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Abstract—Input multiplicative and output inverse multiplica-
tive uncertainty characterisations are common in the robust
control literature. We present specialised distance measures and
robust stability margins for these types of uncertainty, and
derive both robust stability and robust performance theorems,
based on the generic distance measure framework of [1]. The
uncertainty is allowed to belong to the space RL∞, and hence
includes unstable systems. This constitutes a significant advance
over previous robust stability results for such uncertainty
structures, which were valid only for systems in RH∞.

I. INTRODUCTION

Multiplicative and inverse multiplicative uncertainty char-

acterisations have been used in H∞ robust control since the

early days of this field [2]. They are conceptually simple yet

allow capturing a large set of possible uncertainties in a plant.

Input multiplicative uncertainty has often been used to model

uncertain high frequency dynamics and uncertain right half

plane zeros, while output inverse multiplicative uncertainty

was used to model uncertain low frequency parameter errors

and uncertain right half plane poles (see e.g. [3, Chapter 9]).

The robust stability results for these structures are based on

the small gain theorem [4], which holds for systems in the

space RH∞, i.e. systems without poles in the open right

half complex plane. As a consequence, uncertain right half

plane zeros (resp. poles) can not be modelled by output

inverse multiplicative uncertainty (resp. input multiplicative

uncertainty) in the traditional RH∞ setting.

This paper presents robust stability and robust performance

theorems for systems with output inverse multiplicative un-

certainty and input multiplicative uncertainty for systems

in the space RL∞ (i.e. bounded on the imaginary axis),

based on distance measures for such uncertainty structures.

Generic distance measures for uncertain systems have been

developed in [1]. The framework of [1] captures systems in

RL∞, and can be applied to a large number of different

uncertainty structures via specialisations of a generic four-

block plant model. Specialised results have been obtained
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for non-normalised coprime factor uncertainty [1] and nor-

malised coprime factor uncertainty [5]. The robust stability

and robust performance theorems for the generic theory

are not easily applicable for specific uncertainty structures

without significant linear algebra manipulation, especially to

solve the consistency equation and to ensure well-posedness

of the uncertain plant description. The specialised results

theoretically validate distance measure approaches to robust

stability analysis already used by the practising community

(see e.g. [6] for an example constructing a minimal-size

multiplicative uncertainty), by giving well-defined bounds

and insights into the structure of the problem. Furthermore,

there is great educational value in considering specific cases,

rather than the generic theory only.

Distance measures for uncertain systems were first pro-

posed in [7], [8] as a tool for quantifying difference between

plants in a closed-loop sense. It was shown in [9] that

optimising the robust stability margin in the gap metric [7]

or graph metric [8] corresponds to optimising stability in a

four-block or normalised coprime factor uncertainty setting.

Subsequent research further developed the distance measures

concept [10], [11], [12], but the uncertainty structure re-

mained fixed to the normalised coprime factor setting. While

normalised coprime factor uncertainty captures a large set

of perturbed plants, it can be shown that the associated

robust stability results are conservative vis-a-vis those results

associated with other, less general uncertainty structures in

specific situations, due to the differently-shaped regions of

robust stability (as visualized e.g. on a Nyquist plot).

The main contribution of the paper is the following: A

specialisation of the generic distance measure, robust stabil-

ity margin and the robust stability and robust performance

theorems of [1] for the case of output inverse multiplicative

uncertainty, and brief summary of the results for the case

of input multiplicative uncertainty. These results are readily

applicable given descriptions of the nominal plant P ∈ RL∞

and of a perturbed plant P∆ ∈ RL∞ (under perturbations

∆∈RL∞), signifying a huge extension of the allowable plant

and uncertainty spaces, which were previously restricted to

RH∞. As a consequence of also allowing unstable uncer-

tainties, input multiplicative and output inverse multiplicative

uncertainty become more flexible and can also be used to

model right half plane zeros and poles, respectively.

A. Notation

Notation is standard. Let R denote the set of proper real-

rational transfer functions. Also, let P∗(s) denote the adjoint

49th IEEE Conference on Decision and Control
December 15-17, 2010
Hilton Atlanta Hotel, Atlanta, GA, USA

978-1-4244-7744-9/10/$26.00 ©2010 IEEE 2336



y

v

v
1

C

∆

z w

u

H 2

Fig. 1. The closed-loop system when a perturbation ∆ is present.

of P(s) ∈ R defined by P∗(s) = P(−s)T . For a constant

matrix A ∈ Cm×n, denote by A† ∈ Cn×m its Moore-Penrose

pseudoinverse. Let RL∞ denote the space of proper real-

rational functions bounded on jR including ∞, and RH∞

denote the space of proper real-rational functions bounded

and analytic in the open right half complex plane. Denote

the space of functions that are units in RH∞ by GH∞ (that

is, f ∈ GH∞ ⇔ f , f−1 ∈ RH∞). Let Fl (·, ·) (resp. Fu (·, ·))
denote a lower (resp. upper) linear fractional transformation

(LFT). For a scalar p(s)∈R, its winding number wno p(s) is

defined as the number of encirclements of the origin made by

p(s) as s follows the standard Nyquist D-contour, indented

into the right half plane around any imaginary axis poles

or zeros of p(s). Furthermore, let η(P) and z(P) denote,

respectively, the number of open right half plane poles and

zeros of P ∈R. For a plant P ∈R and a controller C ∈R, let

[P,C] denote the nominal feedback interconnection obtained

by setting ∆ = 0 in Fig. 1, and let 〈H,C〉 denote the linear

fractional interconnection of H and C with input w, v1, v2

and output y, z as displayed in Fig. 1.

II. GENERIC DISTANCE MEASURES

This section reviews the distance measure for generic

uncertainty representations, the associated stability margin as

well as the robust stability and robust performance theorems

of [1]. Given a family of perturbed plants, described by a

generalised plant H =

[

H11 H12

H21 H22

]

∈R and the uncertainty

representation ∆ ∈ R, connected through an upper LFT as

displayed in Fig. 1 such that (assuming (I−H11∆)−1 ∈ R)

the perturbed plant is given by

P∆ = Fu (H,∆) = H22 +H21∆(I−H11∆)−1
H12. (1)

When ∆ = 0, eqn. (1) reduces to P∆ = P, i.e. the nominal

plant P∈R p×q. From eqn. (1) we can also observe that there

exists a set of uncertainties ∆∆∆ yielding a perturbed plant P∆

from a nominal plant P whenever a well-posedness condition

((I −H11∆)−1 ∈ R) and the consistency equation (1) are

fulfilled for one or several ∆’s. We introduce a distance

measure based on the sizes of such allowable uncertainties.

Definition 1. [1, Section II] Given a plant

P ∈ R p×q, a generalized plant H ∈ R with

H22 = P, and a perturbed plant P∆ ∈ R p×q. Let

the set of all admissible perturbations be given by

∆∆∆ =
{

∆ ∈ RL∞ : (I−H11∆)−1 ∈ R,P∆ = Fu (H,∆)
}

.

Define the distance measure dH(P,P∆) between plants P and

P∆ for the uncertainty structure implied by H as:

dH(P,P∆) :=

{

inf∆∈∆∆∆‖∆‖∞ , if ∆∆∆ 6= /0

∞, otherwise.

Also define a set of minimal-size admissible uncertainties

for ease of notation.

Definition 2. [1, Section II] Given a plant P ∈ R p×q, a

generalized plant H ∈R with H22 = P, and a perturbed plant

P∆ ∈ R p×q. Define

∆∆∆min :=
{

∆ ∈ ∆∆∆ : ‖∆‖∞ = dH(P,P∆)
}

.

Let us now define a small-gain type stability margin.

Definition 3. [1, Section II] Given a plant P ∈ R p×q, a

generalized plant H ∈ R with H22 = P, and a controller

C ∈ Rq×p. Define the stability margin bH(P,C) of the feed-

back interconnection 〈H,C〉 as:

bH(P,C) :=











‖Fl (H,C)‖−1
∞ if 0 6= Fl (H,C) ∈ RL∞,

[P,C] is internally stable,

0 otherwise,

where Fl (H,C) = H11 +H12C(I −H22C)
−1H21.

These two concepts, distance measure and stability margin,

are used in the following theorem to obtain robust stability

guarantees for systems in RL∞. Note that in contrast to

systems in RH∞, a small-gain type condition is not enough

to guarantee stability, and that a winding number condition

must be additionally introduced [13], [12].

Theorem 1 (Robust Stability). [1, Section III] Given a

plant P ∈ R p×q, a stabilizable generalized plant H ∈ R

with H22 = P, a perturbed plant P∆ ∈ R p×q and a controller

C ∈Rq×p such that dH(P,P∆)< bH(P,C) and ∆∆∆min 6= /0, then

the following statements are equivalent:

(a) [P∆,C] is internally stable;

(b) ∀∆ ∈ ∆∆∆min
, η(P∆) = η(P)+wnodet(I−H11∆);

(c) ∃∆ ∈ ∆∆∆min : η(P∆) = η(P)+wnodet(I −H11∆). (2)

The proof is omitted here for the sake of brevity; it can

be found in [1, Section III]. In the following theorem, we

concretize the structure of the generalized plant H to that of

a left four-block structure, i.e.

H =

[

Sz

I

]





I −P P

0 0 I

I −P P





[

Sw

I

]

,

where Sw, Sz ∈R are matrices used to make the generalized

plant H represent any uncertainty structure that is typically

important in engineering applications.1 The following theo-

rem gives robust performance guarantees for perturbed plants.

1Sw and Sz for the output inverse mutltiplicative and input multiplicative
case are detailed in Sections III and IV.
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Theorem 2 (Robust Performance). [1, Section V] Given a

nominal plant P ∈ R p×q, a stabilizable generalized plant

H =

[

Sz

I

]





I −P P

0 0 I

I −P P





[

Sw

I

]

where Sw,Sz ∈ R, a perturbed plant P∆ ∈ R p×q and a

controller C ∈ Rq×p such that dH(P,P∆) < bH(P,C) and

∆∆∆min 6= /0. Assume furthermore that there exists a ∆ ∈ ∆∆∆min

that satisfies η(P∆) = η(P)+wnodet(I −H11∆), where the

winding number is evaluated on a contour indented to the

right around any imaginary axis poles of P and P∆. Suppose

furthermore that Sw∆
= Sw(I − k∆SzSw)

−1 ∈ R for a given

k ∈ {0,1}, S = (1− k)SzSw and

H∆ =

[

Sz

I

]





I −P∆ P∆

0 0 I

I −P∆ P∆





[

Sw∆

I

]

.

Then the following results hold when S ∈ RL∞ and (I −
∆S)−1 ∈ R:

(a) 0 6= Fl (H∆,C) ∈ RL∞ and [P∆,C] is internally stable;

(b)
∣

∣bH∆(P∆,C)− bH(P,C)
∣

∣ ≤

‖Fl (H∆,C)− S‖∞ bH∆(P∆,C)dH(P,P∆); and

(c) ‖Fl (H∆,C)−Fl (H,C)‖∞ ≤

‖Fl (H∆,C)− S‖∞ dH(P,P∆)

bH(P,C)
.

Again, the proof for this theorem is omitted here, but can

be found in [1, Section V]. The above theorem allows us to

make several statements about the robust performance of the

perturbed system: From result (b), it is clear that the change

in robust stability margin between nominal and perturbed

plant is bounded from above. Similarly, in result (c), the worst

case discrepancy between the transfer functions involving P

and P∆ is bounded from above. Both bounds are proportional

to dH(P,P∆) and hence, intuitively, a small distance results

in tight bounds on the performance degradation.

III. OUTPUT INVERSE MULTIPLICATIVE UNCERTAINTY

In this section, the stability margin, distance measure,

robust stability theorem and robust performance theorem are

specialised for output inverse multiplicative uncertainty, i.e.

P∆ = (I−∆)−1
P.

This corresponds to choosing Sw =
[

I 0
]T

and Sz =
[

I 0
]

in the four-block structure described in Theorem 2. It is

common engineering practice to use this type of uncertainty

for modelling low frequency parameter errors and uncertain

right-half plane poles. When the uncertainty ∆ ∈ RL∞, as

is the case here, it can also be used to model uncertain

right-half plane zeros, which would not be possible when

it is restricted to RH∞. The subsequent derivations follow a

procedure suggested in [1, Section VI] for characterising the

generic concepts for specific uncertainty structures.

1) Define the stability margin boim(P,C): Straight from

Definition 3, the stability margin boim(P,C) for an output

inverse multiplicative uncertainty characterisation is:

boim(P,C) :=

{

∥

∥(I−PC)−1
∥

∥

−1

∞
if [P,C] int. stable,

0 otherwise.
(3)

2) Solve consistency equation for all ∆ ∈ RL∞: In this

specific case, eqn. (1) reduces to

P∆ = (I −∆)−1
P ⇔ P∆ −P = ∆P∆, (4)

We shall assume in this section that P∆(∞) has full rank,

which is imposed for mathematical convenience.2 In the

following, the derivations are split into square, tall and fat

plant cases, as each case requires a slightly different approach

and yields slightly different consistency conditions.

Square Plants: Assume that P, P∆ ∈ R p×q with p = q, and

that P∆(∞) has full rank. Then eqn. (4) can be solved for ∆:

∆ = (P∆ −P)P−1
∆ . (5)

Hence, a necessary and sufficient condition for the existence

of a ∆ ∈ RL∞ that satisfies the consistency equation (4) is

PP−1
∆ ∈ RL∞. An obvious sufficient condition is P, P−1

∆ ∈
RL∞. Given any P, P∆ that satisfy PP−1

∆ ∈RL∞ there exists

one unique solution for ∆ ∈ RL∞ given by eqn. (5).

Tall Plants: Assume now that P, P∆ ∈ R p×q with p > q

and that P∆(∞) has full rank. Let P∆ have the state-space

realisation P∆ =

[

A B

C D

]

with D having full column rank,

and define the state-space system

P̆∆ =

[

A−BD†C −BD†

D∗
⊥C D∗

⊥

]

∈ R
(p−q)×p

, (6)

where D⊥ satisfies

[

D†

D∗
⊥

]

[

D D⊥

]

=

[

I 0

0 I

]

. Find a U ∈

Rq×q satisfying U∗U = P∗
∆P∆ and a V ∈ R(p−q)×(p−q) satis-

fying

VV ∗ = P̆∆P̆∆
∗
. (7)

Note that since U (resp. V ) is square and D∗D (resp.

D∗
⊥D⊥) is nonsingular, it follows that U∗U = P∗

∆P∆ (resp.

VV ∗ = P̆∆P̆∆
∗
) implicitly implies that U−1 ∈ Rq×q (resp.

V−1 ∈ R(p−q)×(p−q)). Define

Ψ =

[

U−∗P∗
∆

V−1P̆∆

]

∈ R
p×p (8)

and note that ΨΨ∗ = I since P̆∆
∗
P∆ = 0. Since Ψ is also

square, we have Ψ−1 = Ψ∗. Now eqn. (4) can be rearranged:

P∆ −P = ∆P∆ ⇔ P∆ −P = ∆Ψ−1

[

U

0

]

⇔ ∆ =
[

(P∆ −P)U−1 Q
]

Ψ for any Q ∈ R
p×(p−q)

.

Consequently, for this specific case, since Ψ is a unit in

RL∞, a necessary and sufficient condition for there to

2If the perturbed plant P∆ does not satisfy this assumption, one can always
negligibly perturb P∆ at infinite frequency so as to satisfy this assumption.
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exist a ∆ ∈ RL∞ that satisfies consistency of equations is

PU−1 ∈ RL∞, with a simple sufficient condition being P∆

having no transmission zeros on j(R∪{∞}) and P ∈ RL∞.

Then, given any P, P∆ pair that satisfy PU−1 ∈ RL∞, there

always exist multiple solutions for ∆ ∈ RL∞ given by

∆ =
[

(P∆ −P)U−1 Q
]

Ψ for any Q ∈ RL
p×(p−q)

∞ .

Fat Plants: Assume in this case that P, P∆ ∈ R p×q such that

p< q and that P∆(∞) has full rank. Let P∆ have the state-space

realisation P∆ =

[

A B

C D

]

with D having full row rank,

and define P̄∆ =

[

A−BD†C −BD∗
⊥

D†C D∗
⊥

]

∈ Rq×(q−p) where

D⊥ satisfies

[

D

D⊥

]

[

D† D∗
⊥

]

=

[

I 0

0 I

]

. Find an X ∈ R p×p

satisfying XX∗ = P∆P∗
∆ and a Y ∈ R(q−p)×(q−p) satisfying

Y ∗Y = P̄∆
∗
P̄∆. Note that since X (resp. Y ) is square and D∗D

(resp. D∗
⊥D⊥) is nonsingular, it follows that XX∗ = P∆P∗

∆

(resp. Y ∗Y = P̄∆
∗
P̄∆) implicitly implies that X−1 ∈ R p×p

(resp. Y−1 ∈ R(q−p)×(q−p)). Define Φ =
[

P∗
∆X−∗ P̄∆Y−1

]

∈
Rq×q and note that Φ∗Φ = I since P∆P̄∆ = 0. Since Φ is also

square, we have Φ−1 = Φ∗. Now eqn. (4) can be rearranged:

P−P∆ = ∆P∆ ⇔ (P−P∆)Φ = ∆P∆Φ

⇔
[

(P−P∆)P∗
∆X−∗X−1 PP̄∆

]

=
[

∆ 0
]

.

Consequently, necessary and sufficient conditions for there to

exist a ∆ ∈ RL∞ that satisfies consistency of equations are

PP∗
∆ (P∆P∗

∆)
−1 ∈ RL∞ and PP̄∆ = 0, (9)

with a simple sufficient condition being P∆ having no trans-

mission zeros on j (R∪{∞}), P ∈RL∞ and PP̄∆ = 0. Then,

given any P, P∆ pair that satisfy condition (9), there exists

only a uniqe solution for ∆ ∈ RL∞ given by

∆ = (P−P∆)P∗
∆ (P∆P∗

∆)
−1

. (10)

3) Derive conditions to guarantee well-posedness of

Fu (H,∆): We now wish to make a connection between

consistency equation (4) and the uncertainty characterisation

P∆ = Fu (H,∆). Since we define P∆ = Fu (H,∆) to be well-

posed when det(I −H11∆)(∞) 6= 0, we first need to express

det(I−H11∆)(∞) independently of ∆. Since H11 = I (a very

important difference from the multiplicative case), it follows

(after some simple algebra) that:

det(I −H11∆)(∞) 6= 0

⇔















det(P(∞)) 6= 0 when p = q,

det
[

P (P̆∗
∆V−∗−Q)

]

(∞) 6= 0 when p > q,

det(PP∗
∆)(∞) 6= 0 when p < q.

(11)

In equivalence (11), Q ∈ RL
p×(p−q)

∞ is arbitrary, V ∈
R(p−q)×(p−q) satisfies (7) and P̆∆ is as defined in eqn. (6).

The inequalities in (11) restrict the allowable P(∞), P∆(∞)
data and Q(∞) for well-posedness of the linear fractional

transformation Fu (H,∆). The following technical lemma is

needed to simplify condition (11).

Lemma 3. 1) When p = q, condition (11) is equivalent

to P(∞) having full rank;

2) When p > q, ∃Q ∈ RL∞ so that condition (11) is

fulfilled if and only if P(∞) has full rank;

3) When p < q, condition (11) is equivalent to P(∞)
having full rank under the suppositionPP̄∆ = 0.

Proof:

1) Trivial.

2) Since P̆∗
∆V−∗ ∈ RL∞, ∃Q ∈ RL∞ so that condi-

tion (11) is fulfilled if and only if ∃Q̂ ∈ RL∞ so that

det
[

P Q̂
]

(∞) 6= 0 if and only if P(∞) has full rank.

3) Since rank(P(∞)) = rank
(

P(∞)
[

P∆(∞)∗ P̄∆(∞)
])

=
rank

([

(PP∗
∆)(∞) 0

])

, it easily follows that P(∞) has

full rank if and only if det(PP∗
∆)(∞) 6= 0.

Under the restrictions imposed by (11),

P∆ −P = ∆P∆ ⇔ P∆ = Fu (H,∆) ,

as shown above in eqn. (1). Consequently, given a nominal

plant P and a perturbed plant P∆, we have shown above

that one of the following three conditions is a necessary and

sufficient condition for there to exist a ∆ ∈ RL∞ satisfying

P∆ = Fu (H,∆):

• Condition I means P,P∆ ∈ R p×q with p = q satisfying

P(∞), P∆(∞) having full rank and PP−1
∆ ∈ RL∞;

• Condition II means P,P∆ ∈ R p×q with p > q satisfying

P(∞), P∆(∞) having full rank and PU−1 ∈RL∞ (where

U ∈ Rq×q satisfies U∗U = P∗
∆P∆);

• Condition III means P,P∆ ∈ R p×q with p < q satisfying

P(∞), P∆(∞) having full rank, PP∗
∆(P∆P∗

∆)
−1 ∈RL∞ and

PP̄∆ = 0.

Also, for the equation P∆ = Fu (H,∆), when:

• Condition I is satisfied (square plant case), there only

exists a unique solution ∆ ∈ RL∞ given by eqn. (5).

• Condition II is satisfied (tall plant case), there always

exist multiple solutions ∆ ∈ RL∞ given by

∆ =
[

(P∆ −P)U−1 Q
]

Ψ (12)

for any Q ∈ RL
p×(p−q)

∞ that satisfies (11) (where Ψ is

defined in eqn. (8)) ;

• Condition III is satisfied (fat plant case), there only

exists a unique solution ∆ ∈ RL∞ given by eqn. (10).

4) Define the solution set ∆∆∆ and distance measure

doim(P,P∆): From Definition 1, the solution set ∆∆∆ is char-

acterised as follows:

∆∆∆=



























































{(P∆ −P)P−1
∆ } when Cond. I holds,

{
[

(P∆ −P)U−1 Q
]

Ψ :

Q ∈ RL
p×(p−q)

∞ ,

det
[

P (P̆∗
∆V−∗−Q)

]

(∞) 6= 0} when Cond. II holds,

{(P∆ −P)P∗
∆(P∆P∗

∆)
−1} when Cond. III holds,

/0 otherwise
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in this specific case. The definition of the distance mea-

sure doim(P,P∆) when Condition I or Condition III holds is

trivial since there is only one element in the set ∆∆∆. When

Condition II holds, and since Ψ is allpass, inf∆∈∆∆∆‖∆‖∞ =
∥

∥(P∆ −P)U−1
∥

∥

∞
. The following technical lemma states un-

der what conditions can Q(∞) = 0 be chosen.

Lemma 4. The choice Q(∞) = 0 in the solution ∆ =
[

(P∆ −P)U−1 Q
]

Ψ for the p > q case gives a ∆(∞) that

satisfies det(I−H11∆)(∞) 6= 0 if and only if det(P∗
∆P)(∞) 6= 0.

Proof: Choose Q(∞) = 0 in (11) for p > q. Then

det(I−H11∆)(∞) 6= 0 ⇔ det
[

P P̆∗
∆

]

(∞) 6= 0

⇔ det

([

P∗
∆

P̆∆

]

[

P P̆∗
∆

]

)

(∞) 6= 0

⇔ det(P∗
∆P)(∞) 6= 0 since P̆∆P∆ = 0.

Then, it follows from Definition 1 that—for a U ∈ Rq×q

that satisfies U∗U = P∗
∆P∆—the distance measure doim(P,P∆)

for output inverse multiplicative uncertainty characterisations

is given by:

doim(P,P∆) :=






















∥

∥(P∆ −P)U−1
∥

∥

∞
when Cond. I/II holds,

∥

∥(P∆ −P)P∗
∆(P∆P∗

∆)
−1
∥

∥

∞
when Cond. III holds,

∞ otherwise.

(13)

5) Write the winding number condition independent of ∆:

The problem needs to be split again into three cases: square,

tall and fat plants.

Square Plants: When Condition I is satisfied, using ∆ ∈ ∆∆∆min

given by equation (5) in winding number condition eqn. (2)

gives

η(P∆)−η(P) = wnodet(PP−1
∆ ) = wnodet(PP∗

∆). (14)

Note that equation (14) can be simplified to z(P∆) = z(P), but

for consistency with the tall/fat plant cases we choose not to

use this simpler formulation.

Tall Plants: Before tackling this case, note that an immediate

corollary to Lemma 4 is as follows:

Corollary 5. Choosing Q = 0 in equation (12) for the p > q

case gives a ∆ ∈ ∆∆∆min if and only if det(P∗
∆P)(∞) 6= 0.

Consequently, when Condition II and det(P∗
∆P)(∞) 6= 0 are

satisfied, using ∆ ∈ ∆∆∆min given by eqn. (12) with Q = 0 in

winding number condition eqn. (2) gives

η(P∆)−η(P) = wnodet(I − (P∆ −P)(P∗
∆P∆)

−1P∗
∆)

= wnodet(P∗
∆P).

Fat Plants: When Condition III is satisfied, using ∆ ∈ ∆∆∆min

given by eqn. (10) in winding number condition eqn. (2)

gives

η(P∆)−η(P) = wnodet(PP∗
∆(P∆P∗

∆)
−1)

= wnodet(PP∗
∆).

6) State robust stability and robust performance theorems:

Theorem 6 (Robust Stability — Output Inverse Multiplica-

tive). Given a plant P ∈ R p×q, a perturbed plant P∆ ∈
R p×q and a controller C ∈ Rq×p. Define a stability margin

boim(P,C) as in (3), a distance measure doim(P,P∆) as in (13),

and an object Ξ =

{

PP∗
∆ when p ≤ q

P∗
∆P otherwise

.

Furthermore, suppose doim(P,P∆) < boim(P,C) and when

p > q, suppose also det(P∗
∆P)(∞) 6= 0. Then

[P∆,C] is internally stable ⇔ wnodet(Ξ) = η(P∆)−η(P),

where the winding number is evaluated on a contour indented

to the right around any imaginary axis poles of P and P∆.

Proof: This theorem specialises Theorem 1 using for-

mulae derived in the above subsection. The supposition

doim(P,P∆) < boim(P,C) implies that either Condition I or II

or III must hold since doim(P,P∆)< boim(P,C)≤∞. Note also

that the supposition that “H is stabilizable” is automatically

fulfilled in this specific design case.

Theorem 7 (Robust Performance — Output Inverse Mul-

tiplicative). Given the suppositions of Theorem 6 and fur-

thermore assuming wnodet(Ξ) = η(P∆)− η(P), where the

winding number is evaluated on a contour indented to the

right around any imaginary axis poles of P and P∆. Then
∣

∣

∣

∣

1−
boim(P,C)

boim(P∆,C)

∣

∣

∣

∣

≤ ‖P∆(I −CP∆)
−1C‖∞ doim(P,P∆) (15)

and

‖Fl (H∆,C)−Fl (H,C)‖∞

‖Fl (H,C)‖∞

≤‖P∆(I−CP∆)
−1C‖∞ doim(P,P∆),

(16)

where H =

[

I P

I P

]

and H∆ =

[

I P∆

I P∆

]

.

Proof: This theorem specialises Theorem 2 using for-

mulae derived in the above subsection. The result follows on

choosing k = 0 and noting that S = SzSw = I ∈ RL∞ thereby

giving ‖Fl (H∆,C)− S‖∞ = ‖P∆(I −CP∆)
−1C‖∞.

Note that the object
∥

∥P∆(I−CP∆)
−1C

∥

∥

∞
corrupts the dis-

tance measure doim(P,P∆) on the right side of inequalities (15)

and (16). For systems with large gain at low frequencies,

good stability margin and a large roll-off frequency, this

quantity is very close to unity in the pass-band, very small

in the stop-band and not too big around crossover. Hence,

it is a factor that assists in tightening the inequalities in the

stopband. The discrepancy between nominal and perturbed

stability margin and closed-loop transfer function given in

inequalities (15) and (16) appear naturally in multiplicative

form.

IV. INPUT MULTIPLICATIVE UNCERTAINTY

This section briefly states the main results for robust

stability and performance for the input multiplicative case.

In this input multiplicative case,

P∆ = P(I −∆).
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The stability margin bim(P,C) for an input multiplicative

uncertainty characterisation can be computed directly from

Definition 3 upon noting that inverse multiplicative uncer-

tainty is captured by the four-block structure on choosing

Sw =
[

0 I
]T

, Sz =
[

0 I
]

, and hence:

bim(P,C) :=

{

∥

∥C(I −PC)−1P
∥

∥

−1

∞
if [P,C] int. stable,

0 otherwise.

(17)

The consistency equation for this case,

P∆ = P(I−∆) ⇔ P∆ −P =−P∆, (18)

will hold under different well-posedness conditions in the

case of square, fat or tall plants. For the tall plants case,

we require an auxiliary matrix P̆. Let P have the state-space

realisation P =

[

A B

C D

]

with D having full column rank,

and define

P̆ =

[

A−BD†C −BD†

D∗
⊥C D∗

⊥

]

∈ R
(p−q)×p (19)

where D⊥ satisfies

[

D†

D∗
⊥

]

[

D D⊥

]

=

[

I 0

0 I

]

. For the square,

fat and tall plants case, the consistency equation (18) is

fulfilled under Condition I, II or III, respectively, where

• Condition I means P,P∆ ∈ R p×q with p = q satisfying

P(∞) having full rank and P−1P∆ ∈ RL∞;

• Condition II means P,P∆ ∈ R p×q with p < q satisfying

P(∞) having full rank and X−1P∆ ∈ RL∞ (where X ∈
R p×p satisfies XX∗ = PP∗);

• Condition III means P,P∆ ∈R p×q with p > q satisfying

P(∞) having full rank, (P∗P)−1P∗P∆ ∈RL∞ and P̆P∆ =
0 (where P̆ is defined in equation (19)).

We can now define the distance measure for the input

multiplicative case. Let X ∈ R such that XX∗ = PP∗. Then

dim(P,P∆) := (20)






















∥

∥X−1(P−P∆)
∥

∥

∞
when Condition I/II holds,

∥

∥(P∗P)−1P∗(P−P∆)
∥

∥

∞
when Condition III holds,

∞ otherwise.

With all the technical machinery defined, the robust stability

and robust performance theorems for input multiplicative

uncertainty can be stated (proofs will be given elsewhere).

Theorem 8 (Robust Stability — Input Multiplicative). Given

a plant P ∈ R p×q, a perturbed plant P∆ ∈ R p×q and a

controller C ∈ Rq×p. Define a stability margin bim(P,C)
as in (17) and a distance measure dim(P,P∆) as in (20).

Furthermore, suppose dim(P,P∆)< bim(P,C). Then

[P∆,C] is internally stable ⇔ η(P∆) = η(P).

Theorem 9 (Robust Performance — Input Multiplicative).

Given the suppositions of Theorem 8 and furthermore as-

suming η(P∆) = η(P). Then
∣

∣

∣

∣

1−
bim(P,C)

bim(P∆,C)

∣

∣

∣

∣

≤ ‖(I −CP∆)
−1‖∞ dim(P,P∆)

and

‖Fl (H∆,C)−Fl (H,C)‖∞

‖Fl (H,C)‖∞

≤ ‖(I−CP∆)
−1‖∞ dim(P,P∆),

where H =

[

0 I

−P P

]

and H∆ =

[

0 I

−P∆ P∆

]

.

V. CONCLUSIONS

Specific distance measures, robust stability margins, and

the associated robust stability and robust performance theo-

rems for systems with output inverse multiplicative uncer-

tainty have been derived, and the corresponding concepts

for input multiplicative uncertainty were briefly summarised.

Due to the enlarged set of allowable uncertainty (RL∞ rather

than RH∞ as in previous results), these readily applica-

ble theorems allow a design engineer great flexibility in

modelling system uncertainty of a multiplicative nature. The

results validate practical approaches for distance measures for

multiplicative uncertainties, and illustrate the generic distance

measure theory through an intuitive uncertainty setting.
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