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Abstract— A controller change from a current controller
which stabilizes the plant to a new controller, designed on the
basis of an approximate model of the plant and with guaranteed
bounds on the stability properties of the true closed loop, is
called a safe controller change. In this paper, we present a
model reference approach to the determination of safe controller
changes on the basis of approximate closed loop models of the
plant and robust stability results in the ν-gap.

I. INTRODUCTION

The identification of an unknown plant in practice always
delivers an approximate model. It is a recognized fact that
the mismatch between the plant and the identified model is
influenced by the experimental conditions under which the
identification has been carried out. This fact has been broadly
investigated in the last ten years in the context of closed loop
identification. For a recent overview on this area the reader
is referred to [5].

A typical closed loop identification scenario is as follows.
Let P be an unknown plant operating in feedback connection
with a controller C0 and let P0 be a model identified from
data collected under such an operating condition. Let [P,C0]
denote the closed loop system formed by the plant P and the
controller C0. Then, the model P0 is expected to give rise to a
closed loop system [P0, C0] which is similar to [P,C0] and in
this sense P0 approximates P . However, it is not guaranteed
that for some different controller C1 the closed loop systems
[P,C1] and [P0, C1] would be similar. In particular, taking
the case C1 = 0, it is evident (and well known) that the
transfer functions P and P0 need not be close.

The observation above means that there are practical
limitations applying in the redesign of controllers based
on identified models. Even if the controller C1 has been
designed on the basis of the model P0 and [P0, C1] has very
good performance, since P0 is only a limited description of
P , in general the designer is not assured that also [P,C1]
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will have good performance. In fact, in certain situations the
closed loop system [P,C1] could even be unstable.

The observation in effect imposes a need for small con-
troller changes [1]–[4], [9], where “smallness” is a concept
which still needs definition. The rationale behind this is
intuitive: if the change between C0 and C1 is small enough,
then also the change between the closed loop transfer func-
tions of [P,C0] and of [P,C1] should be small [12]. Thus
in principle, by limiting the change in the controller to be
sufficiently small, one can bound the degradation of the
stability properties that can occur in the actual closed loop.
A controller change with guaranteed bounds on the stability
properties of the closed loop is called a safe change.

The quantification of safe controller changes can be put
on a solid mathematical ground by using the ν-gap metric
[12]. The idea of quantifying small controller changes via
the ν-gap metric for the purposes of adaptive control was
introduced in [3]. In [1], [2], [9], the idea has been applied
to multiple model adaptive control in order to assure safe
switchings in a set of candidate controllers. In [4], safe
controller changes have been connected to the Youla-Kucera
parametrization of all stabilizing controllers.

In this contribution, and in the companion paper [10],
we develop a model reference approach to the concept of
safe controller changes. Let us recall that in model reference
control, the objective is to make the designed closed loop
as close as possible to a certain desired reference model,
since this reference model captures the desired performance
specifications. In certain situations, the exact solution of a
model reference control problem can be obtained via simple
algebraic calculations (as will be the case in this paper).
The resulting controller is thus calculated on the basis of
the known plant P0 and we would like to implement this
new controller on the unknown plant P since the reference
model captures well the desired performance specifications.
However, it may be the case that this new controller is a
considerable distance away from the pre-change controller
and hence the above discussion on safety implies that we
should not implement this new controller directly on the
unknown plant P in the absence of further information.

Instead, in this paper, we take the following approach. We
first find a temporary intermediate reference model that is
in some sense between the currently achieved closed-loop
transfer function and the ultimately desired reference model.
We choose this temporary intermediate reference model such



that the new controller resulting from the model reference
control problem involving this intermediate reference model
is a safe distance away from the pre-change controller.
Thus, we can implement this resulting new controller on
the unknown plant P . Then we repeat the above procedure
until the safety region around the currently achieved transfer
function does not permit us to move any further in the
direction of the ultimately desired reference model. When
this happens, we re-identify the unknown plant P to obtain
a new plant model P1 and then all the above is repeated.

The important point to understand here is that this particu-
lar procedure for iterative identification and control redesigns
ensures safety at each step and hence we are guaranteed
that the performance is always improving (in the sense of
approaching the ultimate reference model). Note that at each
step in the safe controller changes described above, the
designer can perform a reduction of the McMillan degree
of the controller in order to obtain an approximate but lower
order solution to the intermediate model reference problem.
This is permitted but care must be exercised since the lower
order controller too needs to be a safe distance away from
the pre-change controller.

The paper is organized as follows. Some results on robust
stability, from [12], are recalled in Section 2. The initial
assumptions are stated in Section 3. The guidelines for the
choice of a safe intermediate reference model are discussed in
Section 4. A particular parametrised set of such intermediate
reference models is given in Section 5. The task of controller
reduction is considered in Section 6. In Section 7, an illus-
trative numerical example is proposed. The conclusions, in
Section 8, end the paper.

II. VINNICOMBE’S TOOLS FOR ROBUST STABILITY

In this section, we introduce the notation and we recall
some robust stability results from [12].

We shall consider MIMO linear time-invariant systems. In
the notation, we will not distinguish between the continuous-
time and the discrete-time cases. The frequency response of a
transfer function T is indicated by T (ω). If T is a continuous-
time transfer function it should be read T (ω) = T (jω). If
T is a discrete-time transfer function then T (ω) = T (ejω).
The symbol σ̄(·) denotes the maximum singular value of a
matrix. The frequency dependent maximum singular value of
a matrix transfer function T is denoted by σ̄(T, ω).

The transfer function of the plant is denoted by P . We
denote by T (P,C) the closed loop transfer function of the
feedback connection between the plant P and a controller C.
It is given by

T (P,C) =

[

P

I

]

(I − CP )−1[−C I] .

The results of Theorems 1 and 2 below provide sufficient
conditions on the modification of a current stabilizing con-
troller to a new controller with guaranteed preservation of
stability. Firstly, we introduce the following definitions.

Definition 1: (Condition C) Two continuous-time transfer
functions C0 and C1 satisfy Condition C if

det(I + C1(ω)∗C0(ω)) 6= 0 ∀ω and

wno
(

det(I + C∗

1C0)
)

+ η(C0) − η̄(C1) = 0,

where wno(.) indicates the winding number of the Nyquist
diagram of a scalar transfer function, evaluated on a contour
along the imaginary axis and indented to the right around
any pure imaginary pole, and η(C) (η̄(C)) is the number of
open (closed) right-half-plane poles of C.
The statement of Condition C for discrete-time transfer
functions is similar but with the obvious modifications in the
wording when considering the z-plane instead of the s-plane.

Definition 2: (Chordal distance) The chordal distance
κ(C0, C1, ω) is given by

κ(C0, C1, ω) =

σ̄
(

(I + C1C
∗

1 )
−

1

2 (C1 − C0) (I + C∗

0C0)
−

1

2 , ω
)

.

Definition 3: (Frequency dependent stability margin) The
frequency dependent stability margin of the stable closed
loop system [P,C] is given by

ρ(P,C, ω) = σ̄
(

T (P,C), ω
)

−1
.

If the closed loop system [P,C] is unstable, we set
ρ(P,C, ω) = 0.

Theorem 1: Let [P,C0] be internally stable and

κ(C0, C1, ω) < ρ(P,C0, ω) ∀ω .

Then the closed loop system [P,C1] is internally stable if
and only if the pair C0, C1 satisfies Condition C. Further, if
C0, C1 satisfies Condition C,

ρ(P,C1, ω) ≥ ρ(P,C0, ω) − κ(C0, C1, ω) .

Proof See [12, pages 136-137]. 2

The theorem below links the modifications of the con-
troller to the corresponding changes which occur in the
closed loop transfer function.

Theorem 2: Let [P,C0] and [P,C1] be internally stable.
Then

κ(C0, C1, ω) ≤ σ̄
(

T (P,C0) − T (P,C1), ω
)

≤
κ(C0, C1, ω)

ρ(P,C0, ω)ρ(P,C1, ω)

Proof See [12, page 159]. 2

III. INITIAL ASSUMPTIONS

We assume that the exact transfer function of the plant P

is unknown. However, we assume that the plant is operating
in feedback connection with a known stabilizing controller
C0 (as a particular case, if the plant is stable, this controller
could be C0 = 0) and that, on the basis of data obtained in
this operating condition, a model P0, which approximates P

in a closed loop sense, has been identified. More precisely,



we make the following assumptions.

Identification Assumptions
A.1 The controller C0 stabilizes both P0 and P .
A.2 P0 is such that

σ̄
(

T (P,C0) − T (P0, C0), ω
)

≤ εω ρ(P0, C0, ω) ∀ω

where εω is known and 0 ≤ εω < 1.
In Assumption (A.2) we basically require that the mod-
elled closed loop [P0, C0] captures the stability property
and approximate frequency domain behaviour of the real
closed loop [P,C0]. If, from the identification procedure,
one obtains a bound, say ∆ω , directly on the closed loop
error σ̄

(

T (P,C0) − T (P0, C0), ω
)

( [4], [6], [7]), then, since
ρ(P0, C0, ω) is known, εω can be calculated as εω =

∆ω

ρ(P0,C0,ω) . Notice that a poorly designed C0 will generally
lead to a large value of σ̄(T (P0, C0), ω) for some ω, and
thus a small value of ρ(P0, C0, ω). Poor designs then require
better modelling of P by P0, by forcing a smaller value for
the left side of the inequality in (A.2).

Our objective is to perform the redesign of the controller
with safety. We wish to obtain a controller C1 which gives
a designed closed loop [P0, C1] that has better performance
than [P0, C0]. At the same time, we want to assume that
the new controller C1 realizes a certain level of the stability
margin when it is connected to the unknown plant P .
The key point to obtain a guaranteed stability margin for
[P,C1] is that under the identification assumptions one can
compute a lower-bound to the stability margin ρ(P,C1, ω)
of [P,C1] as shown next.

Lemma 3: Given P0, P and C0 satisfying Assumptions
(A.1)–(A.2) and assume that C1 is a new controller that also
stabilises P0, then the condition

κ(C0, C1, ω) ≤ (αω − εω) ρ(P0, C0, ω) ∀ω (1)

guarantees

ρ(P,C1, ω) ≥ (1 − αω) ρ(P0, C0, ω) ∀ω, (2)

where αω ∈ [0, 1) ∀ω is a pointwise upper bound on
the percentage allowable degradation in the robust stability
margin of [P,C1] when compared to that of [P0, C0].
Proof See [10]. 2

This result is saying that all the controllers C1 that stabilize
P0 and satisfy (1) are guaranteed to satisfy also (2) (i.e. C1

stabilises P with a certain guarantee on the achieved robust
stability margin).

Note that αω ∈ [0, 1) ∀ω is a pointwise upper bound on
the percentage allowable degradation in the robust stability
margin of [P,C1] when compare to that of [P0, C0] because
condition (2) can be rewritten as

ρ(P0, C0, ω) − ρ(P,C1, ω)

ρ(P0, C0, ω)
≤ αω ∀ω.

Furthermore, from safety condition (1), it is clear that αω

should be chosen to be greater than εω at every ω. This
means that the allowable percentile degradation in the robust
stability margin has to always be greater than the percentile
identification error, as one would expect. From condition (1),
it can be seen that for fixed εω a larger αω will result in
a larger controller set whereas from condition (2), it can be
seen that a larger αω will result in a smaller guaranteed robust
stability margin. This is an interesting tradeoff in selecting
αω .

IV. SAFE REFERENCE MODELS

We now assume that a controller C∗ has been designed
using the model P0 through some design method, and that
the closed loop transfer function T∗ = T (P0, C∗) has the
desired performance. We also assume that the controller C∗ is
sufficiently different from C0 that C1 = C∗ does not satisfy
the inequality (1). Therefore, it is not safe to implement
directly C∗ on the real plant.
In this section, we define, on the basis of the knowledge of
T∗ and the identification assumptions, a simple model refer-
ence control problem, with temporary intermediate reference
model T∗,1, such that the solution controller C1 (a) gives a
designed closed loop [P0, C1] with better performance than
[P0, C0] and (b) satisfies the safety condition (1). In saying
that [P0, C1] has “better performance” than [P0, C0], we
mean that T (P0, C1) represents a more attractive closed-loop,
i.e. is closer to the ideal closed-loop T∗ than is T (P0, C0).
This is formally stated in the following definition:

Definition 4 (Performance Improvement): Given an ulti-
mately desired reference model T∗ and a nominal plant
transfer function P0, the controller C1 is said to achieve
“performance improvement” when compared to the controller
C0 if the following inequality is satisfied:

σ̄ (T (P0, C1) − T∗, ω) ≤ γσ̄ (T (P0, C0) − T∗, ω) ∀ω, (3)

where γ ∈ [0, 1] is some scalar chosen at the design stage.
Of course, C0 and C1 are actually connected to the real
plant P , and it is a separate question as to whether real per-
formance improves, in contrast to the nominal performance
computed with P0.

In our derivation, we will also make use of the following
assumption which allows some extra freedom when solving
the intermediate model reference problem involving T∗,1.
This extra freedom will be used later for controller order
reduction purposes. After the assumption, we describe how
T∗,1 may be chosen.

Control Design Assumption
A.3 Given a temporary intermediate reference model T∗,1

and a nominal plant transfer function P0, the controller
C1 is designed in such a way that [P0, C1] is stable and
the following inequality is satisfied:

σ̄
(

T (P0, C1) − T∗,1, ω
)

≤c σ̄
(

T (P0, C0) − T∗,1, ω
)

∀ω



where c ∈ [0 , 1] is known.
This assumption is not very restrictive: it is trivially satisfied
by choosing c = 1 and C1 = C0. For c < 1, it says that
T (P0, C1) is closer to T∗,1 than is T (P0, C0), i.e. C1 does
a better job of achieving a closed-loop like T∗,1 than C0.

It is in fact possible to choose T∗,1 in a parametrised way
so that there exists a controller C∗,1 such that T∗,1 is exactly
attainable for the model P0, i.e. T∗,1 = T (P0, C∗,1). For
example, we can set

T∗,1 = b T∗ + (1 − b)T (P0, C0)

where b is a scalar parameter in [0, 1]. The reader is referred
to Theorem 5 to see that such a parametrisation for T∗,1

is attainable by some controller C∗,1. Actually, more general
parametrisations are possible which ensure T∗,1 is attainable,
as discussed in Section 5.

As a digression, we remark that there are practical advan-
tages in considering situations where T∗,1 6= T (P0, C1). For
instance, it may well be the case that a low order controller
C1 is desired and the degree constraint makes impossible the
exact achieving of T∗,1. One could initially find C∗,1 with
T∗,1 = T (P0, C∗,1) and then find a low order approximation
C1 of C∗,1, which would need to obey the inequality of
Assumption (A.3). There will be further discussion of how
to achieve this controller reduction in Section 6.

In the remainder of this section, we focus on the charac-
teristics of those T∗,1 for which safety in controller change
and performance improvement are guaranteed.

Theorem 4: Given P0, P , C0 and C1 that satisfy Assump-
tions (A.1)–(A.3), then the following two conditions:

σ̄
(

T∗,1 − T (P0, C0), ω
)

≤
αω − εω

1 + c
ρ(P0, C0, ω) ∀ω (4)

σ̄
(

T∗,1 − T∗, ω
)

≤
γ − c

1 + c
σ̄
(

T (P0, C0) − T∗, ω
)

∀ω (5)

together guarantee safety in the controller change and per-
formance improvement in the sense of Definition 4.
Proof See [10]. 2

Notice from (5), that one cannot require a smaller upper
bound (γ) on performance improvement than the upper
bound (c) on the allowed degradation due to the use of
T (P0, C1) instead of T∗,1 (i.e. this case usually being for
controller order reduction purposes).

V. A SET OF SAFE REFERENCE MODELS

In this section, we will consider a set of possible reference
models T∗,1. To this end, let T∗,1 be parameterized as:

T∗,1 = B T∗ + (1 − B)T (P0, C0) (6)

where B ∈ RH∞ is a SISO transfer function.
Notice that for any T∗,1 given by (6) there always exists a
controller C∗,1 such that T∗,1 = T (P0, C∗,1). Indeed, we
have the following result.

Theorem 5: Given a reference model T∗,1 in the form (6),
there exists a controller C∗,1 such that T (P0, C∗,1) = T∗,1.
Defining S0 = [I − C0P0]

−1 and S∗ = [I − C∗P0]
−1, this

controller C∗,1 is given by:

C∗,1 = [S0 + B(S∗ − S0)]
−1[S0C0 + B(S∗C∗ − S0C0)] .

Proof See [10]. 2

Using parametrization (6), the safety and performance im-
provement conditions (4) and (5) on T∗,1 can be translated
into conditions on B.
In fact, since

σ̄
(

T∗,1 − T (P0, C0), ω
)

=|B(ω)|σ̄
(

T∗ − T (P0, C0), ω
)

σ̄
(

T∗,1 − T∗, ω
)

=|1 − B(ω)| σ̄
(

T∗ − T (P0, C0), ω
)

,

we obtain that (4) and (5) are respectively equivalent to

|B(ω)| ≤
αω − εω

1 + c

ρ(P0, C0, ω)

σ̄
(

T∗ − T (P0, C0), ω
) ∀ω(7)

|1 − B(ω)| ≤
γ − c

1 + c
∀ω . (8)

In this section, we will illustrate how transfer functions B ∈
RH∞, which satisfy (7) and (8), can be constructed.

To start with, let us introduce a scalar transfer function F

with F, F−1 ∈ RH∞ such that

|F (ω)|
−1 /

αω − εω

1 + c

ρ(P0, C0, ω)

σ̄
(

T∗ − T (P0, C0), ω
) . (9)

Notice that such a transfer function F can be easily found
with standard techniques. Moreover, by increasing the order
of F , the approximation error can be made arbitrarily small.
Now, we have that (7) can be equivalently rewritten as

|B(ω)| ≤
∣

∣F−1(ω)
∣

∣ ∀ω

which is equivalent to

‖BF‖
∞

≤ 1 . (10)

In a similar way, let us denote

γ̄ =
γ − c

1 + c

so that inequality (8) can be equivalently rewritten as
∥

∥

∥

∥

1

γ̄
−

1

γ̄
B

∥

∥

∥

∥

∞

≤ 1 . (11)

Now the following condition, while not equivalent to (10)
and (11), certainly implies (10) and (11):

∥

∥

∥

∥

[

0
1
γ̄

]

+

[

F

− 1
γ̄

]

B

∥

∥

∥

∥

∞

≤ 1 . (12)

Any B ∈ RH∞ satisfying (12) defines a T∗,1 by (6) for
which a safe, performance improving C∗,1 can be found.
The problem of finding all the B satisfying (12) is a model
matching problem which can be solved as shown in [8].



The solution, when it exists (see condition (13) below), is
provided in the following theorem.

Theorem 6: Let F be a scalar transfer function with
F, F−1 ∈ RH∞ and let γ̄ ∈ [0, 1) be such that

γ̄2 > 1 −
1

|F (ω)|2
∀ω . (13)

Then, the set of all transfer functions B ∈ RH∞ satisfying
(12) is given by

B =

[

γ̄
√

1 − γ̄2
RU +

1

1 − γ̄2

]

−1

(14)

where R,R−1 ∈ RH∞,

R∗(ω)R(ω) =

(

1

1 − γ̄2
− |F (ω)|2

)

(15)

and U ∈ RH∞ with ‖U‖∞ ≤ 1 .

Proof See [10]. 2

In order to calculate the set of all B satisfying (12), one
has to calculate the transfer function R. One way is first to
calculate an F satisfying (9) and then solve the equation (15)
by spectral factorization. Another possible way is to calculate
directly R stable and minimum phase such that

|R(ω)| /

√

√

√

√

1

1 − γ̄2
−

(

αω − εω

1 + c

ρ(P0, C0, ω)

σ̄
(

T∗ − T (P0, C0), ω
)

)

−2

.

(16)

VI. CONTROLLER ORDER REDUCTION

In this section, we give clues on how to find a reduced
order controller C1 starting from C∗,1 and which is guar-
anteed to satisfy Assumption (A.3). Let us recall that C∗,1

is such that T∗,1 = T (P0, C∗,1). In general, any algorithm
for controller order reduction can be used to obtain C1. The
important issue is that the final controller C1 must satisfy the
Assumption (A.3) for a given c ∈ [0, 1].

We refer the reader to [11] and [10].
In [11, Section 4.3] an algorithm for controller reduction

is given. The algorithm returns a reduced order controller
and a bound on the error between the transfer function of
the closed loop formed by the initial controller and the plant
model and the transfer function of the closed loop formed
by the reduced controller and the plant model. The bound
depends on the value of a parameter ε which is an input
parameter, chosen by the user, in the algorithm.

In [10] it is shown how the parameter ε must be chosen if
one wants to apply the algorithm of [11] to C∗,1 in order to
obtain a controller C1 that satisfies Assumption (A.3).

VII. SIMULATION EXAMPLE

Let the plant P (actually unknown) and the current stabi-
lizing controller C0 be:

P (z) =
0.08942z + 0.1788

z4 − 1.4z3 + 1.22z2 − 0.862z + 0.5785

C0(z) =
0.044303z2 + 0.19225z − 0.10075

z2 − 0.931971z + 0.318336
.

We assume that a model P0 has been obtained from closed
loop identification together with an upper bound ∆ω on
the closed loop error, i.e σ̄

(

T (P,C0) − T (P0, C0), ω
)

≤
∆ω ∀ω. The model P0 is given by

P0(z) =
−0.13274z + 0.253774

z2 − 1.60447z + 0.892884
.

The Bode plots of P and of P0 are displayed in Fig.
(1.a). The upper bound ∆ω and the actual closed loop error
σ̄
(

T (P,C0) − T (P0, C0), ω
)

are displayed in Fig. (1.b).
Notice that the error is mainly confined to the high frequency
region. It can be shown that the model P0 satisfies the
Identification Assumptions (A.1)–(A.2). The values of εω in
Assumption (A.2) have been obtained as: εω = ∆ω

ρ(P0,C0,ω) .

We specify that the required upper bound αω on the
stability margin degradation, for an update from the current
controller C0 to a new controller C1 on the plant P , is given
by αω = 0.7 ∀ω. It can be shown that with this choice we
have αω > εω , which is always necessary.

On the basis of the model P0, the following LQG-optimal
controller C∗ has been designed (of course, one can actually
design C∗ through any design methodology)

C∗(z) =
0.23045z2 + 0.0723z

z2 − 0.54294z + 0.08411
.

The designed closed loop is denoted T∗ = T (P0, C∗). How-
ever, C1 = C∗ does not satisfy the original safety condition
(1): in Fig. (2.a), κ(C0, C∗, ω) and σ̄ (T∗ − T (P0, C0), ω) are
shown together with

(

αω − εω

)

ρ(P0, C0, ω) (i.e. plots are
given of the left-hand and right-hand sides of the original
safety condition (1) and the alternative safety condition (4)
when c = 0 and the ultimately desired reference model T∗ is
being considered). Both safety conditions are violated outside
the low frequency region.

The design of a safe reference model T∗,1, which satisfies
(4) (for safety) and (5) (for performance), has been performed
as discussed in this paper. The transfer function T∗,1 has
been chosen in the form (6). The parameters γ = 1 and
c = 0.1 have been selected (correspondingly we obtained
γ̄ = 0.82). With these values, the parametrization (14) of all
the solution of (12) has been constructed (in fact γ = 1 and
c = 0.1 satisfy the condition (13) for the existence of (14)).
The transfer function R in (14) has McMillan degree equal
to 2 and has been designed according to (16).

As for the choice of U in (14), the selection U = const

with const ∈ [−1, 1] has been considered. It turned out
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Fig. 1. (a) Bode plots of P (z) (continuous) and of P0(z) (dashed).
(b) The overbound ∆ω (bold) and the actual closed loop error
σ̄ (T (P, C0)− T (P0, C0), ω) (thin).

that the best achievements in performance (i.e. the smallest
σ̄
(

T∗,1 − T∗, ω
)

) occurred for negative values of const. In
the following we illustrate the choice U = −0.9.

By choosing U = −0.9, we obtained T∗,1 with McMillan
degree equal to 8 and the corresponding C∗,1 with McMillan
degree equal to 6. In this case, by reducing the controller C∗,1

via the approach of Section VI, we could find a controller C1

with McMillan degree equal to 2 satisfying the Assumption
(A.3) . The controller C1 is given by

C1(z) =
0.1655z2 + 0.16378z + 0.06336

z2 − 0.32174z + 0.06547
.

The quantities σ̄
(

T (P0, C0) − T (P0, C1), ω
)

and
κ(C0, C1, ω) are shown in Fig. (2.b). The quantity
σ̄
(

T (P0, C1) − T∗), ω
)

is shown in Fig. (3.a). Finally, the
stability margin ρ(P,C1, ω) obtained by connecting the
controller C1 to the plant P is shown in Fig. (3.b).

VIII. CONCLUSIONS

In this paper, we have proposed a model reference
approach to the design of controller changes, that ensures
safety (of the real closed loop) and performance improvement
(of the nominal closed loop), on the basis of some bounds
on the error between the modelled closed loop and the
actual closed loop. General guidelines for the design of
these controller modifications have been given. A practical
procedure to construct them in a particular parametrization
has also been provided.
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