2
makes it difficult to apply for robust control of NI systems.

The next theorem gives a robustness and stability analysis
result for NI systems. It states that a positive-feedback
interconnection of two NI systems is internally stable if and
only if the DC loop gain is contractive and at least one of
the systems in the interconnected loop is SNI.

Theorem 3: [1], [5] Given that M(s) is NI and N(s)
is SNI, and suppose that M(∞)N(∞) = 0 and N(∞) ≥
0. Then, the positive-feedback interconnection of these two
systems illustrated in Fig. 3 is internally stable if and only if
the maximum eigenvalue of the matrix M(0)N(0), denoted
by λ̄(M(0)N(0)), satisfies

λ̄(M(0)N(0)) < 1. (1)

This stability result captures control schemes such as
positive position feedback control [12] and resonant control
[13] in a systematic framework. These methods typically rely
on NI controllers to robustly stabilize uncertain SNI systems.
Also, via this result, for systems with SNI uncertainties, if
a controller is designed such that the nominal closed-loop
linear fractional transformation (LFT) system is NI with
a proper DC gain, then the resulting closed-loop system
is robustly stable. This idea is incorporated in [2], [3] to
robustly stabilize systems with SNI uncertainties.

Note that existing results on robust control for uncertain
NI systems typically only enforce a (non-strict) NI property
on the feedback interconnection of the nominal plant and
controller and can thereby only handle SNI uncertainty [2],
[3]. However, the uncertainties do not always satisfy the SNI
property, see, e.g., the example in [1]. For systems with non-
strict NI uncertainties, it is desirable to swap the system
property in the loop, i.e., the nominal closed-loop system
needs to satisfy the SNI property for robustness against NI
uncertainties. This is because the stability of interconnected
NI systems requires at least one of the systems to be SNI. In
practice, one might also want to synthesize an SNI controller
to stabilize an NI plant. Hence, a numerically attractive
characterization for the SNI property is important in analysis
and synthesis for the robust control of NI systems. In the
following section, a result for characterizing such a system
property is presented.
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III. MAIN RESULTS

In this section, a new state-space characterization is given
to check the SNI property of an LTI system. This result
relaxes the minimality assumption required in Lemma 1 or
Lemma 2. This relaxation facilitates controller synthesis as
the minimality assumption cannot be computed ‘a priori’
in controller synthesis to satisfy the SNI property of the
synthesized loop, which is necessary for robust stability of
the closed-loop system. By avoiding the non-convex rank
constraint and the non-strict inequality which are present in
Lemma 2, the proposed characterization also gives numerical
advantages. This result is derived based on the strongly
strict positive-real (SSPR) property of a transformed system.
Before stating the main result, the following definition of
SSPR systems is needed.

Definition 3: [14] A real-rational proper transfer function
matrix G(s) ∈ Rm×m is SSPR if
1) G(s) has no poles in Re[s] ≥ 0,
2) G(jω) +G(jω)∗ > 0 for all ω ∈ R,
3) lim

ω→∞
ω2ρdet(G(jω) + G(jω)∗) > 0, where ρ is the

dimension of the null space of G(∞) +G(∞)T .
Remark 1: [14] For strictly proper transfer functions,

condition 3) in Definition 3 reduces to lim
ω→∞

ω2(G(jω) +

G(jω)∗) > 0, which coincides with the condition previously
presented in the literature (see [9], [14] for details).

Next, a state-space characterization for SSPR property of a
system is given. The standard Strictly Positive-Real Lemma
is given for minimal systems [9], however, the following
lemma is given for non-minimal systems. This lemma will
be invoked later to derive the main results of this paper.

Lemma 4: (SSPR Lemma) Let G(s) = C(sI − A)−1B

be a strictly proper m×m transfer function matrix. Suppose
G(s) +G(−s)T has normal rank m.
(i) If there exists a matrix P = PT > 0 that satisfies

PA+ATP < 0, and PB = CT , (2)

then A is Hurwitz and G(s) is SSPR.
(ii) Suppose (C,A) is observable. If A is Hurwitz and
G(s) = C(sI − A)−1B is SSPR, then there exists a matrix
P = PT > 0 that satisfies the conditions in (2).
(iii) Suppose the state-space realization (A,B,C) has no ob-
servable uncontrollable modes. If A is Hurwitz and G(s) =
C(sI − A)−1B is SSPR, then there exists a matrix P =
PT > 0 that satisfies the conditions in (2).

Proof: This proof is omitted due to the space constraint
and will be published elsewhere.

Lemma 4 (i) states that the algebraic conditions in (2) are
sufficient to guarantee the SSPR property of a strictly proper
system, while Lemma 4 (ii) and Lemma 4 (iii) are given to
obtain necessary and sufficient conditions for the existence
of solution to the LMI conditions posed in (2) under the
mildest possible system-theoretic assumptions.

Now, the proposed characterization for the SNI property
is stated in the following theorem. In contrast to the Weakly

Strict Negative-Imaginary Lemma, we refer to this theorem
as the Strongly Strict Negative-Imaginary Lemma.

Theorem 5: (SSNI Lemma I) Given a square transfer
function matrix R(s) ∈ Rm×m with a state-space realization
(A,B,C,D), where A ∈ R

n×n, B ∈ R
n×m, C ∈ R

m×n

and D ∈ R
m×m. Suppose R(s) +R(−s)T has normal rank

m and (C,A) is observable. Then, A is Hurwitz and R(s)
is SNI with

lim
ω→0

j
1

ω
[R(jω)−R(jω)∗] > 0

and lim
ω→∞

jω [R(jω)−R(jω)∗] > 0 (3)

if and only if D = DT and there exists a matrix Y = Y T > 0
such that

AY + Y AT < 0 and B = −AY CT . (4)
Proof: (⇒) First, note that R(s) is SNI. It then follows

from Lemma 2 of [1] that R(0) = R(0)T . Now, letting
G(s) = − 1

s
[R(s)−R(0)], we have

G(jω) +G(jω)∗

=

(
−

1

jω
[R(jω)−R(0)]

)
+

(
1

jω
[R(jω)∗ −R(0)T ]

)

= j
1

ω
[R(jω)−R(jω)∗] . (5)

Also, since j [R(jω)−R(jω)∗] > 0 for all ω ∈ (0,∞) by
noting that R(s) is SNI, it follows that G(jω)+G(jω)∗ > 0
for all ω ∈ (0,∞). Similarly,

G(0) +G(0)T = lim
ω→0

(G(jω) +G(jω)∗)

= lim
ω→0

j
1

ω
[R(jω)−R(jω)∗] > 0, (6)

and

lim
ω→∞

ω2(G(jω) +G(jω)∗)

= lim
ω→∞

jω [R(jω)−R(jω)∗] > 0. (7)

Hence, via Definition 3, G(s) = − 1

s
(R(s)−R(0)) is SSPR

by noting that G(s) is strictly proper. Also, since

G(s) = −
1

s
(R(s)−R(0))

= −
1

s

(
C(sI −A)−1B +D − (D − CA−1B)

)
noting that A is Hurwitz and hence nonsingular

= −
1

s
C

[
(sA−1 − I)−1sA−1

]
B

= −C(sI −A)−1A−1B, (8)

it follows that (A,A−1B,−C, 0) is a state-space realization
for G(s). Also, note that A is Hurwitz and (−C,A) is
observable since (C,A) is observable. Furthermore, the fact
that R(s)+R(−s)T has normal rank m implies that G(s)+
G(−s)T has normal rank m. Then, it follows from Lemma
4 (ii) that there exists a positive definite matrix P = PT

such that

PA+ATP < 0 and P (A−1B) = −CT . (9)

455



Finally, letting Y = P−1, it follows via a algebraic compu-
tation that conditions in (9) are equivalent to those in (4).
(⇐) Since there exists a matrix Y = Y T > 0 such that the
conditions in (4) are satisfied, it follows that there exists a
P = Y −1 > 0 such that the conditions in (9) are satisfied.
Also, note that (4) implies that A is Hurwitz and hence
nonsingular. Furthermore, since (A,A−1B,−C, 0) is a state-
space realization for G(s) via (8), then it follows from
Lemma 4 (i) that G(s) is SSPR. Hence, we have G(jω) +
G(jω)∗ > 0 for all ω ∈ R and lim

ω→∞
ω2 [G(jω) +G(jω)∗] >

0 by noting that G(s) is strictly proper. Also, since D = DT ,
it follows that

R(0) = D − CA
−1

B = D + CA
−1

AY C
T = R(0)T

via (4). Hence, G(jω) + G(jω)∗ > 0 for all ω ∈
R implies that j [R(jω)−R(jω)∗] > 0 for all ω ∈

(0,∞) and lim
ω→0

j
1

ω
[R(jω)−R(jω)∗] > 0 via (5)

and (6), and lim
ω→∞

ω2 [G(jω) +G(jω)∗] > 0 implies

lim
ω→∞

jω [R(jω)−R(jω)∗] > via (7). Finally, R(s) has no

poles in Re[s] > 0 since A is Hurwitz, hence R(s) is SNI
which satisfies (3) and thereby completes the proof.

Theorem 6: (SSNI Lemma II) Given a square transfer
function matrix R(s) ∈ Rm×m with a state-space realization
(A,B,C,D), where A ∈ R

n×n, B ∈ R
n×m, C ∈ R

m×n

and D ∈ R
m×m. Suppose R(s) +R(−s)T has normal rank

m and (A,B,C,D) has no observable uncontrollable modes.
Then, A is Hurwitz and R(s) is SNI satisfying (3) if and
only if D = DT and there exists a matrix Y = Y T > 0 that
satisfies the conditions in (4).

Proof: Letting G(s) = − 1

s
[R(s)−R(∞)], it follows

from (8) that (A,A−1B,−C, 0) is a state-space realization
for G(s) noting that A is nonsingular. Note that the as-
sumption that (A,B,C,D) has no observable uncontrol-
lable modes implies that the state-space realization of G(s):
(A,A−1B,−C, 0) has no observable uncontrollable modes
when A is nonsingular. Then, the results follow along the
same lines as in the proof of Theorem 5, where Lemma 4
(i) and Lemma 4 (iii) will be invoked instead of Lemma 4
(i) and Lemma 4 (ii).

Remark 2: The assumption that (C,A) is observable in
Theorem 5 is only needed to prove necessity part of the
theorem. The assumption that (A,B,C,D) has no observ-
able uncontrollable modes is another necessary requirement
to show the SNI property as posed in Theorem 6.

Theorem 5 and Theorem 6 imply that the symmetry
of D and the existence of a positive definite solution to
the algebraic conditions in (4) are sufficient to guarantee
the SNI property of a system. The earlier (non-strict) NI
lemma (Lemma 1) [1], [2], [5] gives a complete state-space
characterization of (non-strict) NI systems, which invokes a
non-strict Lyapunov inequality in (4). When the Lyapunov
inequality in (4) becomes strict as in Theorem 5 (Theorem
6), then we get a complete state-space characterization of
SNI systems but we also enforce a departure condition from
and an arrival condition to the real axis as described by the
limiting conditions in (3).

Theorems 5 and 6 will enable robust control synthesis for
uncertain NI systems. Via this result, an SNI controller can be
synthesized by considering the simple algebraic conditions
given in (4) to stabilize an NI plant interconnected via
positive feedback in a closed-loop as shown in Fig. 1; or we
can design a controller such that an LFT closed-loop system
satisfies (4) to ensure the SNI property that facilitates robust
stability against NI uncertainties, as shown in Fig. 2. For
robust stability, the DC loop gain should be contractive [1].
As a consequence, this result will facilitate robust synthesis
methods to handle non-strict NI uncertainties. It also helps
avoid numerical issues, for example, the determinant condi-
tion and the rank constraint in a frequency interval posed, in
Lemma 1 and Lemma 2, respectively.

Next, we give some physical interpretations of the math-
ematical conditions in (3).

Lemma 7: Given a proper scalar SNI transfer function
R(s) with R(∞) ≥ 0, then

lim
ω→0

j
1

ω
(R(jω)−R(jω)∗) > 0 ⇔ lim

ω→0

dφ(ω)

dω
< 0,

where φ(ω) denotes the phase of R(jω).
Proof: This proof is omitted due to the space constraint

and will be published elsewhere.
The above lemma states that for a proper scalar transfer
function R(s) with the SNI property and R(∞) ≥ 0,

lim
ω→0

j
1

ω
(R(jω) − R(jω)∗) > 0 means that the phase of

R(jω) strictly decreases as frequency increases from ω = 0.
Remark 3: For strictly proper scalar transfer functions,

lim
ω→∞

jω(R(jω) − R(jω)∗) > 0 implies that the imaginary

part of R(jω)] cannot go to zero faster than ω−1 when
|ω| → ∞. This implies that the relative degree of R(jω)
must be zero or one.

Remark 3 implies that if one uses the conditions in (4)
to design an SNI controller, systems with relative degree of
two cannot be captured.

IV. ILLUSTRATIVE EXAMPLE

In this section, two examples are given to demonstrate the
applicability of our main results.

Example 1: Let

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−5 4 0 0 0 0 0
−1.75 0 1 0 0 0 0
−1 0 0 0 0 0 0
0 0 0 −5 4 0 0
0 0 0 −1.75 0 1 0
0 0 0 −1 0 0 0
0 0 0 0 0 0 −8

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0.5
1.5 0.75
2 1
0.5 1
0.75 1.5
1 2
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

C =

[
2 0 0 0 0 0 1
0 0 0 2 0 0 1

]
, D =

[
0 0
0 0

]
. (10)

We shall now determine whether R(s) = C(sI−A)−1B+
D is SNI. Note that the above state-space realization for
R(s) is not minimal since there is one uncontrollable mode
{-8}. Hence, neither Lemma 1 nor Lemma 2 can be applied
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to analyze the (strict) negative-imaginariness of this system
with the above given state-space realization.

Note that R(s)+R(−s)T has normal rank 2. Also, (C,A)
in (10) is observable and D = 0 = DT . Hence, the
assumptions in Theorem 5 are satisfied. We can now use
Theorem 5 to analyze the SNI property of R(s).

We use YALMIP and SeDuMi to solve the conditions in
(4) and the following solution is obtained

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1.03 1.13 0.99 0.53 0.57 0.49 −0.06
1.13 1.64 1.42 0.57 0.81 0.72 −0.02
0.99 1.42 2.73 0.49 0.72 1.16 0.02
0.53 0.57 0.49 1.03 1.13 0.99 −0.06
0.57 0.81 0.72 1.13 1.64 1.42 −0.02
0.49 0.72 1.16 0.99 1.42 2.73 0.02
−0.06 −0.02 0.02 −0.06 −0.02 0.02 0.12

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
> 0.

Thus, via Theorem 5, R(s) is SNI that satisfies the condi-
tions in (3).

Via simple computation, we obtain

R(s) =
s2 + 6s+ 8

s3 + 5s2 + 7s+ 4

[
2 1
1 2

]
. (11)

R(s) has no poles in Re[s] ≥ 0 since the poles of R(s) are
located at −3.2056,−3.2056, −0.8972±0.6655j, −0.8972±
0.6655j. Also, note that

j[R(jω)−R(jω)∗] =
52ω + 37ω3 + ω5

(4− 5ω2)2 + (8ω − ω3)2

[
4 2
2 4

]

> 0 for all ω ∈ (0,∞).

Hence, R(s) is SNI via Definition 2. Also, it is easy to verify
by calculation that

lim
ω→0

j
1

ω
(R(jω)−R(jω)∗) =

[
13 6.5
6.5 13

]
> 0,

and

lim
ω→∞

jω(R(jω)−R(jω)∗) =

[
4 2
2 4

]
> 0,

which coincide with the statement of Theorem 5.
Now, suppose R(s) in (11) is with the another state-space

realization which is shown below (note that C̄ is different
from C),

Ā =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−5 4 0 0 0 0 0
−1.75 0 1 0 0 0 0
−1 0 0 0 0 0 0
0 0 0 −5 4 0 0
0 0 0 −1.75 0 1 0
0 0 0 −1 0 0 0
0 0 0 0 0 0 −8

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, B̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0.5
1.5 0.75
2 1
0.5 1
0.75 1.5
1 2
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

C̄ =

[
2 0 0 0 0 0 0
0 0 0 2 0 0 0

]
, D̄ =

[
0 0
0 0

]
. (12)

The above state-space realization is not minimal, since there
is an uncontrollable unobservable mode {−8}. However, all
the observable modes of the system in (12) are controllable,
hence the assumptions in Theorem 6 are satisfied. Also, since
we have already known that R(s) is SNI with the conditions
in (3) satisfied, then using Theorem 6, there should exist
a positive definite solution Y = Y T > 0 that satisfies the
conditions in (4).
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Fig. 4. Lightly damped uncertain mechanical plant
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Again, YALMIP and SeDuMi are used to solve the condi-
tions in (4) with (Ā, B̄, C̄) shown in (12) and we obtain the
following solution

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.36 −0.17 −0.06 −0.04 −0.03 0.04 0.00
−0.17 1.14 −0.77 −0.03 −0.10 0.09 0.00
−0.06 −0.77 1.94 0.04 0.09 −0.76 −0.00
−0.04 −0.03 0.04 0.36 −0.17 −0.06 −0.00
−0.03 −0.10 0.09 −0.17 1.14 −0.77 −0.00
0.04 0.09 −0.76 −0.06 −0.77 1.94 0.00
0.00 0.00 −0.00 −0.00 −0.00 0.00 0.19

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
> 0,

which coincides with the statement of Theorem 6.
Example 2: Consider the lightly damped mechanical plant

[1] depicted in Fig. 4, which consists of two unit masses
constrained to slide rectilinearly on a frictionless table. Each
mass is attached to a fixed wall via a spring of known unit
stiffness and via a damper of known unit viscous resistance.
Furthermore, the two unit masses are coupled together via
a spring of uncertain stiffness k (N/m) and via a damper of
uncertain viscous resistance α (N-s/m). A force is applied
to each mass (denoted by u1 and u2, respectively) and the
displacement of each mass is measured (denoted by y1 and
y2 , respectively).

Here, we will show how the proposed results in this paper
can facilitate the robust control of NI systems.

The transfer function matrix from the input u :=

[
u1

u2

]
to

the output y :=

[
y1
y2

]
is described by y = P�(s)u, where

P�(s) :=p(s)δ(s)

×

[
s2 + (α+ 1)s+ (k + 1) (αs+ k)

(αs+ k) s2 + (α+ 1)s+ (k + 1)

]
,

p(s) :=
1

s2 + s+ 1
, and δ(s) :=

1

s2 + (2α+ 1)s+ (2k + 1)
.

This plant is uncertain since α and k are unknown.
For robust control, the closed-loop system in Fig. 5 is

rearranged in a standard LFT interconnection shown in Fig.
6, where the generalized plant Σ, the nominal plant P and
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the uncertainty Δ are given respectively by

Σ =

[
0 I

−I −P

]
, P (s) =

[
0.5p(s) 0.5p(s)
0.5p(s) 0.5p(s)

]
,

and Δ(s) =

[
0.5δ(s) −0.5δ(s)
−0.5δ(s) 0.5δ(s)

]
. (13)

It can be verified that the uncertainty Δ(s) is (non-strict) NI,
hence earlier works for SNI uncertainties [2], [3] cannot be
used to tackle this robust control problem.

Let us consider a controller C(s) (note robust controller
synthesis for NI system is an area for future work):

C(s) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.01−0.48 0.30 −1.73 1.78 −0.69−1.14 0.23
0.09 −3.04−1.92−0.10−1.43−0.21 0.15 3.76
−0.57 2.20 0.56 −1.71 1.07 −0.27 0.32 0.49
0.52 0.41 1.84 −1.17 1.73 −0.84−2.85−0.03
0.06 −0.20 0.19 1.84 −1.34 0.37 2.30 0.18
0.02 0.88 −0.31 0.84 0.05 0.26 −0.32−0.35
−0.51 1.03 0.03 1.26 −0.78 0.84 0 0
0.37 −1.34−0.53−1.16 0.22 −0.74 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(14)
where the corresponding closed-loop system F�(Σ, C) is

given by F�(Σ, C) :=

[
AclBcl

CclDcl

]
, where

Acl=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.0 −0.93 0.71 0.71 0 0 0 0
1.01 −0.00−0.05−0.05 0 0 0 0
0.08 1.13 −1.00 0 0.36 −0.14−0.47−0.14
0.08 1.13 0 −1.00 0.35 0.13 −0.48−0.16
−0.078−1.11 0 0 −0.63 0.00 1.15 0.48
0.0 0.00 0 0 0.01 −1.08 0.00 0.01
−0.13 −1.96 0 0 −1.26 0.01 0.22 −0.16
0.02 0.27 0 0 −0.49−0.01 0.48 −1.25

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Bcl =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0

4.91 −3.31
−3.26 4.86
−0.78−0.79
7.78 −7.77
−1.43−1.35
0.24 0.14

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ccl =

[
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

]
, Dcl =

[
0 0
0 0

]
.

Note that this state-space realization for F�(Σ, C) is mini-
mal, and Dcl = 0 = DT

cl. Now we use YALMIP and SeDuMi
to solve the conditions in (4) with the state-space realization
for F�(Σ, C), namely (Acl, Bcl, Ccl, Dcl) and we obtain the
following solution

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

5.07 −1.97 0.17 0.17 −2.74 −0.02−4.60 −2.45
−1.97 9.44 2.45 2.45 −13.96−0.01 4.17 6.31
0.17 2.45 4.86 −1.40 −5.40 7.20 −0.94 2.46
0.17 2.45 −1.408 4.88 −5.42 −7.22−0.93 2.47
−2.74−13.96 −5.40 −5.42 31.85 0.08 0.28 −10.00
−0.02 −0.01 7.20 −7.22 0.08 24.51 0.03 −0.02
−4.60 4.173 −0.94 −0.93 0.28 0.032 11.85 2.60
−2.45 6.31 2.46 2.47 −10.00−0.02 2.60 15.15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=Y
T
> 0.

Hence, via Theorem 5 (or Theorem 6), F�(Σ, C) is SNI.
Also, note that F�(Σ, C)(∞) = 0, consequently, this con-
troller in (14) guarantees robust stability for all non-strict NI
perturbations as long as the DC loop gain condition is also
satisfied [Theorem 3].

V. CONCLUSIONS

A state-space characterization for the SSNI property is
proposed to facilitate robust controller synthesis and analysis
for uncertain systems where non-strict NI uncertainties are
present. It offers important advantages by avoiding the rank
condition and the minimality assumption required in the
results of [1], [5]. Using this result, the NI robust analysis
and synthesis frameworks can be extended to deal with both
non-strict and strict NI systems. This work also clarifies the
relationship between the strict Lyapunov inequality (see (4))
and the SNI property of the system.
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