A State-Space Algorithm for the Simultaneous Optimisation
of Performance Weights and Controllers inu-Synthesis

Alexander Lanzoh Michael Cantoni

Department of Engineering, University of Cambridge,
Cambridge CB2 1PZ, United Kingdom.

Abstrgct = Aph-mm e

A conceptually new approach to tiesynthesis robust performance problem

is proposed in this paper. Performance weights, maximised with respect to a
suitable cost function that captures the desired closed-loop performance, are
synthesised simultaneously with an internally stabilising controller to immedi-
ately achieve robust performance. The designer is only required to specify the
plant set and an optimisation directionality. This directionality only appears in
the cost function and reflects the desired closed-loop properties in particular
frequency regions. Correspondingly, this approach greatly simplifies the often
long and tedious process of designing “good” performance weights directly.

In general, this
is structured.
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1 Introduction - K

It is well known that the design of performance weights $6&.-
control andu-synthesis problems is non-trivial. Usually, suitable
performance weights are obtained via a long and tedious trial and error
process based primarily on engineering judgement and intuition. This
approach becomes increasingly complicated as the number of perfagense) subject to the existence of an internally stabilising contiller
mance channels increases, since it may not be possible to choose piat guarantees robust performance with respect to these maximised
formance weights for each channel independently. The D-K iterativeveights. For notational convenience all uncertainty blocks, except
procedure [2] is probably the most popular method usgd$ynthesis  those for performance, are assumed to be square. This can be done
to design robustly stabilising controllers. However, this procedure asaithout loss of generality by adding dummy inputs or outputs [6]. Be-
sumes that the performance weights have already been chosen. fore formulating the problem of interest, some sets need to be defined.

Figure 1:Typical u-synthesis LFT framework

In [3], a mathematical quantity (closely related 9y was intro-
duced to answer the question: “Determine the smattestich that ]
for any uncertainty bounded by unity, a#, performance level of ) f NN B N
« is guaranteed”. Although this may be considered as an initial step A= {,':af(lai ® A1) A e O, ;a'ﬂ' = r}
towards maximising robust performance (i.e. the determination of the Ap = {Ap e C™N) =
smallestx) for a given uncertainty set, the valués a constant bound
over all frequency and spatial direction. In this paper, the following
more general problem is addressed: “Determine the largest perfor- BATF := {A(s) € 250 1 Aso) € AVso € Ty, [ Allog < 1}
mance weights (in some sense, over frequency and spatial direction)BAlTDF = [|Ap(S) € B : Ap(So) € Ap Vo € Ty, APl < 1).
such that for any uncertainty bounded by unity, #®, performance
level of unity is guaranteed”. Definition 2.2 Define the set of diagonal complex matrices by:

This paper considers an optimisation problem that is very similar Ae {digg(ei) b e C}.
to that proposed in [8]. However, the solution algorithm derived for i=1
this optimisation problem will be based on state-space techniques that
eliminate all problems of the pointwise algorithm given in that paperDefinition 2.3 The scaling set® and D'F that commute withA
The results presented here are also considerably stronger. CongedBA'F are defined by:
quently, this paper presents a significant generalisation of that work.

Definition 2.1 Define the sets of allowable perturbations by:

Ator:= {diag(A, Ap) : A € A, Ap € Ap}

f
f
D= {D = diag(D; ® lg;) : detD 0, Dj € C¥ %, ) " aj :r}
2 Problem Formulation i=1 i—1

. . . . . . . TF . _ P2 . -1_4 C
Consider the Linear Time-Invariant (LT1) system depicted in Figure 1.2 = {D(S) € %0 : D(S) ™" € Z/20, D(s0) € D Vso € T }.

HereG is the generalised plan is the uncertainty in the system and Definition 2.4 Th ¢ perf iah d directionali
Ap is afictitious uncertainty used only to transform the robust per- € |r_1|t|0n ) d f.e Ze;s.o performance weights and directionality
formance problem into an equivalent robust stability problem. It jgmatrices are defined by:

desired to synthesise the largest performance weightén some WTF = {W(s) € 22 - W(S) ™t € A, Wi(s0) € A ¥so € Tyt }

TF. : =
*E-mail AL225 @eng.cam.ac.uk  for correspondence. T = {T(s) € BHro : Y(00) = 0. T (s0) € A Vo € Cy}.



Definition 2.5 Given a generalised plant is because the performance weights given by the above optimisation
must always be feasible to its constraint and hence always satisfy

A | B B, ' B
C | Dll1 D122 : D133 u < 1. Sensible choice of' (jw) is of course still necessary (this is
CO=| , | Dy Doy Do however much easier than choosing the actual performance weights)
"C3 | D31 _D_32_f D33 so as to obtain a controller which performs sensibly and satisfies rea-

partitioned consistently with Figure 1, let the term “Standard Assump-Sonable stability/performance requirements.

tions” refer to: The constraint in optimisation problem (1) ensures that maximisa-
. . . tion of the performance weighW/((s) is limited by the fact that there
(A1) (A, Bg) s stabilisable andCs, A) is detectable, must exist some internally stabilising controlki(s) which guaran-
(A2) Dg3=0. tees robust performance for alle BATF andAp € BAJF.

Note that assumption (A1) is necessary and sufficient for the exis- 3 Replacingu with an Upper Bound

tence of an internally stabilising output-feedback controller [S, Ap-since they constraint in optimisation problem (1) is not computa-
pendix A.4], whergas assumption '(A2) incurs no loss of generalityjonally tractable, it is necessary to replacg o[ - ] with a compu-
but considerably simplifies calculations [4]. tationally tractable upper bound. To this end, note that

Definition 2.6 Given a generalised plar@, the set of internally sta- u <|r 0 )f G(jw). K(jo)
bilising output-feedback controlleis e #P*4 for the LFT inter- Whator| o W(ja )/t BU®):RU

connectionfj (G, K) is denoted byk [F. D o b-1 o

o w)AGK S )]
It follows by the Robust Performance Theorem [9, Theorem 5.4] that ) . _ ) * )
robust performance is achieved for the setup of Figure 1 fot ad In view of this and since interest is only in the arguments of the opti-
BATF andAp € BA[F if and only if misation, the following problem will be considered henceforth:

< inf
DeDTF

SaL)JpMATOT[C(r] W(?w)) Fi (G(jo), K(jw))i| <1

Now consider the following optimisation problem for a given gener-

; -1)2
min W

such that

alised plantG(s) satisfying the standard assumptions stated in Defini- min  inf <'8 \2/) Fi G, K) <D(;1 IO > H <1
tion 2.5 and an ‘a priori’ chosen directionality transfer function matrix Kexl DeDTF m/ lloo
T(s) e YTF:

1 F_urthermore,sinc#P Hz,(oo) = pT HZ,(oo) and using the definitions

W Trw-1], D:=DT e DFandW := W T ¢ WTF, this optimisation
problem may be rewritten as:

such that (2)
. =2
. | 0 . . min__ |WTY
min Supu«ATOT[(é Wi )ﬁ (G(jw), K(]w))i| <1 WewTF Wl
KexIF (Jw)
G such that 2
Some justification will now be given to the fact that this is a sensible . . D 0 (D1 0
SR . . min inf A (G, K) 1 <1
optimisation problem to consider. First observe that KexF DeDTF 0 Im 0 W o
—112 _ oo 0 1 . .
[rw=3 = > ooz do, 4 Commuting Properties
=1 [5Gw

This section specifies the commuting properties which need to be
wherew; (jw) (resp.vj (jw)) is thei-th diagonal element 0V(jw)  satisfied by the state-space realisation®of D'F, W ¢ WTF and
(resp.Y (jw)). From this decomposition, it is clear that the cost func-T € Y'F. To this end, selearbitrary realisations

tion 1/ |[rw~1], is a cumulative measure of the frequency-dependent

size of the performance weights (jw). Each performance weight {5 .— { A | Bp } eDF W= { Aw | Bw } cWTF

wj (jw) is weighted differently across frequency due to the direction- Cs | Dp Cw | Dw

ality factorsvj (jw). A gradient analysis reveals that the steepest Ay | By TF

ascent in maximising this cost function over the performance weights and := { Cr| O } €r

wi (jw) is always attained by maximising the smallest rz#tglq(jj—a‘f))’

for alli andw. Thus, the directionality matrixX'(s) € Y ' is chosen with Ap, Ay and Ay Hurwitz. Furthermore, define
by the designer so as to direct the maximisation as desired. In fact, (sls, — Ag) 1B o (sls, — Ai) "By
vi (jw) will be chosen large (resp. small) where the corresponding’s(® = [ h ] and Ty (s) = [ ] ®)

performance weighi (j w) is required to be large (resp. small).
This however does not mak&( j ) a substitute for the performance

weight W(jw), asY (jw) only captures the desired directionality of | D(jw)*D(jw) is given by T2 (jw)*DT2(jw), whereD :=

the optimisation. The absolute size of eagkjw) is completely ir- 0 DBpp] .. « ':: . D . o

relevant as this will only affect the value of the cost associated with [le 522} with D12 € R%*" andDpp = D,, € R"™*",

the above optimisation problem. Only the shape across frequency

and the relative sizes amongst the different diagonal entrig pb) Il. W(jw)*W(jw) is given byT\j’_v(j w)*W T\j’_v(j o), whereW :=

are important. Furthermore, conflicting directionalities can never be 0

specified, unlike directly specifying the performance weights. This [V“\/lT2

In

Now, a complete parametrisation of the frequency function:

valzi| with le € RSN andVsz = Wérz e R™N,
22



Since it is required thaD € DTF, W ¢ WIF and T €
YTF it is clear thatTo(ja))* DTo(ja)) should commute withA,

TO w a))*WTO (jo) should commute witlA and (j w) should com-
mute withA. These commuting requirements determine the structur

of each parameter in the above parametrisations. This structure will
not be explicitly stated here due to space limitations. However, the

reader is referred to [6, Section 8.4.3] for a similar approach.

Definition 4.1 Define the structure of the parametebsand W by:
0

D12

Ex:={D=|. : Dy, e RS D, = DI e RV,
>} { [DIz D22i| 12 22= D2
D,,, D,, have the appropriate structu}e
- . X 0 le Y n \i AT nxn
E :{W:[sz sz ¢ Wpp € RN Woy = Wy, € R™,

W, ,, W,, have the appropriate structu}e
Definition 4.2 Define the structure afA, Bg) and (A, By by:
E(Ag.Bg) = {(Ap: Bp) : Ag € R®*S, By € R%T, Ag is Humwitz
Ap, Bp have the appropriate structu}e
2 Ay By = | (A Bt Ay € RS, By € RSN, Ay s Humwiz
Ay By have the appropriate structu}e

5 Restrictions of the Optimisation Sets
As is usual with state-space methods used to address optimisati

problems as the one posed here, attention has to be limited to opti
misation over a subclass of performance weights and D-scales. This
is necessary to obtain convex state-space conditions. Since the fre-

quency function® (j w)* I?(j ) andW(jw)*W(j ) are completely
parametrised bvg(j w)* DTg(j ) andT\?v(j w)*WT\?V(j w) respec-

tively, it seems natural to restrict these parametrisations by holding the

basis functioné'g(j w) andT\;’-v(j w) fixed. This amounts to keeping
(Ap, Bp) € E(AD’BD) and(Ayy, By € E(AWvBV'\I) fixed.

It is desirable, however, to choose fixed values(af, Bg) €
E(Ap.Bg )and(AW, BW) € E(Ag.By, )that are sufficiently close to

the optlmal values which would have been obtained if these quantities_ (Avw-Bw)

were free variables. Towards constructing such “close to optimal
values, observe that for a glvéhsatlsfylng the standard assumptions
stated in Definition 2.5, a fixe € .'K and an ‘a priori’ chosen

T e YTF, the following optimisation problem

S22
min W |3
such that 4)
. D O T p-1 0
f G, K - 1
BepTF (6 m)reno(% vvfl)‘of

is convex if solved pointwise in frequency. To see this, define the

following sets and quantities:

Definition 5.1 Define the set of strictly-positive vector functions by:
V= { f:Ri—> R?_}

For ease of notation, define the following real-valued vector functions:

1
lwi(jw)l?

1
lwa(jw)l?

1
lwn(jw)I?

T
]EV,

d
n@)?]

vy (w) = |:

vr@) =[P uaio)?

Using this notation, optimisation problem (4) can be rewritten as:

o0
min / Uy (w)TvW (w) dw
€V J-co

e such that

Yo € RU {0} 30, € D with ®, >0
satisfying

Ow
0

®)

[ don kaion™ (G 2) [ @t k(o]
Op 0

< < 0 diag(vw(a)))>'
Itis now easy to see that this optimisation is convex and can be solved
pointwise in frequency over afinite grid using LMI routines. Ofs
anduv,, (») have been determine® € D" andW € WTF can be
constructed as described in Section_ 9. Theyp, Bp) € E(A_D’BD)
and(Ay, Byy) € E(Aq.By) are obtained from the appropriate state-
space realisations @ € DTF andW ¢ WTF.

Once “close to optimal” values fotAp, Bg) € E(a5.B,) and
(A By € E(ay,. By are found, optimisation problem (2) may be
restricted so as to obtain convex state-space conditions.

Definition 5.2 Given (Ap,

BD) S E(ADvBD) and (AW’ BW) €
E(AW*BW)’ define

N A= | Bgs 3
Dif g )= !D(S) = { Dl D } : D(s) e DTF} co'F
D'-b Cs | Dp
TF — Ne Aw | Bw Y TF TF
Wik By = !W(s)_{ Co [P } C W) e W }CW )

?sting these definitions, optimisation problem (2) can be restricted to:

Cmin w3
WGW(A\N’B\N)
such that (6)
3 5—1
min inf H <|3 IO ) A (G, K)T <D _071) ‘ <1
Kex[F benlf o) m 0 W/l

6 The Cost Function

The following theorem states that “MinimisifjgV Y Hg overW(s) e
TE subject to some constraint” is equivalent to “Minimising

chec(W) overW e E\i, subject to the same constraint”, provided
thatT? (ja))*WTO (] u)) > 0 Yo € RU{oo} isimplicitly guaranteed
by the constralnt

Ar | By
Cr| O
witz, (A, Byy) € E(Ay.By) and anyW(s) € W'

Theorem 6.1 GivenY(s) = [ } e YTF with Ay Hur-

(Aw.By) %€
fine T\?_V(s) as in equation(3) and parametriseW(jw)*W(jw) by

0 (i #\N/TO (i A -
TV-V(Ja)) WTV-V(Ja)) for someW e Ev- Then

where

oo

W 3 = cTveo()
ls, O

Jo[s &)

Dt

0
Cry

(l

Is,
0

B Cr

Ay

)

Proof Omitted for brevity, see [7].



7 Holding K Fixed in the Constraint T\;!V(jw)*VV\IT\?V(jw) for someW e E\i- Then the following two
The following theorem shows that for a fixéde % L7, the constraint ~ Statements are equivalent:

of optimisation problem (6) can be rewritten as a set of LMIs that are _ -,
v D o0 T (D~ 0
(o |m>f' @K ( 0 v‘vfl>

also simultaneously affine W. @) min 1
(i) 3P = PT € R&F)*E4%) R = RT € RWXS, S ¢

‘ oo

_ Keﬂ(é’z
Theorem 7.1 Given (A, Byy) € E(AWva'v) and anyW(s) €

TE fine T2 in ion n rametri
’):‘,(AW’B\I_V)’ define W(s) avs in equation(3) <’il d parametrise RSX% andT = TT € RS*S such that
W(jo)*W(jo) by TO (jw)*W T2 (jo) for someW € ZE,;. Then,
X W W P>0, R>0 T=>0
given
R -S
Ac | Big  Bag P [0 |SJ
Fi (G, K)y=1| Cye | Duaes  Di2el |- R 0 R o]|°
Cacl | D21ct  D22¢ [_ST |Sj [ o T }
where Ag € R%*S js Hurwitz and the partitioning is consistent
with Figure 1, the following two statements are equivalent for any Ay O T 0 By 0 0
2 (rg By G R - - B L
(AD’ BD) € :‘(AD’BD)' 0 A Ci C, ~E’:1 I~32
3 5-1 vy X [*'f O} ['?11 '?12:| vy
i |Tan H(Ig Io)ﬁ G, KT (DO V_Vo‘l) H <1 o 0 21 P22
DED(AD’BD) " o * * |:_Cl)r fl)m:|
(i) 3D € Ex, X = X € RS andY = YT « s, 0
R(SclJrZSDJrSW)X(ScIJFZSDJFSW) such that - |:0 l//;j| W([IS’V 0:| |:0 0:|>
XAD—i-ATDX XBy 5-0 [8 8} 0 wyg [0 ©
B-Drx 0 + > U,
YA+ATY YB CcT] - and
ST T Q[C D] <0
BTY 0 D R S|[Ay O T
. ) . A B [—ST THO A}”} : :
whereQ := diag(D, Im, —D, —W) and [C D] is defined by: . 0 %Tr |:I§ff 0} [qr 0 } . .
Q o BI[[s" T 0 —Im Q
rAs O 0 0o ! Bj 0 7 o &R s . 5 o
R A & elle i e [v 9
0 0 A; BpBy , ByDlyy BpDjy W
5 N o o0 o
0770 Ty o T~ 0 - W([SN } [ D
. 0 o0 0 |
o o0 o0 Bicl : Dlld D% Lol [ 8 |?1 } n
0 0 0 By , Dy Daacl
s, 0 O o , 0 0 where
0 0 0 o ! Ir 0
0 Ig O o ! 0 0 [Isw o} [o o} |:I$N o} [o o}
L O 0 0 0 ! 0 In i 0 v 0o 0 0 g 0 o0
weel o B [0 o | ven|[o % [6 o]
Proof Omitted for brevity, see [7]. m P 0 wya] [0 o] @ 0 ve [0 O
[0 0} [Ir 0} [0 0} [Ir 0}
8 Holding D Fixed in the Constraint o 0 0 im o 0 0 In

The following theorem shows that for a fix€de D', the constraint V1 Va
appearing in optimisation problem (6) can be rewrittenasasetofLMIs  and the columns of v | (resp. | ys |) form bases for the null
that are also simultaneously affine\ivi. V3 Ve

spaceof B DI, DI [(resp.[€; Ds; Dasl).

Theorem 8.1 Given a generalised plar@(s) satisfying the standard 1[ 3 13 23] [ ]
assumptions stated in Definition 2.5 and scaliflys) € DTF, define

the scaled generalised plaG(s) by Proof Omitted for brevity, see [7]. O
DT 0 o0 b 0 o0 _ _ - .
G(s) := 0 In 0]|G(s) 0 Im O The following corollary gives a necessary and sufficient condition
0 0 g 0 0 Ip for the existence of controllers i [ of orders, together with a
and let parametrisation of all such controllers.
Al B B ' Bs
¢ | By D1, Dis Corollary 8.2 Ifthe conditions stated in Pa(ii) of Theorem 8.1 hold,
Gy | By Do ' Do then there exist controller e K IF of orders, satisfying
C3| D3y Dap ' Das 5 5-1 o
e e e (HARTRI AR
be a stabilisable and detectable realisation @fs) with A € R%*%, m IS

D11 € R, D2p € R™M and D33 = 0 € RI*P. Furthermore, it and only if

given (A, Bji) € E(ag.By) and anyWes) e W(TKW,BW)’

ineT® i i TSV (i o)W i rankISNSPI%[MOfRO <s
deflneTV_v(s) as in equation(3) and parametris@/(j w)*W(jw) by 0 s st g o T-1) =%

(3



Infact, K (s) = [ éi SE ]is such a controller if and only ifox :=
Ak Bk L
[CK DKi| satisfies

F+UTov+VvTalu <o,

whereF, U andV are defined by

Ay 0 0 0 i 0 0
x| o AT o|+{})  x|el ¢ 8 B
0 0 0 0 0 0 0

and X is constructed as follows:

. ) N 01[rR1 o]fls, S

e[ 2% 75 2]

« FactoriseP — Q 1= HHT with H € RS tS) xS
: P H

* DefineX := {HT lsj'

Proof Omitted for brevity, see [7].

9 Solution Algorithm

This section summarises a sub-optimal iterative algorithm for solving
4. (a) Solve the following convex optimisation problem

optimisation problem (2).

Inputs to the algorithm:

» Generalised plan®(s) satisfying the standard assumptions,

- Directionality transfer function matrix'(s) € Y'F.

The solution algorithm:

1. First find a controlleK which robustly stabilises the intercon-

nectionFy (ﬁ (G. Kg). A) forall A € BATF, where
A A B1 B3
G:=| Cy| D11 D13 |.
C3| D3y O
Seti = 0, wherei denotes the iteration number, aﬂ@: 0.
2. Increment by 1.
3. e During the first few iterations:
(a) Solve the following convex optimisation problem
=12
min W3

such that

. D o L \T /D1 o0
o1 |(0 )R (% W)

<1

‘ oo

pointwise in frequency on a sufficiently dense but finite grid
using the reformulation given in optimisation problem (5).
Let v\’,‘\,’wk and ®ka be the respective values of, , and
B4, ateveryw (these are vector/matrix decision variables in
optimisation problem (5)) that achieve the above minimum.

Construct aV* € WTF by fitting a stable minimum-phase
transfer function to each magnitude function;mwk.

(b

~

Construct a self-adjoint real-rational unit ##%», which is
positive at infinity by fitting real-rational functions to each
element in@juk. Denote this unit by®*(s). Then compute

a spectral factoD* € DTF for ©*(s) and model reduce if
necessary.

(d) Let (Ay By € —-(A B )and(AD,B ) € ...(AD Bjs)

be the A and B matrlces of the appropriate state-space
realisations ofV* (s) and Dl*(s) respectively.

(c

~

e During the last few iterations:
(a) Solve the following convex optimisation problem

min W[5

such that
) T/l o
A (A EICT SV GRS R
DGDIKD - l> 0 wt 00

by making use of Theorem 6.1 and Theorem 7.1. Let the
value of D (a matrix decision variable in the LMI constraints
of Theorem 7.1) that achieves the minimum be denotedhy

(b

~

Using the previously fixed values 0R g, Bj) € E(A5.Bp)
and the value OD* € E 3 just obtained, deflne

y — A-)-1B-
Or (s) == [BTD(—slsb - AL |r] D? [(slsn 'IArD) BD}

and compute a spectral factdy e ’D(T,f Bg) fOr ©7 (9.

W
WEW(AW.B*)
such that
S Sx—1
min _ (Doi* |0>f| G, KT (Di*o v'vol> <1
Kex{ m )

by making use of Theorem 6.1 and Theorem 8.1. Let the
value of this minimum cost be denoted fiyand let the value

of W (a matrix decision variable in the LMI constraints of
Theorem 8.1) that achieves this minimum be denotetf\Ipy

(b

~

Using the previously fixed values 0fy, Byz) € E(Aq.B)
and the value oW* € E,j just obtained, define

o _ A V1po
M) = Bl (-sls, — AR In]Wr[(S'S*" W) BW]

and compute a spectral factdf* e 'W(TK Byy) for IT¥(s).

(c) Using Corollary 8.2, find a controller of smallest order that
achieves the minimum cog} obtained in the above optimi-
sation problem. Denote this controller By*.

5. Evaluate(n_; —n). Ifthis difference (which is always positive)
is very small and has remained very small for the last few iterations,
then EXIT. Otherwise return to Step 2.



Outputs from the algorithm: (afteri iterations)

11

Obtained by proposed

.~ algorithm

The inverse of the largest performance weights obtained by th:
algorithm inW* e WTF,

ey

°
©

Used in standard
D-K iterations

The controllerK* e 0(2: that achieves robust performance

with respect to these weights,
The final scaling®d} € DTF,
The value of the minimum cosf* obtained.

Obtained by
standard
D-K iterations

=)

Upper Bounds for p-curves
S
Magnitude Plots of W,

\ Obtained by proposed
algorithm

= o 2 = o 2

0 10 1
Frequency (radians/sec) Frequency (radians/sec)

10 Numerical Example

The algorithm proposed in the previous section will now be illustratec *
by anumerical example. The same example used in [1]toillustrate ths
standard D-K iterative procedure will be used here for ease of corr
parison. This example considers the design of a pitch axis controlleg
for an experimental highly maneuverable aeroplane, the HIMAT. A

=

block diagram for the closed-loop system is shown in Figure 2. Thegw®

Obtained by
_— proposed
algorithm

Obtained by
proposed
algorithm

Obtained by
standard
Obtained by DK iterations
standard

DK iterations

10
107 10 ° 10° 10° 10° 10° 10
Frequency (radians/sec) Frequency (radians/sec)

Figure 3: Clockwise from top left: Upper bounds fqr-curves,
Magnitude plots ofw,,(j )|~ and|w,,(j )|, Magnitude plot of
|d(jw)|, Singular values of controllek

is guaranteed to be less than or equal to that of the scaled generalised
plant, (c) frequency gridding is no longer necessary and hence the
conditions given here guarantee that< 1 rather than simply give
confidence, (d) maximisation of performance weights occurs over the
entire frequency range fromoo to oo, (e) the additional freedom
provided by the parametrisation afl controllers that achieve the
designed robust performance may be exploited by adding additional
LMI constraints to simultaneously achieve other closed-loop objec-
tives such as regional pole placeme#-norm minimisation, etc.

Figure 2:Block diagram of HIMAT and required feedback structure

state-space realisations B, W, andW, are given in [1].
It is required to maximise the performance weiiiy subject to

robust performance with respect to this maximised weight. For & seffprming 1.-synthesis robust performance based designs and is hence a
sible control problemyV should be maximised in the low-frequency yaluable alternative to the standard D-K iterative procedure. The ap-
region, thereby achieving disturbance rejection at the plant outpubroach presented here greatly simplifies the often long and tedious trial
Consequently, the directionality function used in this design exampl@nd error process of designing “good” performance weights directly.
was smplym l5.
The results obtained from using this algorithm are depicted in Fig- References ' '
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