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Abstract—A new robust controller synthesis method is pro-
posed, based on a non-normalized coprime factorization of
an uncertain plant. It achieves robust stabilization for very
large uncertainties as measured by the ν-gap metric, as well
as robust performance. It is shown that a non-normalized
coprime factorization enables less conservative robust stability
and performance guarantees than a normalized coprime factor-
ization. In a numerical example, a controller is synthesized for
a benchmark robust control problem, demonstrating the good
robustness properties obtainable with the method of this paper.

I. INTRODUCTION

The impact of model perturbations on the stability and

performance of closed-loop systems with linear plants can

be quantified using distance measures. Given a nominal

and a perturbed plant model, the distance between the two

corresponds to the size of an admissible uncertainty block in a

certain topology or uncertainty structure. The gap metric [1],

graph metric [2] and ν-gap metric [3], [4] all assume a

normalized coprime factor (or four-block) uncertainty struc-

ture. This structure also forms the basis for a widely used

robust controller synthesis method [5]. With the general

framework of [6], distance measures and the associated robust

stability margins can also be defined for other uncertainty

structures. An engineer can choose the most suitable structure

from among additive, multiplicative [7], normalized coprime

factor/four-block [8] and not necessarily normalized coprime

factor uncertainty [6]. Sections III-V of this paper show

that non-normalized coprime factor uncertainty provides less

conservative robust stability and performance guarantees than

normalized coprime factor uncertainty for a given com-

bination of nominal plant, controller and perturbed plant,

when a particular factorization is chosen. This factorization

minimizes the ratio of coprime factor distance to robust

stability margin, which is an important quantity for bounding

robust stability and robust performance degradation.

In Section VI, a controller synthesis method is described

that exploits the advantages of non-normalized coprime factor
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uncertainty. The proposed objective function is an H∞ norm

comprising the non-normalized coprime factor distance and

robust stability margin. An optimal coprime factorization re-

duces these two objects into one single quantity. A controller

is therefore synthesized for a given nominal and worst-case

perturbed plant. An additional part of the objective function

ensures a minimal level of normalized coprime factor robust

stability margin. Robust stability and performance guarantees

for this synthesis method are described and it is shown that

the guarantees are less conservative than those that can be

obtained using four-block methods.

A benchmark motion control example illustrates the pro-

posed controller synthesis method. It is shown how a robustly

stabilizing controller can be obtained for a lightly damped

uncertain plant, for which normalized coprime factor methods

do not guarantee the existence of a stabilizing controller.

A. Notation

Notation is standard. R denotes the set of proper real-

rational transfer functions, RL∞ the space of proper real-

rational functions bounded on jR including ∞, and RH∞

denotes the space of proper real-rational functions bounded

and analytic in the open right half complex plane. Denote

the space of functions that are units in RH∞ by GH∞

( f ∈ GH∞ ⇔ f , f−1 ∈ RH∞). Let P∗(s) denote the adjoint

of P(s) ∈ R defined by P∗(s) = P(−s)T . The ordered pair

{N,M}, M,N ∈ RH∞, is a right-coprime factorization (rcf )

of P ∈ R if M is invertible in R, P = NM−1, and N and

M are right-coprime over RH∞. Furthermore, the ordered

pair {N,M} is a normalized rcf of P if {N,M} is a rcf

of P and M∗M +N∗N = I. The ordered pair {Ñ,M̃}, with

M̃, Ñ ∈ RH∞, is a left-coprime factorization (lcf ) of P ∈ R

if M̃ is invertible in R, P = M̃−1Ñ, and Ñ and M̃ are left-

coprime over RH∞. Furthermore, the ordered pair {Ñ,M̃} is

a normalized lcf of P if {Ñ,M̃} is a lcf and M̃M̃∗+ ÑÑ∗ = I.

Let {N,M} be a rcf and {Ñ,M̃} be a lcf of a plant P. Also,

let {U,V} be a rcf and {Ũ ,Ṽ} be a lcf of a controller C.

Define

G :=

[

N

M

]

, G̃ :=
[

−M̃ Ñ
]

,K :=

[

V

U

]

, K̃ :=
[

−Ũ Ṽ
]

,

where G and G̃ will be referred to as the right and left

graph symbols of P, and K and K̃ will be referred to as

the right and left inverse graph symbols of C, respectively.

Let Fl (·, ·) (resp. Fu (·, ·)) denote a lower (resp. upper)

linear fractional transformation (LFT). For a scalar p(s)∈R,
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Fig. 1. The nominal closed-loop system [P,C] (left) and the linear fractional
interconnection 〈H,C〉 with the perturbation block ∆ (right).

its winding number wno p(s) is defined as the number of

encirclements of the origin made by p(s) as s follows the

standard Nyquist D-contour, indented into the right half

plane around any imaginary axis poles or zeros of p(s). Let

η(P) denote the number of open right half plane poles of

P ∈R. Also, let Ric(H) denote the stabilizing solution to an

algebraic Riccati equation. For a plant P∈R and a controller

C ∈R, let [P,C] denote the nominal feedback interconnection

displayed in Fig. 1, and let 〈H,C〉 denote the linear fractional

interconnection of H and C with input w, exogenous inputs

v1, v2 and measured output z as displayed in Fig. 1.

II. GENERALIZED DISTANCE MEASURES AND ROBUST

STABILITY MARGINS

Given a nominal and a perturbed plant model P ∈ R p×q

and P∆ ∈R p×q, how will robust stability and performance of

the closed-loop system with nominally stabilizing controller

C ∈ Rq×p be affected if P is replaced by P∆? One way to

answer this question is by measuring the distance between P

and P∆ in terms of the smallest infinity norm of an uncertainty

block ∆ ∈ RL∞ that produces the perturbed plant P∆ in a

linear fractional interconnection as shown in Fig. 1.

With a generalized plant H =

[

H11 H12

H21 H22

]

∈R with H22 =

P, and if (I −H11∆)−1 ∈ R, we can formulate

P∆ = Fu (H,∆) = P+H21∆(I −H11∆)−1H12. (1)

Since H22 = P, the nominal plant is recovered when ∆ = 0.

Given P, H and P∆, ∆ ∈ RL∞ is called an admissi-

ble uncertainty if it fulfills the well-posedness condition

(I −H11∆)−1 ∈ R and the consistency eqn. (1). A smallest

admissible uncertainty in terms of the infinity norm (there are

possibly several admissible ∆, or none) is called the distance

between P and P∆.

Definition 1 ([6]). Given a plant P ∈ R p×q, a generalized

plant H ∈R with H22 =P, and a perturbed plant P∆ ∈R p×q.

Let the set of all admissible perturbations be given by

∆∆∆ =
{

∆ ∈ RL∞ : (I −H11∆)−1 ∈ R, P∆ = Fu (H,∆)
}

.

Define the distance measure dH(P,P∆) between plants P and

P∆ for the uncertainty structure implied by H as:

dH(P,P∆) :=

{

inf∆∈∆∆∆ ‖∆‖∞ if ∆∆∆ 6= /0

∞ otherwise.

The counterpart to the distance measure is the robust stabil-

ity margin of the feedback interconnection 〈H,C〉. The robust

stability margin (in conjunction with the distance measure)

captures the loop-gain part of the stability conditions for

∆ ∈ RL∞:1

Definition 2 ([6]). Given a plant P ∈ R p×q, a generalized

plant H ∈R with H22 =P, and a controller C ∈Rq×p. Define

the stability margin bH(P,C) of the feedback interconnection

〈H,C〉 as:

bH(P,C) :=











‖Fl (H,C)‖−1
∞ if 0 6= Fl (H,C) ∈ RL∞ and

[P,C] is internally stable,

0 otherwise.

By specifying the precise structure of the generalized

plant H, dH(P,C) and bH(P,C) can be adapted for various

standard uncertainty structures.2 In the case of normalized

coprime factor uncertainty (which will be referred to as four-

block uncertainty), they reduce to the well known ν-gap

distance measure and robust stability margin (see e.g. [4]).

The definitions for normalized coprime factors are given here

for convenience.

Definition 3 ([3]). Given two plants P,P∆ ∈R p×q with graph

symbols G̃ and G∆ as defined in the Notation subsection.

Define the ν-gap or the distance measure for four-block

uncertainty as

δν(P,P∆) :=











∥

∥G̃G∆

∥

∥

∞
if det(G∗

∆G)( jω) 6= 0∀ω

and wnodet(G∗
∆G) = 0;

1 otherwise.

(2)

Definition 4 ([11]). Given a positive feedback interconnec-

tion [P,C] of a plant P ∈ R p×q and a controller C ∈ Rq×p.

Define the robust stability margin in the left four block

uncertainty structure as

b(P,C) :=























∥

∥

∥

∥

∥

[

I

C

]

(I −PC)−1
[

I −P

]

∥

∥

∥

∥

∥

−1

∞

if [P,C] is in-

ternally stable;

0 otherwise.
(3)

Robust stability and robust performance theorems using the

ν-gap are given in [3], [4]. Standard H∞ controller synthesis

optimizes the robust stability margin b(P,C). In the following

sections, we will give improved analysis and synthesis results

for an uncertainty structure using coprime factors that are not

normalized.

1In classical robust stability analysis for stable uncertainties ∆∈RH∞, the
small gain theorem [9] provides sufficient conditions for internal stability of
the feedback loop under perturbation. The theorem can be extended for ∆ ∈
RL∞ [10], [4], [6] by introducing an additional winding number condition
(cf. Theorem 1).

2This includes additive, multiplicative [7], coprime factors [6] and nor-
malized coprime factors [8]
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III. COPRIME FACTOR UNCERTAINTY AND ROBUST

STABILITY

Less conservative robust stability and performance analysis

results can be obtained when the coprime factors of the plant

and uncertainty description are not necessarily normalized.

The nominal closed-loop system is shown in Fig. 1. The

interconnection of the nominal plant P with an uncertainty

block ∆ is represented by a generalized plant H of appropriate

dimensions, as shown in Fig. 1. For left coprime factor

uncertainty H has the form

H =





M̃−1
0 P

0 I

M̃−1
0 P



 , (4)

where the left coprime factors {M̃0, Ñ0} over RH∞ of the

plant P = M̃−1
0 Ñ0 are not necessarily normalized, and can

be related to normalized left coprime factors {M̃, Ñ} via a

denormalization factor R ∈ GH∞ s.t. {M̃0 = RM̃, Ñ0 = RÑ}.

The distance measure and robust stability margin for coprime

factor uncertainty are defined below.

Definition 5 ([6]). Given two plants P,P∆ ∈R p×q with graph

symbols G̃ and G∆ as defined in the Notation subsection,

and a denormalization factor R ∈ GH∞. Define the distance

measure for a left coprime factor uncertainty structure as

dR
cf(P,P∆) :=

∥

∥RG̃G∆

∥

∥

∞
. (5)

Definition 6 ([6]). Given a positive feedback interconnection

[P,C] of a plant P ∈R p×q with lcf
{

M̃0, Ñ0

}

and a controller

C ∈ Rq×p. Define the robust stability margin in the left

coprime factor uncertainty structure as

bR
cf(P,C) :=







∥

∥

∥

∥

[

I

C

]

(I −PC)−1M̃−1
0

∥

∥

∥

∥

−1

∞

if [P,C]is in-

ternally stable;

0 otherwise.
(6)

Note that the coprime factor robust stability bR
cf(P,C)

carries the superscript R to denote its dependence on the

denormalization factor R ∈ GH∞ of the lcf {M̃0 = RM̃, Ñ0 =
RÑ}. It will be shown that a suitable choice of R is important

for obtaining optimal analysis and synthesis results. Also note

that when R is unitary, the factorization is normalized.3

Using the concepts of distance measure and robust stabil-

ity margin, a small-gain type condition can be formulated

for systems with coprime factor uncertainty: dR
cf(P,P∆) <

bR
cf(P,C) or equivalently

dR
cf(P,P∆)

bR
cf
(P,C)

< 1 if [P,C] is stable. For

uncertainties ∆ ∈ RH∞, this is a sufficient condition for sta-

bility; for ∆ ∈ RL∞, an additional winding numer condition

is required (see Theorem 1). Throughout this paper, we will

use the fraction of dR
cf(P,P∆) and bR

cf(P,C), and will show that

its infimum over R ∈ GH∞ is important in bounding robust

3As a consequence of the denormalization, both dR
cf(P,P∆) and bR

cf(P,C)
will have values on the closed and open positive real line, respectively. This
is in contrast to their normalized counterparts, which always take values less
or equal to unity.

stability and robust performance degradation in both coprime

factor and four-block measures.

Definition 7. Given plants P,P∆ ∈ R p×q and a controller

C ∈ Rq×p such that [P,C] is internally stable, with graph

symbols G̃, G∆ and K as in the Notation subsection. Define

the robustness ratio

r(P,P∆,C) := inf
R∈GH∞

dR
cf(P,P∆)

bR
cf(P,C)

=
∥

∥

∥

(

G̃K
)−1

G̃G∆

∥

∥

∥

∞
.

One possible (non-unique) choice for R achieving this

infimum is R =
(

G̃K
)−1

. To see that the infimum is indeed

given by Definition 7 note that bR
cf(P,C) =

∥

∥(RG̃K)−1
∥

∥

−1

∞
and

inf
R∈GH∞

dR
cf(P,P∆)

bR
cf(P,C)

= inf
R∈GH∞

∥

∥RG̃G∆

∥

∥

∞

∥

∥

∥

(

RG̃K
)−1

∥

∥

∥

∞
,

≥ inf
R∈GH∞

∥

∥

∥

(

G̃K
)−1

R−1RG̃G∆

∥

∥

∥

∞
.

This robustness ratio can be used to formulate the small

gain condition for robust stability given in the theorem below,

and is used in the following two sections to provide new and

improved bounds on robust performance degradation.

Theorem 1 ([6]). Given a plant P ∈ R p×q, a perturbed

plant P∆ ∈ R p×q, a controller C ∈ Rq×p, and left coprime

factors Ñ0,M̃0 over RH∞ of P. Define normalized graph

symbols G, G̃, G∆, G̃∆ as in the notation subsection and

let R ∈ GH∞ satisfy
[

−M̃0 Ñ0

]

= RG̃. Define a stability

margin bR
cf(P,C) as in (6) and a distance measure dR

cf(P,P∆)
as in (5). Furthermore, suppose dR

cf(P,P∆) < bR
cf(P,C) and

σ
(

G̃G∆

)

(∞)< 1.

Then,

[P∆,C] is internally stable ⇔ wnodet(G∗
∆G) = 0.

The condition
dR

cf(P,P∆)

bR
cf
(P,C)

< 1 (valid whenever [P,C] is in-

ternally stable) can be made least conservative by choos-

ing an infimizing R ∈ GH∞, in which case it reduces to

r(P,P∆,C) < 1. While the results of Theorem 1 look very

similar to results obtained using four-block theory, e.g. [4,

Theorem 3.8], the set of plants guaranteed to be robustly

stable (for a given controller C) by using a non-normalized

coprime factorization

Plcf :=
{

P∆ ∈ R : r(P,P∆,C)< 1, σ
(

G̃G∆

)

(∞)< 1

and wnodet(G∗
∆G) = 0} ,

will always include as a subset the set of plants guaranteed

to be robustly stable by using a normalized coprime factor-

ization and the ν-gap (for the same given controller C), i.e.

Pν :=
{

P∆ ∈ R :
∥

∥(G̃K)−1
∥

∥

∞

∥

∥G̃G∆

∥

∥

∞
< 1,

σ
(

G̃G∆

)

(∞)< 1 and wnodet(G∗
∆G) = 0

}

.

It is clear that Pν ⊆ Plcf, and the difference will be

especially marked when the minimum value of the robust

stability margin supω∈R

(

σ
(

G̃K
)−1

)−1

occurs in a different

channel and/or frequency region than the maximum distance

supω∈R σ
(

G̃G∆

)

. For an example, see [6].
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IV. COPRIME FACTOR UNCERTAINTY AND COPRIME

FACTOR PERFORMANCE

This section describes bounds on the robust performance

degradation under perturbation, with the coprime factor ro-

bust stability margin bR
cf(P∆,C) serving as one of the perfor-

mance measures. The following reformulation of [6, Theorem

9] gives bounds on the ratio of residual to nominal robust

stability margins and on performance degradation when P is

replaced by P∆.

Theorem 2. Given the suppositions of Theorem 1 and

assuming wnodet(G∗
∆G) = 0. Let H, H∆ as in (4). Then

1−
dR

cf(P,P∆)

bR
cf(P,C)

≤
bR

cf(P∆,C)

bR
cf(P,C)

≤ 1+
dR

cf(P,P∆)

bR
cf(P,C)

(7)

and

‖Fl (H∆,C)−Fl (H,C)‖∞

‖Fl (H,C)‖∞

≤

dR
cf(P,P∆)

bR
cf
(P,C)

1−
dR

cf
(P,P∆)

bR
cf
(P,C)

. (8)

Proof: The two bounds in inequality (7) follow from [6,

eqn. (23)]:
∣

∣bR
cf(P∆,C)−bR

cf(P,C)
∣

∣≤ dR
cf(P,P∆)

by considering the cases bR
cf(P,C) ≤ bR

cf(P∆,C) and

bR
cf(P∆,C) ≤ bR

cf(P,C) and noting that bR
cf(P,C) > 0 by as-

sumption. To obtain inequality (8), note that bR
cf(P,C) =

∥

∥

∥

(

RG̃K
)−1

∥

∥

∥

−1

∞
= ‖Fl (H,C)‖−1

∞ if [P,C] is internally stable.

It then follows from [6, eqn. (24)] that

‖Fl (H∆,C)−Fl (H,C)‖∞

‖Fl (H,C)‖∞

≤
dR

cf(P,P∆)

bR
cf(P,C)−dR

cf(P,P∆)

via eqn. (23) in the same paper, which entails eqn. (8) since

bR
cf(P,C)> 0 by assumption.

Remark 1. The bounds given in eqn. (7) and (8) can be

tightened via the choice of R. E.g. for R =
(

G̃K
)−1

,

1− r(P,P∆,C)≤ bR
cf(P∆,C)

∣

∣

R=(G̃K)
−1 ≤ 1+ r(P,P∆,C),

‖Fl (H∆,C)−Fl (H,C)‖∞|R=(G̃K)
−1 ≤

r(P,P∆,C)

1− r(P,P∆,C)
.

It can be seen from the results of this and the previous section

that the robustness ratio r(P,P∆,C) bounds both the change

in robust stability margin when P is replaced by P∆ and

the normalized robust performance degradation. It is in the

interval [0,1) by assumption (this being one of two sufficient

conditions for robust stability of [P∆,C]).

V. COPRIME FACTOR UNCERTAINTY AND FOUR-BLOCK

PERFORMANCE

The same uncertainty structure with a left coprime factor

plant description can also be analyzed using a four-block per-

formance measure. This corresponds to the setting shown in

Fig. 2: The nominal plant is factorized as P = M̃−1
0 Ñ0, where

{

M̃0, Ñ0

}

are (left) coprime factors of P over RH∞. The

e1 d1 z1

M̃−1
0 Ñ0

w z2 d2 e2

C

P∆

Fig. 2. Coprime factor uncertainty with four-block performance measure.

perturbed plant is obtained by P∆ =
(

M̃0 +∆M̃

)−1 (
Ñ0 +∆Ñ

)

.

In contrast to the previous section, performance is here mea-

sured using a four-block performance measure, between the

additional outputs e= [e1, e2]
T and inputs d = [d1, d2]

T . The

resulting theorem describes how coprime factor uncertainty

affects the degradation of the four-block robust stability

margin b(P,C), which in turn can be related to classical

measures of robustness and nominal performance [4]. It will

be shown that the bounds that can be obtained using this

uncertainty structure are in fact tighter than those that can be

obtained using only the ν-gap and four-block uncertainty.

Theorem 3. Given the suppositions of Theorem 2. Define a

robust stability margin for four-block uncertainty b(P,C) as

in (3). Then,

1− r(P,P∆,C)≤
b(P∆,C)

b(P,C)
≤ 1+ r(P,P∆,C). (9)

Proof: A sketch of the proof follows. The full proof will

be published elsewhere. The inequalities (9) can be obtained

by manipulations on the relationship between d and e as in

Fig. 2, using trigonometric identities and [4, Lemma 2.2].

As this theorem and Theorem 2 show, deviation in both the

four-block and the coprime factor robust stability margin is

bounded by the robustness ratio r(P,P∆,C). Eqns. (7) and (9)

are similar in their structure, but the crucial difference is that

the former bounds the deviation in non-normalised coprime

factor robust stability margin, and the latter the deviation

in four-block or normalized coprime factor robust stability

margin.

The bounds in Theorem 3 are in fact tighter than the

equivalent bounds using the ν-gap and b(P,C), e.g. from [4,

Theorem 3.8], which can be formulated as:

1−
δν(P,P∆)

b(P,C)
≤

b(P∆,C)

b(P,C)
≤ 1+

δν(P,P∆)

b(P,C)

⇔ 1−
∥

∥G̃G∆

∥

∥

∞

∥

∥

∥

(

G̃K
)−1

∥

∥

∥

∞
≤

b(P∆,C)

b(P,C)

≤ 1+
∥

∥G̃G∆

∥

∥

∞

∥

∥

∥

(

G̃K
)−1

∥

∥

∥

∞
.

Clearly, r(P,P∆,C) ≤
∥

∥G̃G∆

∥

∥

∞

∥

∥

∥

(

G̃K
)−1

∥

∥

∥

∞
. Furthermore,

these bounds can be computed even for cases in which

δν(P,P∆)> b(P,C), for which four-block bounds do not exist.
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VI. CONTROLLER SYNTHESIS USING A COPRIME FACTOR

UNCERTAINTY STRUCTURE

In the previous sections, the importance of the robustness

ratio r(P,P∆,C) =
∥

∥

∥

(

G̃K
)−1

G̃G∆

∥

∥

∥

∞
for bounding deviations

in the robust stability margin and the performance given a

nominal plant P, a perturbed plant P∆ and a nominally sta-

bilizing controller C was demonstrated. The robustness ratio

would be an obvious candidate for an objective function for

controller synthesis. However, minimizing

∥

∥

∥

(

G̃K
)−1

G̃G∆

∥

∥

∥

∞
does not imply any bounds on b(P,C), since the distance is

possibly zero at some frequencies (G̃G∆ ( jω) = 0), allowing

σ
(

G̃K
)−1

( jω) to take any value for such ω . The importance

of b(P,C) =
∥

∥

∥

(

G̃K
)−1

∥

∥

∥

−1

∞
as an indicator of good robustness

has already been emphasised. To ensure a minimal level of

b(P,C), an augmented objective function is chosen, combin-

ing both r(P,P∆,C) and b(P,C). A design parameter ε is

introduced as a multiplier for
(

G̃K
)−1

, allowing a trade off

between the two quantities. The interval for this parameter

is ε ∈ (0,bopt(P)), ensuring that

∥

∥

∥
ε
(

G̃K
)−1

∥

∥

∥

∞
< 1. This in

turn allows the combined objective to be minimized below

one if r(P,P∆,C)< 1 for some C.

Controller synthesis using both coprime factor and

four-block robustness measures. Given plants P,P∆ ∈R p×q

with graph symbols G̃ and G∆ satisfying the assumptions

of Theorem 2. Given ε ∈ (0,bopt(P)). Find a controller

C ∈ Rq×p such that [P,C] is internally stable which satisfies
∥

∥

∥

[

(

G̃K
)−1

G̃G∆ ε
(

G̃K
)−1

]∥

∥

∥

∞
< γ , where γ > γ0 and

γ0 = inf
C stab.

∥

∥

∥

[

(

G̃K
)−1

G̃G∆ ε
(

G̃K
)−1

]∥

∥

∥

∞
. (10)

The robust stability and performance guarantees provided by

such a controller are summarised in the theorem below.

Theorem 4. Given P,P∆ ∈ R p×q along with graph symbols

G, G̃ and G∆ as defined in the Notation subsection. Also given

a generalized plant H for P and H∆ for P∆ as in eqn. (4). As-

sume that σ
(

G̃G∆

)

(∞)< 1 and wnodet(G∗
∆G) = 0. Choose

ε ∈ (0,bopt(P)). If ∃C ∈ Rq×p such that [P,C] is internally

stable and
∥

∥

∥

[

(

G̃K
)−1

G̃G∆ ε
(

G̃K
)−1

]∥

∥

∥

∞
< γ ≤ 1 (11)

then

a) b(P,C)> ε
γ ;

b) b
(G̃K)

−1

cf (P,C) = 1;

c) [P∆,C] is internally stable;

d) b(P∆,C)> b(P,C)(1− γ).

e) b
(G̃K)

−1

cf (P∆,C)> 1− γ;

Furthermore, if γ < 1, then

e)

‖Fl (H∆,C)−Fl (H,C)‖∞|R=(G̃K)
−1 <

γ

1− γ
. (12)

Proof:

a) This follows from noting that b(P,C) =
∥

∥

∥

(

G̃K
)−1

∥

∥

∥

−1

∞
,

since [P,C] is internally stable. From eqn. (11) it

follows that

∥

∥

∥

(

G̃K
)−1

∥

∥

∥

∞
< γ

ε , from which a) is easily

derived.

b) Simple substitution of R =
(

G̃K
)−1

into Definition 6.

c) Under the assumptions of this theorem, robust stability

of [P∆,C] requires dR
cf(P,P∆)< bR

cf(P,C) via Theorem 1.

Choosing R =
(

G̃K
)−1

, we find that

d
(G̃K)

−1

lcf (P,P∆)< b
(G̃K)

−1

lcf (P,C) ⇔ r(P,P∆,C)< 1

which is guaranteed to hold since γ ≤ 1.

d) This is a consequence of a) together with Theorem 3.

e) Follows from Theorem 2 upon noting that r(P,P∆,C)<
γ via eqn. (11).

f) This follows from Theorem 2 upon noting that for

R =
(

G̃K
)−1

,
dR

cf(P,P∆)

bR
cf
(P,C)

∣

∣

∣

R=(G̃K)
−1

=
∥

∥

∥

(

G̃K
)−1

G̃G∆

∥

∥

∥

∞
<

γ via eqn. (11).

By incorporating the robustness ratio r(P,P∆,C)—which is

based on a non-normalized coprime factorization—into the

objective function, this synthesis method allows controller

synthesis even for plants for which the ν-gap exceeds the

normalized coprime factor robust stability margin. This can

easily occur in uncertain lightly damped systems. The exam-

ple in the following section illustrates such a case.

While the robust stabilization part of Theorem 4 is for-

mulated for [P∆,C] only, the controller is actually guaranteed

to stabilize the set of plants {P̂ ∈ R p×q : wnodet
(

Ĝ∗G
)

=

0, σ
(

G̃Ĝ
)

(∞)< 1,
∥

∥

∥

(

G̃K
)−1

G̃Ĝ

∥

∥

∥

∞
< 1}, via an argument

as in part a) of the proof.

The H∞ norm minimization problem following from The-

orem 4 can be solved using the linear matrix inequality

(LMI) approach [12] via a suitable generalized state-space

representation for the problem. Given state-space realizations

P =

[

A0 B0

C0 D0

]

, P∆ =

[

A∆ B∆

C∆ D∆

]

, with (A0,B0)/(A∆,B∆)

stabilizable and (C0,A0) detectable, and assuming w.l.o.g.

that D0 = 0, a generalized state-space model is given by

He(s) :=














A0 −B0F∆ −B0R
−1/2

∆ 0 −εB0 B0

0 A∆ +B∆F∆ B∆R
−1/2

∆ 0 0 0

C0 C∆ +D∆F∆ D∆R
−1/2

∆ εI 0 0

0 0 0 0 0 I

C0 C∆ +D∆F∆ D∆R
−1/2

∆ εI 0 0















, (13)

where R∆ := I +D∗
∆D∆; R̃∆ := I +D∆D∗

∆;

X∆ := Ric

[

A∆ −B∆R−1
∆ D∗

∆C∆ −B∆R−1
∆ B∗

∆

−C∗
∆R̃−1

∆ C∆ −
(

A∆ −B∆R−1
∆ D∗

∆C∆

)∗

]

;

F∆ :=−R−1
∆ (B∗

∆X∆ +D∗
∆C∆) .

Precise LMI solvability conditions and controller recon-

struction formulae can be obtained for the above problem.
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Fig. 3. Bode plots of P0, P1 and of the optimal controller C.

These will be reported elsewhere. However, given a suitable

state-space representation, software routines like Matlab’s

‘hinflmi’ can carry out the optimization and reconstruct a

controller.

VII. NUMERICAL EXAMPLE

In this section, the synthesis methodology described in

the previous section is applied to a physically motivated

robust motion control problem which has been proposed as a

benchmark example in [13] (c.f. [4]). The system consists of

two masses M1, M2, coupled by a spring of stiffness k, with

the assembly sliding on a frictionless table. The input u is a

force applied to one mass, the output x is the displacement

of that mass. The nominal transfer function is:

P0(s) =
x(s)

u(s)
=

M2s2 + k

s2(M1M2s2 +(M1 +M2)K)
.

Slight changes in the location of the poles and zeros of this

system can cause very large distances as measured by the ν-

gap [4]. Consider the nominal system P0(s) (M1 = M2 = 1kg,

k = 1 N
m

, sensor gain of 10) and the perturbed system P1(s),
respectively defined as

P0(s) =
10(s2 +1)

s2(s2 +2)
, P1(s) =

10(s2 +1.1)

s2(s2 +2)
.

The Bode plots of these transfer functions are displayed in

Fig. 3. The ν-gap between both systems is δν(P0,P1) =
0.8012, i.e. very large compared to the optimal four-block

robust stability margin bopt(P0) = 0.3919. Robust stability of

[P∆,C] can not be guaranteed using four-block methods since

δν(P0,P1) > bopt(P0). And indeed, the controller achieving

b(P0,C) = bopt(P0) does not stabilize [P1,C] [4]. Applying

the synthesis method of Section VI, we choose ε = 0.3,

which we assume will give us an adequate level of four-

block robust stability margin for the nominal system if

γ ≈ 1. We use the generalized state-space model (13) to

solve the combined H∞-optimization problem (11) with the

Matlab LMI solver ‘hinflmi’, approximating the infimum as

γ ≈ 0.8884. The controller C that achieves this (approximate)

infimum is guaranteed to be robustly stabilizing for P1(s) via

Theorem 4. It achieves a four-block robust stability margin

b(P,C) = 0.3385 > ε
γ . The four-block stability margins of the

perturbed system is remarkeably similar: b(P1,C) = 0.3360.

The Bode plot of the optimal controller C is shown in Fig. 3.

C approximates a simple lead-lag controller, which is widely

known to give very good robustness properties for systems

as in this example [4].

VIII. CONCLUSION

A new robust controller synthesis method has been pro-

posed, based on a coprime factorization of an uncertain plant

in which the coprime factors are not necessarily normalized.

It has been shown that by choosing a particular factorization,

robust stability and robust performance guarantees can be

obtained that are less conservative than those using normal-

ized coprime factors. In the example, a robustly stabilizing

controller has been obtained for an uncertain plant for which

normalized coprime factor methods cannot guarantee stabi-

lization. The proposed method will be especially useful in

the controller synthesis for lightly damped systems.
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