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Abstract— Multipliers are often used to find conditions for
the absolute stability of Lur’e systems. They can be used either
in conjunction with passivity theory or within the more recent
framework of integral quadratic constraints (IQCs). We com-
pare the use of multipliers in both approaches. Passivity theory
requires that the multipliers have a canonical factorization and
it has been suggested in the literature that this represents an
advantage of the IQC theory. We consider sufficient conditions
on the nonlinearity class for the associated multipliers to have
a canonical factorization.

I. INTRODUCTION

The use of open–loop properties, such as applying the
small gain theorem as well as the passivity theorem, in order
to find absolute stability conditions for the Lur’e problem
(see Fig. 1) is a common tool in nonlinear systems theory.
In this problem the stability of a linear time-invariant (LTI)
system, G, in a feedback interconnection with a nonlinear
system, φ , is studied. Decoupling the linear and nonlinear
parts reduces the complexity of the problem and allows a
solution in terms of simple conditions on the linear part. An
essential feature of this method is that stability is guaranteed
for an entire class of nonlinearities.
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Fig. 1. Lur’e problem

Historically, a first general solution for a specific class of
nonlinearities was given by Popov [1]; his result is general-
ized in [2] for multivariable systems (see [3] and references
therein for different multivariable cases). The circle criterion
was developed by several authors simultaneously, but a pair
of papers can be highlighted [4], [5]. In the first [4], the
definition of input–output stability using extended spaces, as
proposed by [6], is used and the small gain and passivity
theorems are established. In the second [5] the circle and
Popov criteria are obtained as applications of these theorems.
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In the proof of the Popov criterion in [5], the abstract concept
of multiplier is interpreted as a loop transformation, see
Fig. 2.
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Fig. 2. Multiplier Transformation: stability of this systems implies stability
of the original system in Fig. 1.

The multiplier is an artificial system that is introduced
into the loop together with its inverse. Roughly speaking,
an excess of positivity in the nonlinear part is exploited to
redress a deficiency of positivity in the linear part. Passivity
theory requires systems to be causal, but restricting the
analysis to linear causal multipliers, i.e. systems without
poles in the right half plane, leads to severe constraints on the
choice of the phase. In [7] a factorization condition on non-
causal multipliers is proposed to overcome this restriction
and recover causality in the loop elements, (see Fig. 3 and
Remark 2.7).
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Fig. 3. Multiplier Transformation: recovering causality

The factorization condition on the multiplier is given by

M = M−M+, (1)

where M− and M+ are invertible and M+, M−1
+ , M∗−, and

M∗−1
− are causal and have finite gain. For the Lur’e problem

where one part of the loop is LTI it is natural to restrict the
multipliers themselves to be LTI. For a linear operator this is
referred to as the canonical factorization (see Section II-B).
Some special cases of this factorization, e.g. spectral factor-
ization, inner–outer factorization and J-spectral factorization,
have been used in H∞ control theory [8]. The conditions
for the existence of this factorization are summarized in the
monograph [9] which takes an operator theoretical approach.
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In [10], an equivalent result was found from a control
systems perspective. Only a few papers, for instance, [11],
have used these results for control systems analysis.

In the multiplier approach the properties of a class Φ of
positive nonlinearities φ are used to find the corresponding
class M of multipliers M such that M∗φ is also positive. As
an example, the original paper [7] was focused in preserving
positivity for monotone and slope–restricted nonlinearities;
this class of multipliers is known as the Zames–Falb multi-
pliers. Then if there exists a multiplier M within this class
such that MG is strictly positive, then the linear system G
in a feedback interconnection with any of the nonlinearities
within the class (Fig. 1) is stable.

By contrast IQC theorem [12] is derived using a homotopy
argument where causality is not required. As a result, in
IQC theorem any multiplier preserving positivity for φ can
be used and a canonical factorization is no longer required.
This is sometimes stated as a distinguishing advantage of the
IQC formulation [12], [13]. But to date no significantly wider
class of multiplier or improved stability results have yet been
found that exploit this feature. This suggests the question: is
the existence of a canonical factorization a necessary feature
of multipliers for standard nonlinearity classes? In addition
some authors still use the classical multiplier approach [14];
are their results conservative because they must then impose
the canonical factorization?

Recently, a few papers have examined the connection
between dissipativity and IQC theory [15], [16]. In this paper
we restrict our attention to the use of multipliers in the
classical sense. In [17] a different factorization is analyzed,
where M+ and M− are allowed to be “tall”; the use of
this factorization does not demonstrate equivalency, since
passivity theory requires invertible multipliers.

This paper focuses the two questions above. The main
result is that if the class of nonlinearities includes the scaled
identity (e.g. sector–bounded nonlinearities, slope–restricted
nonlinearities, passive LTI systems) then both approaches
lead to the same result. In particular, any LTI multiplier
that preserves positivity must have a canonical factorization,
except for certain pathological cases.

II. PROBLEM DEFINITION

In this section some background concepts are summarized.
The first subsection gives the notation and definitions that
will be used throughout the paper. The second subsection
introduces the canonical factorization and the condition for
its existence. After that, the passivity theorem and its exten-
sion using multipliers are shown. Finally, the general IQC
theorem is given. We assume the systems under consideration
to be square. We make certain further restrictions on both
the IQC framework and the passivity approach such that a
straightforward comparison is possible.

A. Notation and definitions

L m
2 [0,∞] is the Hilbert space of all square integrable and

Lebesgue measurable functions f : [0,∞]→Rm.A truncation
of the function f at T is given by fT (t) = f (t), ∀t ≤ T and

fT (t) = 0, ∀t > T . In addition, f belongs to the extended
space L m

2e if fT ∈L m
2 for all T > 0.

Let the system S be a map from L m
2e[0,∞) to L m

2e[0,∞),
with input u and output Su. It is passive if 〈uT ,SuT 〉 ≥ 0 for
all T > 0 and u ∈L m

2e[0,∞). It is positive if 〈u,Su〉 ≥ 0 for
all u∈L m

2 [0,∞). This system S is causal if Su(t) = S(uT )(t)
for all t < T . Moreover, the system S is stable if for any
u∈L m

2 [0,∞), then Su∈L m
2 [0,∞). The system S is bounded

if there exists a constant γ such that ‖Su‖2 ≤ γ‖u‖2.
This definition of a positive system is standard, but it is

not equivalent to the standard definition of a positive real
system [18], where causality is required. Although passivity
and positivity definitions are often considered equivalent,
the equivalence only holds for causal systems. Moreover,
because passivity theorem requires a inner product between
the input and output, the space of the input should be the
dual space of the space of the output; therefore, this paper
is restricted to square systems.

Lemma 2.1 (Section VI.9.1 in [19]): Let S : L m
2e[0,∞)→

L m
2e[0,∞) be a causal system, then the system is passive if

and only if it is positive.
Finally, this paper focused the stability of the feedback

interconnection of a stable LTI system G and a bounded
system φ , represented in Fig. 1 and given by{

v = f +Gw,
w = φv.

(2)

Since G is a stable LTI system, the exogenous input in this
part of the loop can be taken as zero signal without loss of
generality. It is well posed if the map (v,w) 7→ (0, f ) has
a causal inverse on L 2m

2 [0,∞), and this interconnection is
stable if for any f ∈ L m

2 [0,∞), then Gw ∈ L m
2 [0,∞) and

φv ∈L m
2 [0,∞). In addition, G(s) means the matrix transfer

function of the linear system G. G∗ is the L2–adjoint of G,
i.e., G∗(s) =G(−s)>. RL∞ (RH∞) is the space of all rational
matrix transfer functions without poles in the imaginary axis
(in the closed right-half plane).

B. Canonical factorization
The condition for the existence of a canonical factorization

is given in [9]. Since this result is given in a different
framework, this section shows the definition of canonical
factorization that will be used. The canonical factorization
has a general definition using a Cauchy contour for linear
operator [9]. However, we are going to use the definition
given in [8] when this Cauchy contour is the imaginary axis.

Definition 2.2 (Canonical factorization): Let M(s) be a
square matrix transfer function such that M(s) ∈ RL∞ and
M−1(s) ∈ RL∞. Then, M(s) = M−(s)M+(s) is a canonical
factorization of M(s) if M+(s) ∈ RH∞, M−1

+ (s) ∈ RH∞,
M∗−(s) ∈ RH∞, and (M∗(s)−)−1 ∈ RH∞.

The next corollary is a simplified version of the Theorem
15.3 in [9], using the above definition.

Corollary 2.3: 1 Let M(s) ∈ RL∞ be an n× n rational
matrix function such that M−1(s) ∈ RL∞. Assume that

1Proofs are available in a longer version of this paper, available from the
authors on request.
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herm(M( jω)) = 1
2 (M( jω)+M∗( jω)) > 0, ∀ω ∈ R. Then,

M(s) admits a canonical factorization.

C. Passivity theorem

Following [19], the passivity theorem, and its version
with multipliers, can be written as follows. The following
theorems are simplified versions applied for the case where
G is LTI stable and φ is bounded. More general versions of
the passivity theorem can be found in [20], [21].

Theorem 2.4 (Passivity theorem): Let G be a stable LTI
system and let φ be a bounded system from L m

2e[0,∞) to
L m

2e[0,∞). Assume that the feedback interconnection of G
and φ is well posed and there exists a constant ε > 0 such
that the following conditions hold

〈u,Gu〉 ≤ −ε‖u‖2, (3)
〈u,φu〉 ≥ 0 (4)

for all T > 0 and u ∈L m
2e[0,∞). Then, the feedback inter-

connection (2) is stable.
Remark 2.5: The classical theorem has been modified for

positive feedback interconnection.
The conservatism applying the passive theorem can be

decreased using the multiplier approach. The following the-
orem establishes the use of LTI multiplier with a canonical
factorization.

Theorem 2.6: Let G be a stable LTI system and let φ

be a bounded system from L m
2e[0,∞) to L m

2e[0,∞). Assume
that the feedback interconnection of G and φ is well posed
and there exist a constant ε > 0 and LTI multiplier M, such
that M(s) has a canonical factorization and the following
conditions hold

〈u,MGu〉 ≤ −ε‖u‖2, (5)
〈u,M∗φu〉 ≥ 0 (6)

for all u ∈L m
2 [0,∞). Then, the feedback interconnection (2)

is stable.
Remark 2.7: The passivity theorem cannot be applied

directly, since the systems are not passive, they are posi-
tive (note that there are no truncations in the equations).
Nevertheless, the factorization allows a causal equivalent
representation given by −M+G(M∗−)

−1 and M∗−φM−1
+ , see

Fig. 3, and equations (5) show these causal systems are
(strictly) passive. For example, following Lemma 15 in
section VI.9.2 in [19], let x and u belong to L2[0,∞) and be
related by x=M∗−u. Taking into account the conditions on the
canonical factorization, i.e. M∗− and (M∗−)

−1 to be bounded,
for all x ∈L2[0,∞), then u ∈L2[0,∞), and vice versa. As a
consequence, left-hand side of (5) can be rewritten as follows

〈u,M−M+Gu〉= 〈M∗−u,M+Gu〉= 〈x,M+G(M∗−)
−1x〉.

Since M+, G, and (M∗−)
−1 are causal, using Lemma 2.1,

−M+G(M∗−)
−1 is strictly passive.

D. IQC theorem

In [12], in a similar argument as in the multiplier approach,
the properties of an artificial system, whose inputs are the
input and the output of the original one, is used to obtain the
stability of the Lur’e system using a homotopy argument. As
an advantage, causality is not needed.

Definition 2.8: Two signals, u ∈ L m
2 [0,∞] and w ∈

L m
2 [0,∞] are said to satisfy the IQC defined by a measurable

Hermitian–valued Π : jR→ C(2m)×(2m), if∫
∞

−∞

[
û( jω)
ŵ( jω)

]∗
Π( jω)

[
û( jω)
ŵ( jω)

]
dω ≥ 0, (7)

where û and ŵ are the Fourier transform of the signals u and
w, resp.

In this framework, Π is also referred to as a multiplier.
Here, in order to avoid a confusion between Π and M, Π

will be referred to as generalized multiplier.
Definition 2.9: A bounded system φ : L m

2 [0,∞] 7→
L m

2 [0,∞] is said to satisfy the IQC defined by Π if the signals
u and φu satisfy the IQC defined by Π for all u ∈L m

2 [0,∞].
Theorem 2.10 (IQC theorem): Assume that
(i) the feedback interconnection of G and τφ is well posed

for all τ ∈ [0,1],
(ii) there exists a generalized multiplier Π such that τφ

satisfies the IQC defined by Π for all τ ∈ [0,1],
(iii) there exists ε > 0 such that[

G( jω)
I

]∗
Π( jω)

[
G( jω)

I

]
≤−εI ∀ω ∈R (8)

Then, the feedback interconnection (2) is stable.

III. CONSERVATISM ANALYSIS

It has been suggested that IQC analysis is less conservative
that passivity theory on the selection of the multiplier for
absolute stability [12], [13]. In order to establish a compar-
ison, we first write versions of both the IQC theorem and
the passivity theorem in a common notation, following [22].
After that, the main results of this paper can be presented:
we establish conditions under which the two approaches are
equivalent.

A. Common notation

For the passivity theorem, condition (6) can be written in
the frequency domain as∫

∞

−∞

(
û∗M∗( jω)φ̂u+ φ̂u

∗
M( jω)û

)
dω ≥ 0 (9)

since the Fourier transform preserves the inner product [8].
The linearity of the multiplier M has been used. Equation (9)
means that the signals u and φu satisfy the IQC defined by

Π( jω) =

[
0 M∗( jω)

M( jω) 0

]
(10)

A version of the passivity theorem can be written as follows:
Corollary 3.1: Assume that
(i) the feedback interconnection of G and φ is well posed,
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(ii-a) there exists a multiplier M such that φ satisfies the IQC
defined by (10).

(ii-b) M has a canonical factorization,
(iii) there exists ε > 0 such that[

G( jω)
I

]∗ [ 0 M∗( jω)
M( jω) 0

][
G( jω)

I

]
≤−εI (11)

for all ω ∈R.
Then, the feedback interconnection (2) is stable.

On the other hand, applying the IQC theorem to the
specific Π given by (10), we obtain:

Corollary 3.2: Assume that
(I) for all τ ∈ [0,1], the feedback interconnection of G and

τφ is well posed,
(II) there exists a multiplier M such that φ satisfies the IQC

defined by (10).
(III) there exists ε > 0 such that[

G( jω)
I

]∗ [ 0 M∗( jω)
M( jω) 0

][
G( jω)

I

]
≤−εI (12)

for all ω ∈R.
Then, the feedback interconnection (2) is stable.

Remark 3.3: Using Remark 2 in [12], the homotopy con-
dition on (II) is not needed, since the inequality in the IQC
is satisfied for any positive constant τ ∈ [0,1] if it is satisfied
for τ = 1.

Remark 3.4: There are more general versions of both
theorems. The IQC theorem can be applied with a more
general form of Π [12]. Similarly the passivity theorem can
be applied with other supply rates using the dissipativity
theory [23], [20]. Moreover, an extension of dissipativity
theory has been proposed in [24], [25].

Remark 3.5: A similar comparison is given in [12], but
using another version of the IQC theorem and the passivity
theorem. Despite that (12) is the standard condition in the
IQC Theorem, Remark 3 [12] allows that the right-hand
side of (12) is replaced by −εG∗( jω)G( jω) since the
nonlinearity is bounded. Similarly, passivity theorem remains
true is the right-hand side of (5) is replaced by −ε‖GuT‖2.

If we confine our attention to Corollaries 3.1 and 3.2, the
two approaches differ in that Corollary 3.1 requires only
the well posed condition for the nonlinearity itself, whereas
Corollary 3.2 requires the condition for all nonlinearities
given by τφ , for all τ ∈ [0,1]. In this paper we assume the
well posed condition holds for all τ ∈ [0,1]. On the other
hand, Corollary 3.2 requires no counterpart to condition (ii-
b) in Corollary 3.1. This is the difference between the two
theories that we analyse.

B. Main results

In this section, the main results of this paper are given.
The results seem simple, but are novel to the best of our
knowledge. It turns out there is an equivalence between both
approaches when applied to standard classes of nonlinear-
ities. Certain reasonable assumptions on both the class of
nonlinearities and the multiplier are sufficient to ensure the
multiplier has a canonical factorization.

Assumption 3.6: The multipliers are rational matrix trans-
fer functions that satisfy M(s) ∈ RL∞ and M−1(s) ∈ RL∞.

We also require the hermitian part of the multiplier to
be positive definite. The following two lemmas show that
a small scaled identity can be added to any multiplier
without loss of generality, and therefore we need not exclude
multipliers whose hermitian part is positive semi-definite.

Lemma 3.7: Let M be a multiplier such that herm(M) ≥
0 and it satisfies (12) for some ε > 0. Then, there exist a
constant ζ > 0 such that the multiplier M( jω) =M( jω)+ζ I
with herm(M)> 0 satisfies (12) for ε

2 > 0.
Lemma 3.8: If M∗ preserves the positivity of class of

nonlinearities, then M∗+ζ I for all ζ > 0 also preserves the
positivity of the class.

We also require a mild condition on the class of nonlin-
earities.

Assumption 3.9: There exists k> 0 such that kI ∈Φ where
Φ is the class of nonlinearities.

The following proposition establishes that when the class
of nonlinearities includes a scaled identity, the canonical
factorization is not a limitation on the class of multipliers.

Proposition 3.10: Let Φ be a class of nonlinearities satis-
fying Assumption 3.9, let G be a stable LTI system and let
M be a multiplier satisfying Assumption 3.6. Under these
conditions, if M satisfies (II) for all φ ∈ Φ and M and G
satisfy (III), then:
• either M satisfies (ii-a), (ii-b), and M and G satisfy (iii)
• or there exists some small ζ > 0 such that M = M+ζ I

satisfies (ii-a), (ii-b) and M and G satisfy (iii).
Roughly speaking, we have shown that under Assump-

tion 3.9 on the class of nonlinearities and under Assump-
tion 3.6 on the multiplier, the existence of a canonical fac-
torization is no restriction on the class of nonlinearities and
hence Corollary 3.2 offers no advantage over Corollary 3.1.

C. Discussion on the Assumptions

If we want to find an example where IQC theory offers
a direct advantage over passivity theory, we must either
find a multiplier that breaks Assumption 3.6 or a class of
nonlinearities that breaks Assumption 3.9. We show in the
following section that Assumption 3.9 is satisfied for several
standard classes of nonlinearities. Even if Assumption 3.9 is
not satisfied, the positivity of the multiplier is sufficient for
a canonical factorization to exist.

From a loop transformation point of view, as originally
proposed in [7], [27], [19], Assumption 3.6 is mandatory in
order to recover the L2-stability of the original system from
the stability of the transformed system. However, there is an
important class of multipliers in the literature which do not
satisfy Assumption 3.6: the Popov multipliers.

The relation between our work and Popov multipliers
is beyond the scope of this paper. Note that when using
passivity theory, the L2-stability is degraded when a Popov
multiplier is used as the derivative of the input in the
nonlinearity must also belong to L2 (Section 6.6 in [21])2.

2A similar observation was also made when studying the stability of
interconnections of negative-imaginary systems [28], [29] via passivity.
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Similarly, when a Popov multiplier is used within the IQC
theory some special considerations must be taken into ac-
count because the generalized multiplier is not measurable.
For example, in [13], the generalized multiplier is split up
into two terms: a bounded part and the Popov multiplier.
As in the passivity analysis, the L2-stability appears to be
degraded (see Definition 3 in [13]).

IV. APPLICATIONS

Two of the classical nonlinearities (saturations and pertur-
bations), where the multiplier approach has been used, hold
the conditions for Prop. 3.10. In the case of saturation, the
nonlinearities are usually characterized with the following
properties: memoryless, monotone, slope–restrict and odd.
A scaled identity is within this description. In the same way,
standard classes of systems considered as perturbations also
include a scaled identity.

A. Monotone, slope–restricted and odd nonlinearities

The class of monotone, slope–restricted and odd nonlinear-
ities has received considerable attention since the celebrated
paper [7] by Zames and Falb introduced the multiplier
factorization. Even though they were proposed more than
40 years ago, novel work on Zames-Falb multipliers has
appeared recently. For example, their application to repeated
nonlinearities are established in [30] and [31]; in [32], [33],
the multipliers are proposed for robust stability analysis
of input-constrained Model Predictive Control; in [34], a
subclass of the Zames–Falb multiplier is proposed in order
to restrict the constraints on the nonlinear system.

Multipliers M∗ that preserve the positivity of this class
of nonlinearities are referred to as Zames–Falb multipliers.
There are two definitions in the literature: we will distinguish
them with the terminology Open and Closed Zames–Falb
multipliers. Originally, they were designed to satisfy two
properties:

1) To preserve the positivity of the nonlinearity.
2) To ensure the canonical factorization.
Under these conditions, the original class of Zames–Falb

multiplier was defined as follows.
Definition 4.1 (Open Zames–Falb Multiplier): A rational

transfer function, M, is said to be an Open Zames-Falb
multiplier, MOZF , if it is given by M(s) = M0−Z(s), where
the unit impulse response of Z(s), z(t), satisfies ‖z‖1 =∫

∞

−∞
|z(t)|dt < M0.

An appeal to the properties of Banach Algebras guaran-
tees the canonical factorization for this class of multiplier
(see Section VI.9.5 in [19]). Proposition 3.10 provides an
alternative guarantee, because a scaled identity belongs to
such a class of nonlinearities. In addition:

Lemma 4.2: If M ∈ MOZF , then M satisfies Assump-
tion 3.6.

Hence, for this class of multiplier, IQC analysis offers no
advantage over passivity theory. However, for IQC theory the
second condition can be removed. This means a wider class
of multiplier can be used [12].

Definition 4.3 (Closed Zames–Falb Multiplier): A ratio-
nal transfer function, M, is said to be a Closed Zames-
Falb multiplier, MCZF , if it is given by M(s) = M0−Z(s),
where the unit impulse response of Z(s), z(t), satisfies that
‖z‖1 =

∫
∞

−∞
|z(t)|dt ≤M0.

This definition includes multipliers which cannot be fac-
torized, because they do not satisfy Assumption 3.6. For
example, the multiplier given by M(s) = 1− 1

s+1 belongs
to MCZF , but it cannot be factorized since it has a zero at
s = 0, so M−1 6∈ RL∞.

Nevertheless, we may still conclude from Proposition 3.10
that IQC analysis holds no advantage over passivity theory
for this case. The key insight is that the class of nonlinearity
still satisfies Assumption 3.9, irrespective of the choice of
multiplier.

Lemma 4.4: Let M be a multiplier such that M ∈MCZF
and M 6∈MOZF , i.e. ‖z‖1 = M0. If M satisfies (II) and (III)
for some plant G(s), then there exists ζ > 0 such that M(s) =
(M0+ζ )−Z(s) satisfies (ii-a), (ii-b), and (iii) for some plant
G(s).

As a conclusion, the class of Zames–Falb multipliers can
be taken as Definition 4.1 without loss of generality and both
theories are equivalent for the absolute stability of this class
of nonlinearities.

B. Passive uncertainties

In 1994, two papers were submitted to journals using
multipliers for the same class of nonlinearities. They were
addressing different problems: in [35], the problem of H2
performance is addressed using an embryonic version of the
IQC theorem; in [36], robustness analysis is carried out using
the passivity theorem.

In each case, the nonlinear class is a diagonal LTI per-
turbation where each diagonal term is passive, i.e. ∆ =
diag(∆1,∆2, ...,∆np), where ∆i is passive for i= 1,2, . . . ,np. It
is clear that the identity is within this class of nonlinearities
and hence the results in Section III can be applied. Both
papers define the multiplier as a mapping from L2[−∞,∞]
into L2[−∞,∞], i.e. M(s) ∈ RL∞. However, the definitions
are slightly different.

Definition 4.5 ([35]): Given a multiplier M(s) ∈ RL∞, if
this is a diagonal transfer function and

M( jω) = M∗( jω)≥ 0 ∀ω ∈R, (13)

then it is said that M ∈MF .
Definition 4.6 ([36]): Given a multiplier M(s) ∈ RL∞, if

this is a diagonal transfer function and there exists ε > 0
such that

M( jω) = M∗( jω)≥ εI ∀ω ∈R, (14)

then it is said that M ∈MB.
In [36], the canonical factorization is required, and it

is suggested that by following [19] this factorization is
ensured. Our analysis confirms that the multipliers within
Definition 4.6 can be factorized. In addition the conditions
on the multiplier imposed in [19] are no longer required.
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Corollary 4.7: If M ∈ MB then M satisfies Assump-
tion 3.6.

Lemma 4.8: Given a rational transfer function M ∈ RL∞

such that M( jω) = M∗( jω) ≥ εI, ∀ω ∈ R, satisfying (II)
and (III) for some plant G(s), then M(s) satisfies (ii-a), (ii-
b), and (iii) for some plant G(s).

As in the previous application, the difference between both
classes of multipliers is reduced to the limiting case ε = 0,
where M−1 6∈ RL∞. But we can argue as before:

Lemma 4.9: Given a rational transfer function M ∈MF ,
satisfying (II), and (III) for some plant G(s), then there exists
ζ > 0 such that M(s) = ζ I+M(s) satisfies (ii-a), (ii-b), and
(iii) for some plant G(s). In addition, M(s) ∈MB.

As an conclusion, the equivalence between both classes of
multiplier, MB and MF , has been shown.

V. CONCLUSION

Following the comparison proposed in [22], [12], an
analysis of the conservatism imposed by the requirement for
a canonical factorization of the multiplier in passivity theory
has been carried out. It has been shown that if the class
of nonlinearities includes a scaled identity, then the class
of multipliers satisfying Assumption 3.6 is equivalent using
both theories. The canonical factorization does not introduce
conservatism into the stability analysis for this case.

The results have been applied to two widely used classes
of nonlinearities, which both include a scaled identity. The
results in this paper allow an easy method to analyze the
conservatism, because only the cases where the multiplier
is not within Assumption 3.6 must be considered. For these
two applications, the equivalence between IQC theory and
passivity theory is established. The further implications of
violating Assumption 3.6 are subject to current investigation.
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/ Springer Basel AG, 2010.

[10] K.-C. Goh, “Canonical factorization for generalized positive real
transfer functions,” in Proceedings of the 35th IEEE Decision and
Control, vol. 3, pp. 2848 –2853, 1996.

[11] Y.-S. Chou, A. L. Tits, and V. Balakrishnan, “Stability multipliers
and µ upper bounds: connections and implications for numerical
verification of frequency domain conditions,” IEEE Transactions on
Automatic Control, vol. 44, no. 5, pp. 906 –913, 1999.

[12] A. Megretski and A. Rantzer, “System analysis via integral quadratic
constraints,” IEEE Transactions on Automatic Control, vol. 42, no. 6,
pp. 819 –830, 1997.

[13] U. T. Jönsson, “Stability analysis with Popov multipliers and integral
quadratic constraints,” Systems & Control Letters, vol. 31, no. 2, pp.
85 – 92, 1997.

[14] V. V. Kulkarni, L. Y. Pao, and M. G. Safonov, “Positivity preservation
properties of the Rantzer multipliers,” IEEE Transactions on Automatic
Control, vol. 56, no. 1, pp. 190 –194, 2011.

[15] D. Materassi and M. Salapaka, “Less conservative absolute stability
criteria using integral quadratic constraints,” in Proceedings of the
2009 American Control Conference, pp. 113 –118, 2009.

[16] P. Seiler, A. Packard, and G. J. Balas, “A dissipation inequality
formulation for stability analysis with integral quadratic constraints,”
in Proceedings of the 49th IEEE Conference on Decision and Control,
pp. 2304–2309, 2010.

[17] M. Fu, S. Dasgupta, and Y. C. Soh, “Integral quadratic constraint
approach vs. multiplier approach,” Automatica, vol. 41, no. 2, pp. 281
– 287, 2005.

[18] B. D. O. Anderson and S. Vongpanitlerd, Network analysis and syn-
thesis: a modern systems theory approach. Prentice-Hall Englewood
Cliffs, NJ, 1973.

[19] C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-Output
Properties. Academic Press, Inc., 1975.

[20] A. J. van der Schaft, L2-Gain and Passivity Techniques in Nonlinear
Control. Springer-Verlag, 1999.

[21] M. Vidyasagar, Nonlinear systems stability. London: Prentice-Hall
International Editions, 1993.

[22] U. T. Jönsson, “Robustness analysis of uncertain and nonlinear sys-
tems,” Ph.D. dissertation, Department of Automatic Control, Lund
Institute of Technology, 1996.

[23] D. J. Hill and P. J. Moylan, “Stability results for nonlinear feedback
systems,” Automatica, vol. 13, no. 4, pp. 377 – 382, 1977.

[24] W. M. Griggs, B. D. O. Anderson, and A. Lanzon, “A “mixed” small
gain and passivity theorem in the frequency domain,” Systems &
Control Letters, vol. 56, no. 9-10, pp. 596 – 602, 2007.

[25] W. M. Griggs, B. D. O. Anderson, A. Lanzon, and M. C. Rotkowitz,
“Interconnections of nonlinear systems with “mixed” small gain and
passivity properties and associated input-output stability results,” Sys-
tems & Control Letters, vol. 58, no. 4, pp. 289 – 295, 2009.

[26] H. K. Khalil, Nonlinear Systems. Prentice Hall, 2002.
[27] J. C. Willems, The analysis of Feedback Systems. The MIT Press,

1971.
[28] A. Lanzon and I. R. Petersen, “Stability robustness of a feedback inter-

connection of systems with negative imaginary frequency response,”
IEEE Transactions on Automatic Control, vol. 53, no. 4, pp. 1042
–1046, 2008.

[29] I. R. Petersen and A. Lanzon, “Feedback control of negative-imaginary
systems,” IEEE Control Systems Magazine, vol. 30, no. 5, pp. 54 –72,
2010.

[30] F. J. D’Amato, M. A. Rotea, A. V. Megretski, and U. T. Jnsson,
“New results for analysis of systems with repeated nonlinearities,”
Automatica, vol. 37, no. 5, pp. 739 – 747, 2001.

[31] R. Mancera and M. G. Safonov, “All stability multipliers for repeated
mimo nonlinearities,” Systems & Control Letters, vol. 54, no. 4, pp.
389 – 397, 2005.

[32] W. P. Heath and A. G. Wills, “Zames-Falb multipliers for quadratic
programming,” IEEE Transactions on Automatic Control, vol. 52,
no. 10, pp. 1948 –1951, 2007.

[33] W. P. Heath and G. Li, “Multipliers for model predictive control with
structured input constraints,” Automatica, vol. 46, no. 3, 562–568,
2010.

[34] D. Materassi and M. Salapaka, “A generalized Zames-Falb multiplier,”
IEEE Transactions on Automatic Control, vol. 56, no. 6, pp. 1432 –
1436 , 2011.

[35] E. Feron, “Analysis of robust H2 performance using multiplier theory,”
SIAM Journal on Control and Optimization, vol. 35, no. 1, pp. 160–
177, 1997.

[36] V. Balakrishnan, “Linear matrix inequalities in robustness analysis
with multipliers,” Systems & Control Letters, vol. 25, no. 4, pp. 265
– 272, 1995.

6059


