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Abstract mined by translating time-response requirements and closed-

In this paper, several steps of the stand##g, loop-shaping design  100p performance specifications into the frequency domain.
procedure are combined into one optimization problem that maxi-To do this, engineers largely rely on their intuition and their
mizes the robust stability margin over the loop-shaping weights subpast experience with loop-shaping concepts. In the second
ject to constraints which ensure that the loop-shape and the singulatage, the designer selects loop-shaping weiglitsind W,
values/condition numbers of the weights lie in pre-specified regionsso thatPs has the desired loop-shape. Diagonal weights are of-
Thus, loop-shaping weights, which can be required to have eithefen adequate to achieve the desired loop-shape [3]. However,

a diagonal or a non-diagonal structure, and a robustly stabilizing;y e design examples have shown that diagonal weights do

contrqller are S|m_ultaneously synthe5|z_ed by one algorithm in a SYShot work well for plants with strong cross-coupling between
tematic way. This approach greatly simplifies the often long and

tedious process of designing “good” loop-shaping weights Olirectlythe channels. In such cases, non-diagonal weights are neces-

and allows the designer to quickly get an idea of what is attainable S&"y which are of course more difficult to design.

Once a desired loop-shape is achieved, the optimal robust
stability marginbopt( Ps) is computed. [2] showed that this op-
timal value can be explicitly calculated using a simple formula
1 Introduction and gave a characterization of the set of all internally stabiliz-

The %, loop-shaping design procedure proposed by [7] ising controllersCy, that e_lchiev_e some robust stability margin
an effective method for designing robust controllers and ha®(Ps; Coo) less than this optimal value. Subsequently, [7]
been successfully used in a variety of applications (see [10§0wed that the valueyp(Ps) is also a good indicator of the
and references therein). Success of the loop-shaping stage. A large (resp. small) value

. . . . of bopi(Ps) indicates compatibility (resp. incompatibility) be-
De.S|red closed-loop performance IS specmed.by ShaplnsR/veen the specified loop-shape and closed-loop robust stabil-
the singular values of the scaled nominal pl&ntising pre-

o ity. A controllerC forthe scaled nominal plaftis finally ob-
and post-compensatov andW,, as shown in Figure 1, to : . .
obtain a shaped plais = WoPW;. Since the notions of tained by pulling around the weights to obt@in= W1 CyoW>.

A full tutorial on how to design robust controllers using the

Keywords: %% loop-shaping, weight synthesis, performance
optimization, robust performance, robust control.

w2 22 P, ol o loop-shaping design procedure can be found in [10].
;r 77777777777777777777777 j‘ 2 Notation
> ! Wy P = Wo [ ——* Let the feedback interconnectionBf andC., shown in Fig-

ure 1 be denoted bPs, C,.]. This interconnection is said
to beinternally stableif it is well-posed and each of the four
transfer functions mapping disturbances to outputs

Cor™
z P _ w
[Zﬂ _ [ Is} (I = CacP  [-Coo 1] [wﬂ
Figure 1:Typical /%, loop-shaping framework

belongs to%7#%,. Furthermore, given a plams and a con-

classical loop-shaping carry throughl; andW, are typically  troller C,, therobust stability margirb(Ps, Cwo) is given by
chosen so tha®s has large gain at low frequency, small gain at

high frequency and does not roll off at a high rate near cross-
over. However, in contrast with classical loop-shaping, the
designer does not need to explicitly shape the phage of
g . . phcitly P P . . If [Ps, Cxo] is internally stable and blg(Ps, Co.) := 0 other-
Loop-shaping weightsV, and\W, are usually designed in ise Then, the largest value of the robust stability margin is
two stages. In the first stage, the desired loop-shape is dete('j'efined bybopt(Ps) := supe.. b(Ps. Cao). Itis shown in [2]

*For correspondence emalexander.lanzon @ae.gatech.edu thatbopi(Ps) < 1 for anyPs.

-1
b(P37 COO) =

‘['IDS] (I = CooPs) ™' [-Cwx |]‘
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3 Problem Motivation This assumption incurs no loss of generality but considerably

Despite the success of the standa#d, loop-shaping design simplifies notation. If the plant has strictly fewer outputs than
procedure, the selection of loop-shaping weights to achieve BPuts (i.e.m < n), then the dual problem to that shown
desired loop-shape is not always straightforward, especially? Figure 1 would be considered. That is, one would use
for plants with strong cross-coupling. This is because it isthe same optimization framework proposed in this paper with
not always clear how each element in the weights affects th& ' replacingP. Then, the resulting pre-compensator for the
singular values of the scaled nominal plant and the complexit@riginal plant s given by\] , the resulting post-compensator
of this relationship considerably increases when non-diagondbr the original plant is given byvlT and the resulting robust
weights are used. stabilizing controller for the shaped plant is given(bgé.

In addition, lack of design experience with loop-shaping Now, consider the following optimization problem:
concepts may lead to a designed loop-shape that does not
achieve a sufficiently large robust stability margin. In this rI]lax Bopt( Ps)
case, the designer has to first determine the factors in the de- Wl’Wl_f‘f%M
signed loop-shape that are giving rise to a srbgl(Ps) and W, Wy e Ao
then understand how to modify these factors (without comprogypject to
mising the specifications) in order to increase the robust sta-
bility margin. This may not be obvious and the designer may(a) |s(jw)| < oi(Ps(jw)) < [S(jw)| Vi, o,
have to iterate between the selection of loop-shaping weights i i . i
and the evaluation dbopi(Ps) several times before a suffi- ) [wi(j)l < oi(Wi(jo) < [Wi(jo)l Vi, o,
ciently large value obpi(Ps) is achieved. For instance, the lwo(jo)| < 0i(Wa(jw)) < [Wy(jo)] Vi, w,
designer must ensure that the loop-gain is large around th : :
frequencies and in the directions of open-loop unstable polesF,C) K(Wl(J. w)) = |k1(]. @l Vo,
small around the frequencies and in the directions of open- c(We(jo) < lke(jo)l Vo,

loop unstable zeros and that the loop-gain does not roll-off at

a high rate around cross-over. If any one of these is violated\fvhere the Sca"?d nomm_al plaﬂls given and satisfies the
a smallbgpi(Ps) is obtained. above assumption, argls, w;, w;, ki (i = 1,2) are SISO

. o . _ transfer functions specified by the designer such that:
All of this can be fairly time-consuming if done in an ad-

hoc manner and although designers usually arrive at very good (i) the frequency functionis(j )| and|3(j )| are bound-

loop-shaping weights and controllers using their engineering aries for an allowable loop-shape (see Figure 2),
insight and intuition, trial and error can never be guaranteed

to yield the best possible results. The length of this iterative (ii) the frequency functionfw (jw)| and[w; (jw)| delimit
process strongly depends on the experience of the designer the allowable region for the singular values of loop-

and on the cross-coupling present in the plant. shaping weighW (jw) (i = 1, 2),
Consequently, itis believed that by combining several stepsii) the frequency functionk; (j)| bounds the condition
of the standard’z, loop-shaping design procedure into one number of loop-shaping weight: (jw) (i = 1, 2).

optimization problem, the design procedure can be made
even easier to use in application. The proposed optimiza-
tion problem maximizes the robust stability margin over the

loop-shaping weights subject to constraints which ensure that Is(j )l
the loop-shape and the singular values/condition numbers of
the weights lie in pre-specified regions. Thus, loop-shaping

weights, which can be required to have a diagonal or a non-
diagonal structure, and a robustly stabilizing controller are

simultaneously synthesized by one algorithm in a systematic logyo
way. This algorithm enables the designer to quickly get a feel
of what performance is achievable, determine whether non-
diagonal weights would be beneficial and easily understand
the tradeoffs involved in the particular problem at hand. A S(j)l
more detailed presentation of this work is given in [4].

Madb

4 A New Optimization Problem Figure 2:Typical loop-shape boundary
A new optimization problem is now proposed which directly
addresses the aforementioned difficulties. First, however, the 5 Rewriting the Optimization Problem

following assumption is made. The optimization problem proposed above will now be rewrit-

Assumption: Let the scaled nominal plar® € Z™" be  teninto aform more suitable for a subsequent algorithm. First,
such thatm > n. however, the following set will be defined.
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Definition 5.1 Let the set of real diagonal matrices of dimen- (b) 0 PT TWsW, 0 0P
sionn x n be defined by: I 0 wrwi[o |

. _ 2l PTWsW, 0 I Pl
Ani={diagoi) : xi e R Vi. Yolc | 0 wrrwitc o] T
i=1

©) Is(i@) > (W W ) < P*(W3W,) P Vo,

This definition will be used at the end of this section. For
*W ) > P*(W;WZ)P Yo,

2
the time being, note that the optimization problem posed in ~ 1S(i®)! (W

Section 4 can be rewritten as: — L. =
(d) Yo, 3§, , &, satisfyingg, | < W Wit <&y, 1,

Minimize Y |wl(J a))|72< élw’ glw - |wl(J a))lle
such thaBl Wy, Wa, C, satisfying £, < lka(] w)|2§1w,
@) Wy, Wy b e 2, Wo, Wyt € 22, (e) Vo, 3£, , &y, satisfyingé, | < WsW, < &y,1,
o el memelysebie |ﬂ2(j0))|2< §2w7 gzw < [wy(] w)|?,
_ oo
(b) 'H: :|(| —Coops)_ [ 00 |]H <Y, §2w<| 2(]0))| §2w
. . . °°_ If the loop-shaping weights are required to have a diagonal
(©) Is(jw)| < 6i(Ps(jw)) < [S(jw)| Vi, o, e e e W anes,
@) [wi(jo)] <oi(Wi(jo)) < [Wy(jo)] Vi reduce to simple strictly positive diagonal real matrices at each

frequencyw. Let these strictly positive frequency dependent
diagonal matrices be denoted by, and Ay, respectively
@) k(Wi(jw)) < [ki(jo)| Vo, (i.e. at each fixedb, 0 < A1, := Wi(jw) *Wi(jw)te An
K(Wa(jw)) < lke(jw)| Vo and 0< Ay, = Wz(jw)*Wz(jw) € Am). Note that giyen
any A1, € Ap with A1, > 0 Vo (resp.Az, € Am with
Then, usingPs = WoPW; andC = WiCoo W, it follows A2 > 0 Vo), itis always possible to construct a diagonal
after some algebra that the above optimization problem cai/€ight Wi (resp. W) that is a unit in%; and satisfies

lwo(jo)| < oi(Wa(jw)) < [Wo(jo)| Vi, o,

be rewritten as: Wi(jo) *Wi(jw) ™! = A1y Yo (resp.Wa(jw)*Wa(jw) =
Ao, Vo) by fitting stable minimum phase transfer functions to
Minimize y,, at eachy each magnitude function on the diagonalaf, (resp.A2,).
such tha8 Wi, Ws, C satisfying If, on the other hand, the loop-shaping weights are required
to have a non-diagonal structure, then the frequency functions
(@) Wy, Wyt e 25, W, W, € 245, W, *W; t andW; W, are strictly positive non-diagonal com-
[P, C] is internally stable plex hermitian matrices at each frequencyThe problem, in

this case, is significantly more difficult if approached directly.
(b) E([Wz 0 ] [o P] [I P] [Wz_l 0 ])(Jw) <y, Vo, prever, the techniq_ug developed by [8] may be used to sim-
0 rje ! 0 @ plify the problem. Building on that work, I&1 (s) andV (s) be
units in 2% that approximately interpolate the frequency-
by-frequency unitary matrices containing the left and right
singular vectors of the scaled nominal plaht Then it is

© Is(jo)| < gi(Wa(j)P(jo)Wi(jw)) < [S(jo)| Vi, w,

@ TG |wl(1 ) =7 (Wa(jo) ™) < wi(jo)] Vi, o, possible to parameterize:
1 : . R
(Wl(J W)~ ) < |ki(jw)| Vo, o Wi(jw) *Wa(] a))_l by V (jw) *A1,V (j a))_l for some
(e) lwy(jo)| < oi(We(jw)) < [wy(jw)| Vi, o, A1y € Ap With Ay, > 0 Vo,
k(Wa(jo) < [k2(jo)| Vo . Waljo) Wa(jw) by U(je)Asl(jw)y for some

A2y € A with Ay, > 0 Vo,
Dropping the dependence @ijw) for P, C, Wy andWs in

the interest of clarity, the above optimization problem can beyith very little restriction. This is because the parameters in

restated as: A1, andAy, are able to directly influence the singular values
of P(jw). The construction ofl (s) andV (s) is described in
Minimize y?2 at eacho more detail in [4]. The interested reader is also referred to [8]
such thal W1, W, C satisfying for a full exposition of the original idea. As before, note that
givenanyAi, € Ay with A1, > 0 Vo (resp.Az, € Am with
(@) Wy, Wl‘1 € R, W,, W{l € %o, Az, > 0 Vo), it is always possible to construct a diagonal
[P, Clis internally stable, weight Dy (resp. D) that is a unit in#Zs%, and satisfies
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Di(jw) *Di(jo) ™ = Aw, Yo (resp.Da(jo)*Da(jw) =
Az, Yw). Then, corresponding non-diagonal weighits
and W, that are units inZs%, are obtained by solving the
following co-spectral and spectral factorizations:

Wy Wy
W' W,

V D,;DTV™,
UDy DU~

With the above argument in mind, it follows that the previous
optimization problem can be rewritten as:

* Frequency functions(jw)| and|S(j w)| that are bound-

aries for an allowable loop-shape,

* Frequency functionw ; (jw)| and|w; (j )| that delimit

the allowable region for the singular values of loop-
shaping weighW; (jw) (i = 1, 2),

« Frequency functionk; (jw)| that bounds the condition

number of loop-shaping weight; (jw) (i = 1, 2).

The solution algorithm:

Minimize y?2 at eachw
such that
JaCandVw aAi, € ApandaAy, € Am
satisfying

(a) [P, C]is internally stable,

) 0 PTTUAU* 0
0o | 0 \7_*A1w\7_1

<y2[| PT[UAZ(,,U*
o|Cc | 0
© Is(jw)?(V
I5(jw)|? (
CEITREIH

Ao V- ) < P*(
A,V 1) > P*(UAL,U0%)P,
satisfying& | | < (V7*A1,V 1Y) <y, 1,

Wy (jo)|2<&, . &< lwi(jo) 2
£y, < ka(jo)PE,

(e) 3, . &,, satisfyingé , | < (UA2,0%) < Ep,l,
lwo(jo)P<§, . &z < [W(jo)?
£y, < lka(jo)I?E, .

Note thatA1, and Ay, are implicitly restricted to be strictly
positive matrices at each frequenely constraints (d) and (e)
above. Also,U(s) = Iy and V(s) = I, when diago-
nal weights are required, wheredgs) andV (s) are units

in 2%~ that approximately interpolate the frequency-by-
frequency unitary matrices containing the left and right sin-
gular vectors respectively of the scaled nominal pRmthen
non-diagonal weights are required. Furthermore, observe that
the above problem is a quasi-convex optimization problem if
the controllerC is held fixed at an internally stabilizing con-
troller for the scaled nominal pla.

6 Solution Algorithm
This section presents a sub-optimal solution to the opti-
mization problem proposed in Section 4. Analogous to
D-K iterations and other solution methods for these types of
optimizations, an iterative algorithm must be used since the
posed problem is not simultaneously convex in all variables.4

Inputs to the algorithm:

» Scaled nominal plarf® satisfying the assumption stated
in Section 4,
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1.

Find a controlleCy such that the interconnecti¢R, Cj]

is internally stable. Leti(s) = I, (resp.V(s) = Ip) if

a diagonal loop-shaping weight, (resp.W;) is required,
or letU (s) (resp.V (s)) be constructed as described in [4]
if a non-diagonal weight\» (resp.W,) is required.

Seti =0 and letef,, o= —1.

. Increment by 1.

. Solve the following quasi-convex optimization problatn

each frequency:

Minimize y2
such thaBl A1, € An, A2, € A satisfying

@ [° UPV] A2 0 ][0 U*PV
0o | 0 Aw|l0 I
2. I UPV|[A2 O
@lv-ic U | 0 Aw

y | U*PV
v-icr,u— 1 |

(0) Is(j®)|? At < (U*PV)*Ag, (U*PV),
|§<jw)|2A1w > (U*PV)* Az, (U*PV),

(€ 3&,,. E,€R : &, (V'V) < A1, < &4, (V*V),
wy(jo)| <&, , Epp<lwi(jo)?
£y, < k(jo)?&

eR : gzw(U*U) <A2w<.§2w( U)
lwo(jo)P<§,, . &< Wy(jo)l?,
£y, < ka(jo)I?E,

CENS

Note thatC*_, is the controller synthesized in the previous
iteration. The above minimization problem can thus be
easily solved using LMI routines.

Denote byA}, andAj  the values ofA 1, and Az, that
achieve the minimum of the above optimization problem
at each frequenacy.

Constructiagonaltransfer function matrice®; (s) and
D3(s) that are units iz, by fitting stable minimum
phase transfer functions to each magnitude function on the

_1 1 .
main diagonal of A3 ) 2 and(A%,)? respectively.



10° 10°

5. Solve the following co-spectral and spectral factorizations
to obtain loop-shaping weight:s%/{i (s) and W3 () that
are units inZ%, and have the required structure.

(W) (W)™ = (V) (B3)(P)™ (V)"

(W5;)~(W5;) = (U)(D2)7(D3) (V)7

\ s(jw)

® .
10 107 10° 10 10 107 10° 10

10° 10°
Frequency (radians/sec) Frequency (radians/sec)

6. Computebopt<WiiPV\/£i> as detailed in [2] and let

this value be denoted byy ;. Synthesize a con- Figure 3:Singular values oP and loop-shape boundaries

troller CZ ; that achieves a robust stability margin

b<W§,i PW, . C&;,i) — faxi USING the state-space for- tion and hence the reference tracking capabilities. The fre-
mula given in [1] and leC¥ = Wy C*_ W3 . quency fgnctlon$wl(1 )|, |w_1_(J )| and|ky(jw)| that con-

] S fine the singular values/condition number of pre-compensator
These calculatlonslare computgd usmgiwell—known formuW1 where chosen to be 18, 101%and 20 respectively. These
lae that are coded in commercially available software. o nds never became active in this particular design example.

7. Evaluate(efy,, — €mayi_1)- If this difference (which is In other design problems (say, for plants with very large con-

always positive) is very small and has remained very smalfition number and/or stringent requirements on gains from
for the last few iterations, then EXIT. Otherwise return to Plant output disturbances to control signal or from plantinput

Step 2. disturbances to output signal), it may be necessary to specify
more complicated, perhaps frequency dependent, bounds to
Outputs from the algorithm: (afteri iterationS) Satisfy the prob|em Specifications_

* The largest value dfiopt(Ps) obtained by the algorithm 19 different designs will be considered — one using a

in the variableef, . ; diagonal pre-compensatak; and the other using a non-

+ Loop-shaping weightsV: (s) andW , (s) that achieve diagonal.pre—(_:ompensatwl. The post-_compgnsatgr will
this maximized robust stability marg’%axi' b_e held _flxe(_d in both design cases for s_,lmpllcn_y of illustra-
tion. This will also usually be the case in practidéh was
. Acontrollercgo,i (s) thatachieves this maximized robust in fact chosen to be a first-order low-pass filter with a corner
stability marginey) . - frequency of 30Gad/s on each output channel for sensor
noise rejection. The algorithm was coded up imiMAB 5.3
Note that this algorithm is an ascent algorithm. By this it is and run on a 40MHzPentium Il PC. Table 1 summarizes the
meant that the valuegy ., ; is monotonically non-decreasing results obtained for both design cases.
asi increases and that at each iteratipthe reciprocal of the

square-root of the minimum cogf obtained in Step 3 of the | | Diagonalw; |
algorithm is greater than or equaldfy,, ; , for all frequency No. of iterations for convergencg 4 iterations
o. Note however that iterative algorithms as the one presented | Time taken for convergence ~ 5 minutes
above cannot be guaranteed to converge taythbal maxi- Order of weightw, 4 states + 4 states
mum Only monotonicity properties can be guaranteed. Condition number of weight\y <3Vo
Order of controlleiCy 17 states

7 Numerical Example Order ofC after model reductior 17 states
The algorithm proposed in Section 6 will now be illustrated by ~ LRoPust stability margin 0.368
anumerical example. The plant used to demonstrate the appli- _
cability of the proposed algorithm is a scaled-down version of | Non-diagonalVy |
the High Incidence Research Model (HIRM) developed by the 4 iterations
Defence Evaluation and Research Agency in Bedford, UK. A ~ 6 minutes
physical model of this was constructed at the Department of 38 states (model reduced to 12 states)
Engineering of the University of Cambridge in order to inves- 46 states (moge?rzguced 0 11 statps)
tigate problems associated with the control of air-vehicles at 17 states i
high angles of attack. Details of the identification experiments 0.382

carried out on this plant may be found in [9].

The nominal open-loop plam with the actuator model in- Table 1:Comparison of results for both designs
cluded has 8 states. Figure 3 depicts the singular values of the
scaled nominal plarf® and the loop-shape boundarjsg w)| Figure 4 shows the singular values of the designed pre-
and|S(j w)| selected so that the performance specifications areompensatolVy, the correspondingly achieved loop-shape
satisfied. Forinstance, the bandwidth determines the rise timand the singular values of the simultaneously synthesized ro-
and the low-frequency gain determines the sensitivity reducbustly stabilizing controllelC, for both design cases. In
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Singular Values of Shaped Plant
Singular Values of Shaped Plant

“10°

of Controller C,

Singular Values

107 10° 10* 107 10°

10° 10°
Frequency (radians/sec) Frequency (radians/sec)

Figure 4: Left plots are for diagonalV; while right plots are for
non-diagonaWVy

both cases, it can be easily seen that the loop-shape lies
the pre-specified region and that it rolls-off at a very small

rate around cross-over. Furthermore, both the Ioop—shapinng]

weightW; and the controlle€C., introduce some phase lead
around cross-over to improve the robust stability margin.

Although the synthesized weight and controller were of

much higher order in the non-diagonal pre-compensator de-

specified regions are usually determined from the closed-loop
performance specifications. A robustly stabilizing controller
C Is also synthesized by the algorithm to achieve the maxi-
mized robust stability margin.

Specifying acceptable regions rather than exact weights and
hence an exactloop-shape makes it more difficult forinexperi-
enced designers to obtain very bad loop-shapes. Furthermore,
since the algorithm is not time-consuming, the designer can
quickly determine whether a diagonal weight design is suffi-
ciently good or if non-diagonal weights are necessary. Conse-
guently, this algorithm allows the designer to concentrate on
more fundamental design issues than simply finding weights
that achieve the desired loop-shape.

Similar results have been obtained for the robust perfor-
manceu-synthesis problem by [6] and [5].
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