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Abstract

In this paper, several steps of the standardH∞ loop-shaping design
procedure are combined into one optimization problem that ma
mizes the robust stability margin over the loop-shaping weights su
ject to constraints which ensure that the loop-shape and the singu
values/condition numbers of the weights lie in pre-specified region
Thus, loop-shaping weights, which can be required to have eith
a diagonal or a non-diagonal structure, and a robustly stabilizi
controller are simultaneously synthesized by one algorithm in a sy
tematic way. This approach greatly simplifies the often long an
tedious process of designing “good” loop-shaping weights direct
and allows the designer to quickly get an idea of what is attainabl

Keywords: H∞ loop-shaping, weight synthesis, performanc
optimization, robust performance, robust control.

1 Introduction

The H∞ loop-shaping design procedure proposed by [7]
an effective method for designing robust controllers and h
been successfully used in a variety of applications (see [1
and references therein).

Desired closed-loop performance is specified by shapi
the singular values of the scaled nominal plantP using pre-
and post-compensatorsW1 andW2, as shown in Figure 1, to
obtain a shaped plantPs = W2PW1. Since the notions of

W1

w2 w1

−−

C∞

P

z1z2

W2

Ps

Figure 1:TypicalH∞ loop-shaping framework

classical loop-shaping carry through,W1 andW2 are typically
chosen so thatPs has large gain at low frequency, small gain a
high frequency and does not roll off at a high rate near cros
over. However, in contrast with classical loop-shaping, th
designer does not need to explicitly shape the phase ofP.

Loop-shaping weightsW1 andW2 are usually designed in
two stages. In the first stage, the desired loop-shape is de
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mined by translating time-response requirements and clos
loop performance specifications into the frequency doma
To do this, engineers largely rely on their intuition and the
past experience with loop-shaping concepts. In the seco
stage, the designer selects loop-shaping weightsW1 andW2
so thatPs has the desired loop-shape. Diagonal weights are
ten adequate to achieve the desired loop-shape [3]. Howe
some design examples have shown that diagonal weights
not work well for plants with strong cross-coupling betwee
the channels. In such cases, non-diagonal weights are ne
sary which are of course more difficult to design.

Once a desired loop-shape is achieved, the optimal rob
stability marginbopt(Ps) is computed. [2] showed that this op
timal value can be explicitly calculated using a simple formu
and gave a characterization of the set of all internally stabil
ing controllersC∞ that achieve some robust stability margi
b(Ps, C∞) less than this optimal value. Subsequently, [7
showed that the valuebopt(Ps) is also a good indicator of the
success of the loop-shaping stage. A large (resp. small) va
of bopt(Ps) indicates compatibility (resp. incompatibility) be
tween the specified loop-shape and closed-loop robust sta
ity. A controllerC for the scaled nominal plantP is finally ob-
tained by pulling around the weights to obtainC = W1C∞W2.
A full tutorial on how to design robust controllers using th
H∞ loop-shaping design procedure can be found in [10].

2 Notation

Let the feedback interconnection ofPs andC∞ shown in Fig-
ure 1 be denoted by[Ps, C∞]. This interconnection is said
to beinternally stableif it is well-posed and each of the four
transfer functions mapping disturbances to outputs[

z1
z2

]
=
[

Ps

I

]
(I − C∞ Ps)

−1 [−C∞ I
] [w1

w2

]

belongs toRH∞. Furthermore, given a plantPs and a con-
troller C∞, therobust stability marginb(Ps, C∞) is given by

b(Ps, C∞) :=
∥∥∥∥
[

Ps

I

]
(I − C∞ Ps)

−1 [−C∞ I
]∥∥∥∥

−1

∞
if [Ps, C∞] is internally stable and byb(Ps, C∞) := 0 other-
wise. Then, the largest value of the robust stability margin
defined bybopt(Ps) := supC∞ b(Ps, C∞). It is shown in [2]
thatb (P ) ≤ 1 for anyP .
0



ly
n

e
ith
e
r

-

t-
st,
3 Problem Motivation

Despite the success of the standardH∞ loop-shaping design
procedure, the selection of loop-shaping weights to achiev
desired loop-shape is not always straightforward, especia
for plants with strong cross-coupling. This is because it
not always clear how each element in the weights affects t
singular values of the scaled nominal plant and the complex
of this relationship considerably increases when non-diagon
weights are used.

In addition, lack of design experience with loop-shapin
concepts may lead to a designed loop-shape that does
achieve a sufficiently large robust stability margin. In thi
case, the designer has to first determine the factors in the
signed loop-shape that are giving rise to a smallbopt(Ps) and
then understandhow to modify these factors (without compr
mising the specifications) in order to increase the robust s
bility margin. This may not be obvious and the designer ma
have to iterate between the selection of loop-shaping weig
and the evaluation ofbopt(Ps) several times before a suffi-
ciently large value ofbopt(Ps) is achieved. For instance, the
designer must ensure that the loop-gain is large around
frequencies and in the directions of open-loop unstable pol
small around the frequencies and in the directions of ope
loop unstable zeros and that the loop-gain does not roll-off
a high rate around cross-over. If any one of these is violate
a smallbopt(Ps) is obtained.

All of this can be fairly time-consuming if done in an ad-
hoc manner and although designers usually arrive at very go
loop-shaping weights and controllers using their engineeri
insight and intuition, trial and error can never be guarante
to yield the best possible results. The length of this iterativ
process strongly depends on the experience of the desig
and on the cross-coupling present in the plant.

Consequently, it is believed that by combining several ste
of the standardH∞ loop-shaping design procedure into on
optimization problem, the design procedure can be ma
even easier to use in application. The proposed optimiz
tion problem maximizes the robust stability margin over th
loop-shaping weights subject to constraints which ensure th
the loop-shape and the singular values/condition numbers
the weights lie in pre-specified regions. Thus, loop-shapin
weights, which can be required to have a diagonal or a no
diagonal structure, and a robustly stabilizing controller a
simultaneously synthesized by one algorithm in a systema
way. This algorithm enables the designer to quickly get a fe
of what performance is achievable, determine whether no
diagonal weights would be beneficial and easily understa
the tradeoffs involved in the particular problem at hand.
more detailed presentation of this work is given in [4].

4 A New Optimization Problem

A new optimization problem is now proposed which directly
addresses the aforementioned difficulties. First, however, t
following assumption is made.

Assumption: Let the scaled nominal plantP ∈ R m×n be
such thatm ≥ n.
67
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This assumption incurs no loss of generality but considerab
simplifies notation. If the plant has strictly fewer outputs tha
inputs (i.e.m < n), then the dual problem to that shown
in Figure 1 would be considered. That is, one would us
the same optimization framework proposed in this paper w
PT replacingP. Then, the resulting pre-compensator for th
original plant is given byWT

2 , the resulting post-compensato
for the original plant is given byWT

1 and the resulting robust
stabilizing controller for the shaped plant is given byCT∞.

Now, consider the following optimization problem:

max
W1,W

−1
1 ∈RH∞

W2,W
−1
2 ∈RH∞

bopt(Ps)

subject to

(a) |s( j ω)| < σi
(
Ps( j ω)

)
< |s( j ω)| ∀i , ω,

(b) |w 1( j ω)| < σi
(
W1( j ω)

)
< |w1( j ω)| ∀i , ω,

|w 2( j ω)| < σi
(
W2( j ω)

)
< |w2( j ω)| ∀i , ω,

(c) κ
(
W1( j ω)

)
< |k1( j ω)| ∀ω,

κ
(
W2( j ω)

)
< |k2( j ω)| ∀ω,

where the scaled nominal plantP is given and satisfies the
above assumption, ands, s, w i , wi , ki (i = 1, 2) are SISO
transfer functions specified by the designer such that:

(i) the frequency functions|s( j ω)| and|s( j ω)| are bound-
aries for an allowable loop-shape (see Figure 2),

(ii) the frequency functions|w i ( j ω)| and|wi ( j ω)| delimit
the allowable region for the singular values of loop
shaping weightWi ( j ω) (i = 1, 2),

(iii) the frequency function|ki ( j ω)| bounds the condition
number of loop-shaping weightWi ( j ω) (i = 1, 2).

|s( j ω)|

|s( j ω)|

Mdb

log10 ω

Figure 2:Typical loop-shape boundary

5 Rewriting the Optimization Problem

The optimization problem proposed above will now be rewri
ten into a form more suitable for a subsequent algorithm. Fir
however, the following set will be defined.
1
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Definition 5.1 Let the set of real diagonal matrices of dime
sionn × n be defined by:

3n :=
{ n
diag
i=1

(xi ) : xi ∈ R ∀i
}
.

This definition will be used at the end of this section. F
the time being, note that the optimization problem posed
Section 4 can be rewritten as:

Minimize γ

such that∃ W1, W2, C∞ satisfying

(a) W1, W−1
1 ∈ RH∞, W2, W−1

2 ∈ RH∞,
[Ps, C∞] is internally stable,

(b)

∥∥∥∥
[

Ps

I

]
(I − C∞Ps)

−1 [−C∞ I
]∥∥∥∥∞

< γ ,

(c) |s( j ω)| < σi
(
Ps( j ω)

)
< |s( j ω)| ∀i , ω,

(d) |w 1( j ω)| < σi
(
W1( j ω)

)
< |w1( j ω)| ∀i , ω,

|w 2( j ω)| < σi
(
W2( j ω)

)
< |w2( j ω)| ∀i , ω,

(e) κ
(
W1( j ω)

)
< |k1( j ω)| ∀ω,

κ
(
W2( j ω)

)
< |k2( j ω)| ∀ω.

Then, usingPs = W2PW1 andC = W1C∞W2, it follows
after some algebra that the above optimization problem
be rewritten as:

Minimize γω at eachω
such that∃ W1, W2, C satisfying

(a) W1, W−1
1 ∈ RH∞, W2, W−1

2 ∈ RH∞,
[P, C] is internally stable,

(b) σ

([
W2 0

0 W−1
1

][
0 P
0 I

][
I P
C I

]−1[
W−1

2 0
0 W1

])
( j ω)<γω ∀ω,

(c) |s( j ω)| < σi
(
W2( j ω)P( j ω)W1( j ω)

)
< |s( j ω)| ∀i , ω,

(d)
1

|w1( j ω)| < σi
(
W1( j ω)−1) <

1

|w 1( j ω)| ∀i , ω,

κ
(
W1( j ω)−1) < |k1( j ω)| ∀ω,

(e) |w 2( j ω)| < σi
(
W2( j ω)

)
< |w2( j ω)| ∀i , ω,

κ
(
W2( j ω)

)
< |k2( j ω)| ∀ω.

Dropping the dependence on( j ω) for P, C, W1 andW2 in
the interest of clarity, the above optimization problem can
restated as:

Minimize γ 2
ω at eachω

such that∃ W1, W2, C satisfying

(a) W1, W−1
1 ∈ RH∞, W2, W−1

2 ∈ RH∞,
[P, C] is internally stable,
67
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(b)

[
0 P
0 I

]∗[W∗
2 W2 0
0 W−∗

1 W−1
1

] [
0 P
0 I

]

< γ 2
ω

[
I P
C I

]∗[W∗
2 W2 0
0 W−∗

1 W−1
1

] [
I P
C I

]
∀ω,

(c) |s( j ω)|2 (W−∗
1 W−1

1

)
< P∗(W∗

2 W2

)
P ∀ω,

|s( j ω)|2 (W−∗
1 W−1

1

)
> P∗(W∗

2 W2

)
P ∀ω,

(d) ∀ω, ∃ ξ
1ω

, ξ1ω satisfying ξ
1ω

I < W−∗
1 W−1

1 < ξ1ω I ,

|w1( j ω)|−2< ξ
1ω

, ξ1ω < |w 1( j ω)|−2,

ξ1ω < |k1( j ω)|2 ξ
1ω

,

(e) ∀ω, ∃ ξ
2ω

, ξ2ω satisfying ξ
2ω

I < W∗
2 W2 < ξ2ω I ,

|w 2( j ω)|2< ξ
2ω

, ξ2ω < |w2( j ω)|2,

ξ2ω < |k2( j ω)|2 ξ
2ω

.

If the loop-shaping weights are required to have a diago
structure, then the frequency functionsW−∗

1 W−1
1 andW∗

2 W2
reduce to simple strictly positive diagonal real matrices at ea
frequencyω. Let these strictly positive frequency depende
diagonal matrices be denoted by31ω and32ω respectively
(i.e. at each fixedω, 0 < 31ω := W1( j ω)−∗W1( j ω)−1∈ 3n

and 0< 32ω := W2( j ω)∗W2( j ω) ∈ 3m). Note that given
any 31ω ∈ 3n with 31ω > 0 ∀ω (resp.32ω ∈ 3m with
32ω > 0 ∀ω), it is always possible to construct a diagona
weight W1 (resp.W2) that is a unit inRH∞ and satisfies
W1( j ω)−∗W1( j ω)−1 = 31ω ∀ω (resp.W2( j ω)∗W2( j ω) =
32ω ∀ω) by fitting stable minimum phase transfer functions t
each magnitude function on the diagonal of31ω (resp.32ω).

If, on the other hand, the loop-shaping weights are requir
to have a non-diagonal structure, then the frequency functi
W−∗

1 W−1
1 andW∗

2 W2 are strictly positive non-diagonal com
plex hermitian matrices at each frequencyω. The problem, in
this case, is significantly more difficult if approached directl
However, the technique developed by [8] may be used to s
plify the problem. Building on that work, let̂U(s) andV̂(s) be
units inRL∞ that approximately interpolate the frequency
by-frequency unitary matrices containing the left and rig
singular vectors of the scaled nominal plantP. Then it is
possible to parameterize:

• W1( j ω)−∗W1( j ω)−1 by V̂( j ω)−∗31ωV̂( j ω)−1 for some
31ω ∈ 3n with 31ω > 0 ∀ω,

• W2( j ω)∗W2( j ω) by Û( j ω)32ωÛ( j ω)∗ for some
32ω ∈ 3m with 32ω > 0 ∀ω,

with very little restriction. This is because the parameters
31ω and32ω are able to directly influence the singular value
of P( j ω). The construction of̂U(s) andV̂(s) is described in
more detail in [4]. The interested reader is also referred to
for a full exposition of the original idea. As before, note tha
given any31ω ∈ 3n with 31ω > 0 ∀ω (resp.32ω ∈ 3m with
32ω > 0 ∀ω), it is always possible to construct a diagona
weight D1 (resp. D2) that is a unit inRH∞ and satisfies
2
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D1( j ω)−∗D1( j ω)−1 = 31ω ∀ω (resp.D2( j ω)∗D2( j ω) =
32ω ∀ω). Then, corresponding non-diagonal weightsW1
andW2 that are units inRH∞ are obtained by solving the
following co-spectral and spectral factorizations:

W1W∼

1 = V̂ D1D∼

1 V̂∼,

W∼

2 W2 = Û D∼

2 D2Û∼.

With the above argument in mind, it follows that the previou
optimization problem can be rewritten as:

Minimize γ 2
ω at eachω

such that
∃ a C and∀ω a31ω ∈ 3n and a32ω ∈ 3m

satisfying

(a) [P, C] is internally stable,

(b)

[
0 P
0 I

]∗[
Û32ωÛ∗ 0

0 V̂−∗31ωV̂−1

] [
0 P
0 I

]

< γ 2
ω

[
I P
C I

]∗[Û32ωÛ∗ 0
0 V̂−∗31ωV̂−1

] [
I P
C I

]
,

(c) |s( j ω)|2 (V̂−∗31ωV̂−1
)

< P∗(Û32ωÛ∗)P,

|s( j ω)|2 (V̂−∗31ωV̂−1
)

> P∗(Û32ωÛ∗)P,

(d) ∃ ξ
1ω

, ξ1ω satisfying ξ
1ω

I <
(
V̂−∗31ωV̂−1

)
< ξ1ω I ,

|w1( j ω)|−2< ξ
1ω

, ξ1ω < |w 1( j ω)|−2,

ξ1ω < |k1( j ω)|2 ξ
1ω

,

(e) ∃ ξ
2ω

, ξ2ω satisfying ξ
2ω

I <
(
Û32ωÛ∗) < ξ2ω I ,

|w 2( j ω)|2< ξ
2ω

, ξ2ω < |w2( j ω)|2,

ξ2ω < |k2( j ω)|2 ξ
2ω

.

Note that31ω and32ω are implicitly restricted to be strictly
positive matrices at each frequencyωby constraints (d)and (e)
above. Also,Û(s) = Im and V̂(s) = In when diago-
nal weights are required, whereasÛ(s) and V̂(s) are units
in RL∞ that approximately interpolate the frequency-by
frequency unitary matrices containing the left and right sin
gular vectors respectively of the scaled nominal plantP when
non-diagonal weights are required. Furthermore, observe t
the above problem is a quasi-convex optimization problem
the controllerC is held fixed at an internally stabilizing con-
troller for the scaled nominal plantP.

6 Solution Algorithm

This section presents a sub-optimal solution to the op
mization problem proposed in Section 4. Analogous t
D-K iterations and other solution methods for these types
optimizations, an iterative algorithm must be used since t
posed problem is not simultaneously convex in all variables

Inputs to the algorithm:

• Scaled nominal plantP satisfying the assumption stated
in Section 4,
673
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• Frequency functions|s( j ω)| and|s( j ω)| that are bound-
aries for an allowable loop-shape,

• Frequency functions|w i ( j ω)| and|wi ( j ω)| that delimit
the allowable region for the singular values of loop-
shaping weightWi ( j ω) (i = 1, 2),

• Frequency function|ki ( j ω)| that bounds the condition
number of loop-shaping weightWi ( j ω) (i = 1, 2).

The solution algorithm:

1. Find a controllerC?
0 such that the interconnection[P, C?

0]
is internally stable. LetÛ(s) = Im (resp.V̂(s) = In) if
a diagonal loop-shaping weightW2 (resp.W1) is required,
or let Û(s) (resp.V̂(s)) be constructed as described in [4]
if a non-diagonal weightW2 (resp.W1) is required.

Seti = 0 and letε?
max,0 = −1.

2. Incrementi by 1.

3. Solve the following quasi-convex optimization problemat
each frequencyω:

Minimize γ 2
ω

such that∃ 31ω ∈ 3n,32ω ∈ 3m satisfying

(a)

[
0 Û∗PV̂
0 I

]∗[
32ω 0

0 31ω

] [
0 Û∗PV̂
0 I

]

< γ 2
ω

[
I Û∗PV̂

V̂−1C?
i−1Û−∗ I

]∗[
32ω 0

0 31ω

]

×
[

I Û∗PV̂
V̂−1C?

i−1Û−∗ I

]
,

(b) |s( j ω)|2 31ω < (Û∗PV̂ )∗32ω (Û∗PV̂ ),

|s( j ω)|2 31ω > (Û∗PV̂ )∗32ω (Û∗PV̂ ),

(c) ∃ ξ
1ω

, ξ1ω ∈ R : ξ
1ω

(
V̂∗V̂

)
< 31ω < ξ1ω

(
V̂∗V̂

)
,

|w1( j ω)|−2< ξ
1ω

, ξ1ω < |w 1( j ω)|−2,

ξ1ω < |k1( j ω)|2 ξ
1ω

,

(d) ∃ ξ
2ω

, ξ2ω ∈R : ξ
2ω

(
Û∗Û

)−1
<32ω < ξ2ω

(
Û∗Û

)−1,

|w 2( j ω)|2< ξ
2ω

, ξ2ω < |w2( j ω)|2,

ξ2ω < |k2( j ω)|2 ξ
2ω

.

Note thatC?
i−1 is the controller synthesized in the previous

iteration. The above minimization problem can thus be
easily solved using LMI routines.

Denote by3?
1ω and3?

2ω the values of31ω and32ω that
achieve the minimum of the above optimization problem
at each frequencyω.

4. Constructdiagonal transfer function matricesD?
1(s) and

D?
2(s) that are units inRH∞ by fitting stable minimum

phase transfer functions to each magnitude function on th

main diagonal of
(
3?

1ω

)− 1
2 and

(
3?

2ω

) 1
2 respectively.
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5. Solve the following co-spectral and spectral factorization
to obtain loop-shaping weightsW?

1,i (s) and W?
2,i (s) that

are units inRH∞ and have the required structure.(
W?

1,i

)(
W?

1,i

)
∼ = (

V̂
) (

D?
1

)(
D?

1

)
∼
(
V̂
)
∼

,(
W?

2,i

)
∼
(
W?

2,i

) = (
Û
) (

D?
2

)
∼
(
D?

2

) (
Û
)
∼

,

6. Computebopt

(
W?

2,i PW?
1,i

)
as detailed in [2] and let

this value be denoted byε?
max,i . Synthesize a con-

troller C?∞,i that achieves a robust stability margin

b
(
W?

2,i PW?
1,i , C?∞,i

)
= ε?

max,i using the state-space for-

mula given in [1] and letC?
i = W?

1,i C
?∞,i W

?
2,i .

These calculations are computed using well-known form
lae that are coded in commercially available software.

7. Evaluate(ε?
max,i − ε?

max,i−1). If this difference (which is
always positive) is very small and has remained very sma
for the last few iterations, then EXIT. Otherwise return to
Step 2.

Outputs from the algorithm: (afteri iterations)

• The largest value ofbopt(Ps) obtained by the algorithm
in the variableε?

max,i ,

• Loop-shaping weightsW?
1,i (s) andW?

2,i (s) that achieve
this maximized robust stability marginε?

max,i ,

• A controllerC?∞,i (s) that achieves this maximized robus
stability marginε?

max,i .

Note that this algorithm is an ascent algorithm. By this it i
meant that the valueε?

max,i is monotonically non-decreasing
asi increases and that at each iterationi , the reciprocal of the
square-root of the minimum costγ 2

ω obtained in Step 3 of the
algorithm is greater than or equal toε?

max,i−1 for all frequency
ω. Note however that iterative algorithms as the one presen
above cannot be guaranteed to converge to theglobal maxi-
mum. Only monotonicity properties can be guaranteed.

7 Numerical Example

The algorithm proposed in Section 6 will now be illustrated b
a numerical example. The plant used to demonstrate the ap
cability of the proposed algorithm is a scaled-down version
the High Incidence Research Model (HIRM) developed by th
Defence Evaluation and Research Agency in Bedford, UK.
physical model of this was constructed at the Department
Engineering of the University of Cambridge in order to inves
tigate problems associated with the control of air-vehicles
high angles of attack. Details of the identification experimen
carried out on this plant may be found in [9].

The nominal open-loop plantP with the actuator model in-
cluded has 8 states. Figure 3 depicts the singular values of
scaled nominal plantP and the loop-shape boundaries|s( j ω)|
and|s( j ω)| selected so that the performancespecifications a
satisfied. For instance, the bandwidth determines the rise ti
and the low-frequency gain determines the sensitivity redu
674
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Figure 3:Singular values ofP and loop-shape boundaries

tion and hence the reference tracking capabilities. The f
quency functions|w 1( j ω)|, |w1( j ω)| and|k1( j ω)| that con-
fine the singular values/condition number of pre-compensa
W1 where chosen to be 10−10, 1010 and 20 respectively. These
bounds never became active in this particular design examp
In other design problems (say, for plants with very large co
dition number and/or stringent requirements on gains fro
plant output disturbances to control signal or from plant inp
disturbances to output signal), it may be necessary to spec
more complicated, perhaps frequency dependent, bound
satisfy the problem specifications.

Two different designs will be considered — one using
diagonal pre-compensatorW1 and the other using a non-
diagonal pre-compensatorW1. The post-compensator will
be held fixed in both design cases for simplicity of illustra
tion. This will also usually be the case in practice.W2 was
in fact chosen to be a first-order low-pass filter with a corn
frequency of 300rad/s on each output channel for senso
noise rejection. The algorithm was coded up in MATLAB 5.3
and run on a 400MHzPentium II PC. Table 1 summarizes the
results obtained for both design cases.

DiagonalW1

No. of iterations for convergence 4 iterations
Time taken for convergence ≈ 5 minutes
Order of weightW1 4 states + 4 states
Condition number of weightW1 < 3 ∀ω

Order of controllerC∞ 17 states
Order ofC after model reduction 17 states
Robust stability margin 0.368

Non-diagonalW1

4 iterations
≈ 6 minutes

38 states (model reduced to 12 states)
< 4 ∀ω

46 states (model reduced to 11 states)
17 states

0.382

Table 1:Comparison of results for both designs

Figure 4 shows the singular values of the designed p
compensatorW1, the correspondingly achieved loop-shap
and the singular values of the simultaneously synthesized
bustly stabilizing controllerC∞ for both design cases. In
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Figure 4: Left plots are for diagonalW1 while right plots are for
non-diagonalW1

both cases, it can be easily seen that the loop-shape lie
the pre-specified region and that it rolls-off at a very sma
rate around cross-over. Furthermore, both the loop-shap
weightW1 and the controllerC∞ introduce some phase lead
around cross-over to improve the robust stability margin.

Although the synthesized weight and controller were
much higher order in the non-diagonal pre-compensator
sign case, the achieved robust stability margin was sligh
higher too. It was also noted that the controllerC = W1C∞W2
could be model reduced to 17 states inbothdesign cases with
negligible deterioration of the designed properties. Thus, o
should not be scared ‘a priori’ of a non-diagonaldesign simp
on the grounds that it may give higher order weights, as the
can often be model reduced afterwards. However, if diag
nal weights achieve approximately the same robust stabi
margin as non-diagonal weights, then it is futile to use mo
complicated weights to achieve very minor improvements.

8 Conclusions

An algorithm for the simultaneous synthesis of weights a
controllers inH∞ loop-shaping has been presented. In th
algorithm, loop-shaping weights are synthesized in a s
tematic way to immediately have the required structure (i
diagonal/non-diagonal), satisfy the designer-specified co
straints on their singular values and condition numbers a
achieve a loop-shape which falls in a pre-specified region a
maximizes the robust stability marginbopt(Ps). These pre-
675
in
l
g

f
e-
y

e
y
e
-
y
e

d

-
.
-
d
d

specified regions are usually determined from the closed-lo
performance specifications. A robustly stabilizing controlle
C∞ is also synthesized by the algorithm to achieve the max
mized robust stability margin.

Specifying acceptable regions rather than exact weights a
hence an exact loop-shapemakes it more difficult for inexpe
enced designers to obtain very bad loop-shapes. Furthermo
since the algorithm is not time-consuming, the designer c
quickly determine whether a diagonal weight design is suffi
ciently good or if non-diagonal weights are necessary. Cons
quently, this algorithm allows the designer to concentrate o
more fundamental design issues than simply finding weigh
that achieve the desired loop-shape.

Similar results have been obtained for the robust perfo
manceµ-synthesis problem by [6] and [5].
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