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Abstract
A conceptually new approach to theµ-synthesis robust performance problem
is proposed in this paper. Performance weights, maximised with respect to a
suitable cost function that captures the desired closed-loop performance, are
synthesised simultaneously with an internally stabilising controller to immedi-
ately achieve robust performance. The designer is only required to specify the
plant set and an optimisation directionality. This directionality only appears in
the cost function and reflects the desired closed-loop properties in particular
frequency regions. Correspondingly, this approach greatly simplifies the often
long and tedious process of designing “good” performance weights directly.

Keywords: optimise performance, performance weight synthesis, robust
performance,µ-synthesis, D-K iterations,H∞-control.

1 Introduction

It is well known that the design of performance weights forH∞-
control andµ-synthesis problems is non-trivial. Usually, suitable
performance weights are obtained via a long and tedious trial and error
process based primarily on engineering judgement and intuition. This
approach becomes increasingly complicated as the number of perfor-
mance channels increases, since it may not be possible to choose per-
formance weights for each channel independently. The D-K iterative
procedure [2] is probably the most popular method used inµ-synthesis
to design robustly stabilising controllers. However, this procedure as-
sumes that the performance weights have already been chosen.

In [3], a mathematical quantity (closely related toµ) was intro-
duced to answer the question: “Determine the smallestα such that
for any uncertainty bounded by unity, anH∞ performance level of
α is guaranteed”. Although this may be considered as an initial step
towards maximising robust performance (i.e. the determination of the
smallestα) for a given uncertainty set, the valueα is a constant bound
over all frequency and spatial direction. In this paper, the following
more general problem is addressed: “Determine the largest perfor-
mance weights (in some sense, over frequency and spatial direction)
such that for any uncertainty bounded by unity, anH∞ performance
level of unity is guaranteed”.

This paper considers an optimisation problem that is very similar
to that proposed in [8]. However, the solution algorithm derived for
this optimisation problem will be based on state-space techniques that
eliminate all problems of the pointwise algorithm given in that paper.
The results presented here are also considerably stronger. Conse-
quently, this paper presents a significant generalisation of that work.

2 Problem Formulation

Consider the Linear Time-Invariant (LTI) system depicted in Figure 1.
HereG is the generalised plant,1 is the uncertainty in the system and
1P is a fictitious uncertainty used only to transform the robust per-
formance problem into an equivalent robust stability problem. It is
desired to synthesise the largest performance weightsW (in some
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Figure 1:Typicalµ-synthesis LFT framework

sense) subject to the existence of an internally stabilising controllerK
that guarantees robust performance with respect to these maximised
weights. For notational convenience all uncertainty blocks, except
those for performance, are assumed to be square. This can be done
without loss of generality by adding dummy inputs or outputs [6]. Be-
fore formulating the problem of interest, some sets need to be defined.

Definition 2.1 Define the sets of allowable perturbations by:

1 :=
{ f

diag
i=1

(
Iαi ⊗1i

) : 1i ∈ Cβi×βi ,

f∑
i=1

αi βi = r

}
1P :=

{
1P ∈ Cm×n}

1TOT :=
{
diag(1,1P) : 1 ∈ 1,1P ∈ 1P

}
B1TF := {1(s) ∈ RH∞ : 1(so) ∈ 1 ∀so ∈ C+, ‖1‖∞ ≤ 1

}
B1TF

P :=
{
1P(s) ∈ RH∞ : 1P(so) ∈ 1P ∀so ∈ C+, ‖1P‖∞ ≤ 1

}
.

Definition 2.2 Define the set of diagonal complex matrices by:

3 :=
{

n
diag
i=1

(`i ) : `i ∈ C
}
.

Definition 2.3 The scaling setsD andDTF that commute with1
andB1TF are defined by:

D :=
{

D =
f

diag
i=1

(
Di ⊗ Iβi

) : detD 6= 0, Di ∈ Cαi×αi ,

f∑
i=1

αi βi = r

}
DTF := {D(s) ∈ RH∞ : D(s)−1 ∈ RH∞, D(so) ∈ D ∀so ∈ C+

}
.

Definition 2.4 The sets of performance weights and directionality
matrices are defined by:

WTF := {W(s) ∈ RH∞ : W(s)−1 ∈ RH∞,W(so) ∈ 3 ∀so ∈ C+
}

ϒTF := {ϒ(s) ∈ RH∞ : ϒ(∞) = 0, ϒ(so) ∈ 3 ∀so ∈ C+
}
.



Definition 2.5 Given a generalised plant

G(s) =


A B1 B2 B3

C1 D11 D12 D13
C2 D21 D22 D23
C3 D31 D32 D33


partitioned consistently with Figure 1, let the term “Standard Assump-
tions” refer to:

(A1) (A, B3) is stabilisable and(C3, A) is detectable,
(A2) D33= 0.

Note that assumption (A1) is necessary and sufficient for the exis-
tence of an internally stabilising output-feedback controller [5, Ap-
pendix A.4], whereas assumption (A2) incurs no loss of generality
but considerably simplifies calculations [4].

Definition 2.6 Given a generalised plantG, the set of internally sta-
bilising output-feedback controllersK ∈ R p×q for the LFT inter-
connectionFl (G, K ) is denoted byKTF

G .

It follows by the Robust Performance Theorem [9, Theorem 5.4] that
robust performance is achieved for the setup of Figure 1 for all1 ∈
B1TF and1P ∈ B1TF

P if and only if

sup
ω
µ1TOT

[(
Ir 0
0 W( jω)

)
Fl (G( jω), K ( jω))

]
< 1.

Now consider the following optimisation problem for a given gener-
alised plantG(s) satisfying the standard assumptions stated in Defini-
tion 2.5 and an ‘a priori’ chosen directionality transfer function matrix
ϒ(s) ∈ ϒTF:

max
W∈WTF

1∥∥ϒW−1
∥∥

2

such that (1)

min
K∈KTF

G

sup
ω
µ1TOT

[(
Ir 0
0 W( jω)

)
Fl (G( jω), K ( jω))

]
< 1.

Some justification will now be given to the fact that this is a sensible
optimisation problem to consider. First observe that

∥∥ϒW−1∥∥2
2 =

∫ ∞
−∞

n∑
i=1

1∣∣∣wi ( jω)
υi ( jω)

∣∣∣2 dω,

wherewi ( jω) (resp.υi ( jω)) is thei -th diagonal element ofW( jω)
(resp.ϒ( jω)). From this decomposition, it is clear that the cost func-
tion1

/∥∥ϒW−1
∥∥

2 is a cumulative measure of the frequency-dependent
size of the performance weightswi ( jω). Each performance weight
wi ( jω) is weighted differently across frequency due to the direction-
ality factorsυi ( jω). A gradient analysis reveals that the steepest
ascent in maximising this cost function over the performance weights
wi ( jω) is always attained by maximising the smallest ratio

∣∣∣wi ( jω)
υi ( jω)

∣∣∣
for all i andω. Thus, the directionality matrixϒ(s) ∈ ϒTF is chosen
by the designer so as to direct the maximisation as desired. In fact,
υi ( jω) will be chosen large (resp. small) where the corresponding
performance weightwi ( jω) is required to be large (resp. small).

This however does not makeϒ( jω)a substitute for the performance
weight W( jω), asϒ( jω) only captures the desired directionality of
the optimisation. The absolute size of eachυi ( jω) is completely ir-
relevant as this will only affect the value of the cost associated with
the above optimisation problem. Only the shape across frequency
and the relative sizes amongst the different diagonal entries ofϒ( jω)
are important. Furthermore, conflicting directionalities can never be
specified, unlike directly specifying the performance weights. This

is because the performance weights given by the above optimisation
must always be feasible to its constraint and hence always satisfy
µ < 1. Sensible choice ofϒ( jω) is of course still necessary (this is
however much easier than choosing the actual performance weights)
so as to obtain a controller which performs sensibly and satisfies rea-
sonable stability/performance requirements.

The constraint in optimisation problem (1) ensures that maximisa-
tion of the performance weightW(s) is limited by the fact that there
must exist some internally stabilising controllerK (s) which guaran-
tees robust performance for all1 ∈ B1TF and1P ∈ B1TF

P .

3 Replacingµ with an Upper Bound

Since theµ constraint in optimisation problem (1) is not computa-
tionally tractable, it is necessary to replaceµ1TOT

[ · ] with a compu-
tationally tractable upper bound. To this end, note that

sup
ω
µ1TOT

[(
Ir 0
0 W( jω)

)
Fl (G( jω), K ( jω))

]
≤ inf

D∈DTF

∥∥∥∥(D 0
0 W

)
Fl (G, K )

(
D−1 0

0 Im

)∥∥∥∥∞.
In view of this and since interest is only in the arguments of the opti-
misation, the following problem will be considered henceforth:

min
W∈WTF

∥∥ϒW−1∥∥2
2

such that

min
K∈KTF

G

inf
D∈DTF

∥∥∥∥(D 0
0 W

)
Fl (G, K )

(
D−1 0

0 Im

)∥∥∥∥∞< 1.

Furthermore, since
∥∥P
∥∥

2,(∞) =
∥∥PT

∥∥
2,(∞) and using the definitions

D̄ := D−T ∈ DTF and W̄ := W−T ∈ WTF, this optimisation
problem may be rewritten as:

min
W̄∈WTF

∥∥W̄ϒ
∥∥2

2

such that (2)

min
K∈KTF

G

inf
D̄∈DTF

∥∥∥∥(D̄ 0
0 Im

)
Fl (G, K )T

(
D̄−1 0

0 W̄−1

)∥∥∥∥∞< 1.

4 Commuting Properties

This section specifies the commuting properties which need to be
satisfied by the state-space realisations ofD̄ ∈ DTF, W̄ ∈WTF and
ϒ ∈ ϒTF. To this end, selectarbitrary realisations

D̄ :=
[

AD̄ BD̄

CD̄ DD̄

]
∈ DTF, W̄ :=

[
AW̄ BW̄

CW̄ DW̄

]
∈WTF,

andϒ :=
[

Aϒ Bϒ

Cϒ 0

]
∈ ϒTF,

with AD̄, AW̄ andAϒ Hurwitz. Furthermore, define

To
D̄
(s) :=

[
(s Is

D
− AD̄)

−1BD̄
Ir

]
and To

W̄
(s) :=

[
(s Is

W
− AW̄)

−1BW̄
In

]
. (3)

Now, a complete parametrisation of the frequency function:

I. D̄( jω)∗ D̄( jω) is given by To
D̄
( jω)∗ D̆To

D̄
( jω), where D̆ :=[

0 D̆12
D̆T

12 D̆22

]
with D̆12 ∈ Rs

D
×r andD̆22 = D̆T

22 ∈ Rr×r ,

II. W̄( jω)∗W̄( jω) is given byTo
W̄
( jω)∗W̆ To

W̄
( jω), whereW̆ :=[

0 W̆12
W̆T

12 W̆22

]
with W̆12 ∈ Rs

W
×n andW̆22 = W̆T

22 ∈ Rn×n.



Since it is required thatD̄ ∈ DTF, W̄ ∈ WTF and ϒ ∈
ϒTF, it is clear thatTo

D̄
( jω)∗ D̆To

D̄
( jω) should commute with1,

To
W̄
( jω)∗W̆ To

W̄
( jω) should commute with3 andϒ( jω) should com-

mute with3. These commuting requirements determine the structure
of each parameter in the above parametrisations. This structure will
not be explicitly stated here due to space limitations. However, the
reader is referred to [6, Section 8.4.3] for a similar approach.

Definition 4.1 Define the structure of the parametersD̆ andW̆ by:

4D̆ :=
{

D̆ =
[

0 D̆12
D̆T

12 D̆22

]
: D̆12 ∈ Rs

D
×r , D̆22 = D̆T

22 ∈ Rr×r ,

D̆12, D̆22 have the appropriate structure

}
,

4W̆ :=
{

W̆ =
[

0 W̆12
W̆T

12 W̆22

]
: W̆12 ∈ Rs

W
×n, W̆22 = W̆T

22 ∈ Rn×n,

W̆12, W̆22 have the appropriate structure

}
.

Definition 4.2 Define the structure of(AD̄, BD̄) and(AW̄, BW̄) by:

4(AD̄ ,BD̄)
:=
{
(AD̄ , BD̄) : AD̄ ∈ Rs

D
×s

D , BD̄ ∈ Rs
D
×r , AD̄ is Hurwitz,

AD̄ , BD̄ have the appropriate structure
}
,

4(AW̄ ,BW̄)
:=
{
(AW̄, BW̄) : AW̄ ∈ Rs

W
×s

W , BW̄ ∈ Rs
W
×n, AW̄ is Hurwitz,

AW̄, BW̄ have the appropriate structure
}
.

5 Restrictions of the Optimisation Sets

As is usual with state-space methods used to address optimisation
problems as the one posed here, attention has to be limited to opti-
misation over a subclass of performance weights and D-scales. This
is necessary to obtain convex state-space conditions. Since the fre-
quency functionsD̄( jω)∗ D̄( jω) andW̄( jω)∗W̄( jω) are completely
parametrised byTo

D̄
( jω)∗ D̆To

D̄
( jω)andTo

W̄
( jω)∗W̆ To

W̄
( jω) respec-

tively, it seems natural to restrict these parametrisations by holding the
basis functionsTo

D̄
( jω) andTo

W̄
( jω) fixed. This amounts to keeping

(AD̄, BD̄) ∈ 4(AD̄,BD̄)
and(AW̄, BW̄) ∈ 4(AW̄,BW̄)

fixed.

It is desirable, however, to choose fixed values of(AD̄, BD̄) ∈
4(AD̄ ,BD̄)

and(AW̄, BW̄) ∈ 4(AW̄,BW̄)
that are sufficiently close to

the optimal values which would have been obtained if these quantities
were free variables. Towards constructing such “close to optimal”
values, observe that for a givenG satisfying the standard assumptions
stated in Definition 2.5, a fixedK ∈ KTF

G and an ‘a priori’ chosen

ϒ ∈ ϒTF, the following optimisation problem

min
W̄∈WTF

∥∥W̄ϒ
∥∥2

2

such that (4)

inf
D̄∈DTF

∥∥∥∥(D̄ 0
0 Im

)
Fl (G, K )T

(
D̄−1 0

0 W̄−1

)∥∥∥∥∞< 1

is convex if solved pointwise in frequency. To see this, define the
following sets and quantities:

Definition 5.1 Define the set of strictly-positive vector functions by:

V :=
{

f : R 7→ Rn+
}

For ease of notation, define the following real-valued vector functions:

vW(ω) :=
[

1

|w1( jω)|2
1

|w2( jω)|2 · · · 1

|wn( jω)|2
]T

∈ V ,

vϒ (ω) :=
[
|υ1( jω)|2 |υ2( jω)|2 · · · |υn( jω)|2

]T
.

Using this notation, optimisation problem (4) can be rewritten as:

min
vW∈V

∫ ∞
−∞

vϒ (ω)
TvW(ω) dω

such that

∀ω ∈ R ∪ {∞} ∃2ω ∈D with 2ω > 0 (5)

satisfying[
Fl (G( jω), K ( jω))T

]∗ (2ω 0
0 Im

)[
Fl (G( jω), K ( jω))T

]
<

(
2ω 0
0 diag

(
vW(ω)

)) .
It is now easy to see that this optimisation is convex and can be solved
pointwise in frequency over a finite grid using LMI routines. Once2ω
andvW(ω) have been determined,̄D ∈ DTF andW̄ ∈ WTF can be
constructed as described in Section 9. Then,(AD̄, BD̄) ∈ 4(AD̄ ,BD̄)

and(AW̄, BW̄) ∈ 4(AW̄,BW̄)
are obtained from the appropriate state-

space realisations of̄D ∈ DTF andW̄ ∈WTF.

Once “close to optimal” values for(AD̄, BD̄) ∈ 4(AD̄ ,BD̄)
and

(AW̄, BW̄) ∈ 4(AW̄,BW̄)
are found, optimisation problem (2) may be

restricted so as to obtain convex state-space conditions.

Definition 5.2 Given (AD̄, BD̄) ∈ 4(AD̄ ,BD̄)
and (AW̄, BW̄) ∈

4(AW̄,BW̄)
, define

DTF
(AD̄ ,BD̄)

:=
{

D̄(s) =
[

AD̄ BD̄

CD̄ DD̄

]
: D̄(s) ∈DTF

}
⊂DTF

WTF
(AW̄ ,BW̄)

:=
{

W̄(s) =
[

AW̄ BW̄

CW̄ DW̄

]
: W̄(s) ∈WTF

}
⊂WTF.

Using these definitions, optimisation problem (2) can be restricted to:

min
W̄∈WTF

(AW̄ ,BW̄)

∥∥W̄ϒ
∥∥2

2

such that (6)

min
K∈KTF

G

inf
D̄∈DTF

(AD̄ ,BD̄ )

∥∥∥∥(D̄ 0
0 Im

)
Fl (G, K )T

(
D̄−1 0

0 W̄−1

)∥∥∥∥∞< 1.

6 The Cost Function

The following theorem states that “Minimising
∥∥W̄ϒ

∥∥2
2 overW̄(s) ∈

WTF
(AW̄,BW̄)

subject to some constraint” is equivalent to “Minimising

cT vec
(
W̆
)

over W̆ ∈ 4W̆ subject to the same constraint”, provided

thatTo
W̄
( jω)∗W̆ To

W̄
( jω) > 0 ∀ω ∈ R∪{∞} is implicitly guaranteed

by the constraint.

Theorem 6.1 Givenϒ(s) =
[

Aϒ Bϒ
Cϒ 0

]
∈ ϒTF with Aϒ Hur-

witz, (AW̄, BW̄) ∈ 4(AW̄,BW̄)
and anyW̄(s) ∈ WTF

(AW̄,BW̄)
, de-

fine To
W̄
(s) as in equation(3) and parametriseW̄( jω)∗W̄( jω) by

To
W̄
( jω)∗W̆ To

W̄
( jω) for someW̆ ∈ 4W̆. Then∥∥W̄ϒ

∥∥2
2 = cT vec

(
W̆
)

where

c := −
([

Is
W

0
0 Cϒ

]
⊗
[

Is
W

0
0 Cϒ

])
×
([

AW̄ BW̄Cϒ
0 Aϒ

]
⊕
[

AW̄ BW̄Cϒ
0 Aϒ

])−1

×
([

0
Bϒ

]
⊗
[

0
Bϒ

])
vec(In).

Proof Omitted for brevity, see [7]. 2



7 Holding K Fixed in the Constraint

The following theorem shows that for a fixedK ∈KTF
G , the constraint

of optimisation problem (6) can be rewritten as a set of LMIs that are
also simultaneously affine in̆W.

Theorem 7.1 Given (AW̄, BW̄) ∈ 4(AW̄,BW̄)
and any W̄(s) ∈

WTF
(AW̄,BW̄)

, define To
W̄
(s) as in equation (3) and parametrise

W̄( jω)∗W̄( jω) by To
W̄
( jω)∗W̆ To

W̄
( jω) for someW̆ ∈ 4W̆. Then,

given

Fl (G, K ) =
 Acl B1cl B2cl

C1cl D11cl D12cl
C2cl D21cl D22cl

 ,
where Acl ∈ Rscl×scl is Hurwitz and the partitioning is consistent
with Figure 1, the following two statements are equivalent for any
(AD̄, BD̄) ∈ 4(AD̄,BD̄)

:

(i) inf
D̄∈DTF

(AD̄ ,BD̄ )

∥∥∥∥(D̄ 0
0 Im

)
Fl (G, K )T

(
D̄−1 0

0 W̄−1

)∥∥∥∥∞< 1.

(ii) ∃ D̆ ∈ 4D̆, X = XT ∈ Rs
D
×s

D and Y = YT ∈
R(scl+2s

D
+s

W
)×(scl+2s

D
+s

W
) such that[

X A
D̄
+ AT

D̄
X X B

D̄
BT

D̄
X 0

]
+ D̆ > 0,

[
YÀ+ ÀT Y YB̀

B̀TY 0

]
+
[

C̀T

D̀T

]
Q̀
[
C̀ D̀

]
< 0;

whereQ̀ := diag
(
D̆, Im, −D̆, −W̆

)
and

[
À B̀
C̀ D̀

]
is defined by:



AD̄ 0 0 0 BD̄ 0

0 AW̄ 0 0 0 BW̄
0 0 AD̄ BD̄ BT

1cl BD̄ DT
11cl BD̄ DT

21cl
0 0 0 AT

cl CT
1cl CT

2 cl
0 0 Is

D
0 0 0

0 0 0 BT
1cl DT

11cl DT
21cl

0 0 0 BT
2cl DT

12cl DT
22cl

Is
D

0 0 0 0 0

0 0 0 0 Ir 0

0 Is
W

0 0 0 0

0 0 0 0 0 In



.

Proof Omitted for brevity, see [7]. 2

8 Holding D̄ Fixed in the Constraint

The following theorem shows that for a fixed̄D ∈DTF, the constraint
appearing in optimisation problem (6) can be rewritten as a set of LMIs
that are also simultaneously affine in̆W.

Theorem 8.1 Given a generalised plantG(s) satisfying the standard
assumptions stated in Definition 2.5 and scalingsD̄(s) ∈ DTF, define
the scaled generalised plantG̃(s) by

G̃(s) :=
D̄(s)−T 0 0

0 In 0
0 0 Iq

G(s)

D̄(s)T 0 0
0 Im 0
0 0 I p


and let 

Ã B̃1 B̃2 B̃3

C̃1 D̃11 D̃12 D̃13
C̃2 D̃21 D̃22 D̃23

C̃3 D̃31 D̃32 D̃33


be a stabilisable and detectable realisation forG̃(s)with Ã ∈ Rs

G̃
×s

G̃ ,
D̃11 ∈ Rr×r , D̃22 ∈ Rn×m and D̃33 = 0 ∈ Rq×p. Furthermore,
given (AW̄, BW̄) ∈ 4(AW̄,BW̄)

and any W̄(s) ∈ WTF
(AW̄,BW̄)

,

defineTo
W̄
(s) as in equation(3) and parametrisēW( jω)∗W̄( jω) by

To
W̄
( jω)∗W̆ To

W̄
( jω) for someW̆ ∈ 4W̆. Then the following two

statements are equivalent:

(i) min
K∈KTF

G

∥∥∥∥(D̄ 0
0 Im

)
Fl (G, K )T

(
D̄−1 0

0 W̄−1

)∥∥∥∥∞< 1.

(ii) ∃ P = PT ∈ R(sW
+s

G̃
)×(s

W
+s

G̃
), R = RT ∈ Rs

W
×s

W , S ∈
Rs

W
×s

G̃ andT = TT ∈ Rs
G̃
×s

G̃ such that

P > 0, R> 0, T > 0, P

[
R −S
0 IsG̃

]
[

R 0
−ST IsG̃

] [
R 0
0 T

]
 ≥ 0,

9T
P



P

[
AW̄ 0
0 ÃT

]
+ {·}T P

[
0 BW̄

C̃T
1 C̃T

2

] [
0 0

B̃1 B̃2

]
∗

[−Ir 0
0 0

] [
D̃11 D̃12
D̃21 D̃22

]

∗ ∗
[−Ir 0

0 −Im

]


9P

<


[

Is
W

0
0 ψT

3

]
[

0 0
0 0

]
 W̆

( [
Is

W
0

0 ψ3

] [
0 0
0 0

] )
,

and

9T
Q



[
R S
−ST T

] [
AW̄ 0
0 Ã

]
+ {·}T ∗ ∗[

0 B̃T
1

0 B̃T
2

][
Is

W
0

ST T

] [−Ir 0
0 −Im

]
∗[

0 C̃1
BT

W̄
C̃2

][
R −S
0 IsG̃

] [
D̃11 D̃12
D̃21 D̃22

] [−Ir 0
0 0

]


9Q

<


[

Is
W

0
0 0

]
[

0 0
0 In

]
 W̆

( [
Is

W
0

0 0

] [
0 0
0 In

] )
,

where

9P :=



[
Is

W
0

0 ψ1

] [
0 0
0 0

]
[

0 ψ2
0 ψ3

] [
0 0
0 0

]
[

0 0
0 0

] [
Ir 0
0 Im

]

 , 9Q :=



[
Is

W
0

0 ψ4

] [
0 0
0 0

]
[

0 ψ5
0 ψ6

] [
0 0
0 0

]
[

0 0
0 0

] [
Ir 0
0 In

]



and the columns of

ψ1
ψ2
ψ3

 (resp.

ψ4
ψ5
ψ6

) form bases for the null

space of
[
B̃T

3 D̃T
13 D̃T

23

]
(resp.

[
C̃3 D̃31 D̃32

]
).

Proof Omitted for brevity, see [7]. 2

The following corollary gives a necessary and sufficient condition
for the existence of controllers inKTF

G of ordersK together with a
parametrisation of all such controllers.

Corollary 8.2 If the conditions stated in Part(ii) of Theorem 8.1 hold,
then there exist controllersK ∈KTF

G of ordersK satisfying∥∥∥∥(D̄ 0
0 Im

)
Fl (G, K )T

(
D̄−1 0

0 W̄−1

)∥∥∥∥∞< 1

if and only if

rank

([
Is

W
S

0 Is
G̃

]
P

[
Is

W
0

ST Is
G̃

]
−
[

R 0
0 T−1

])
≤ sK .



In fact,K (s) =
[

AK BK
CK DK

]
is such a controller if and only if8K :=[

AK BK
CK DK

]
satisfies

F +UT8K V + VT8T
K U < 0,

whereF, U andV are defined by

F :=



X

AW̄ 0 0
0 ÃT 0
0 0 0

 + {·}T X

 0 BW̄
C̃T

1 C̃T
2

0 0

  0 0
B̃1 B̃2
0 0


∗

[−Ir 0
0 0

] [
D̃11 D̃12
D̃21 D̃22

]

∗ ∗
[−Ir 0

0 −Im

]



−



Is
W

0
0 0
0 0


[

0 0
0 In

]
[

0 0
0 0

]


W̆

( [
Is

W
0 0

0 0 0

] [
0 0
0 In

] [
0 0
0 0

] )
,

U :=
([

0 0 Is
K

0 B̃T
3 0

] [
0 0

D̃T
13 D̃T

23

] [
0 0
0 0

])
,

V :=
([

0 0 Is
K

0 C̃3 0

]
X

[
0 0
0 0

] [
0 0

D̃31 D̃32

])
,

and X is constructed as follows:

• DefineQ :=
[

Is
W

0
ST Is

G̃

][
R−1 0

0 T

] [
Is

W
S

0 Is
G̃

]
.

• FactoriseP − Q−1 = H HT with H ∈ R(sW
+s

G̃
)×s

K .

• DefineX :=
[

P H
H T Is

K

]
.

Proof Omitted for brevity, see [7]. 2

9 Solution Algorithm

This section summarises a sub-optimal iterative algorithm for solving
optimisation problem (2).

Inputs to the algorithm:

• Generalised plantG(s) satisfying the standard assumptions,

• Directionality transfer function matrixϒ(s) ∈ ϒTF.

The solution algorithm:

1. First find a controllerK ?0 which robustly stabilises the intercon-

nectionFu

(
Fl
(
Ĝ, K ?0

)
, 1
)

for all 1 ∈ B1TF, where

Ĝ :=
 A B1 B3

C1 D11 D13
C3 D31 0

 .
Seti = 0, wherei denotes the iteration number, andη?0 = ∞.

2. Incrementi by 1.

3. • During the first few iterations:

(a) Solve the following convex optimisation problem

min
W̄∈WTF

∥∥W̄ϒ
∥∥2

2

such that

inf
D̄∈DTF

∥∥∥∥(D̄ 0
0 Im

)
Fl

(
G, K ?i−1

)T
(

D̄−1 0
0 W̄−1

)∥∥∥∥∞< 1

pointwise in frequency on a sufficiently dense but finite grid
using the reformulation given in optimisation problem (5).
Let v?W,ωk

and2?ωk
be the respective values ofvW,ωk

and
2ωk

at everyωk (these are vector/matrix decision variables in
optimisation problem (5)) that achieve the above minimum.

(b) Construct aW̄? ∈ WTF by fitting a stable minimum-phase
transfer function to each magnitude function inv?W,ωk

.

(c) Construct a self-adjoint real-rational unit inRL∞ which is
positive at infinity by fitting real-rational functions to each
element in2?ωk

. Denote this unit by2?(s). Then compute
a spectral factorD̄?i ∈ DTF for 2?(s) and model reduce if
necessary.

(d) Let (AW̄, BW̄) ∈ 4(AW̄,BW̄)
and (AD̄, BD̄) ∈ 4(AD̄ ,BD̄)

be the A and B matrices of the appropriate state-space
realisations ofW̄?(s) andD̄?i (s) respectively.

• During the last few iterations:

(a) Solve the following convex optimisation problem

min
W̄∈WTF

(AW̄ ,BW̄)

∥∥W̄ϒ
∥∥2

2

such that

inf
D̄∈DTF

(AD̄ ,BD̄ )

∥∥∥∥(D̄ 0
0 Im

)
Fl

(
G, K ?i−1

)T
(

D̄−1 0
0 W̄−1

)∥∥∥∥∞< 1

by making use of Theorem 6.1 and Theorem 7.1. Let the
value of D̆ (a matrix decision variable in the LMI constraints
of Theorem 7.1) that achieves the minimum be denoted byD̆?i .

(b) Using the previously fixed values of(AD̄, BD̄) ∈ 4(AD̄ ,BD̄)

and the value ofD̆?i ∈ 4D̆ just obtained, define

2?i (s) :=
[
BT

D̄
(−s Is

D
− AT

D̄
)−1 Ir

]
D̆?i

[
(s Is

D
− AD̄)

−1BD̄
Ir

]
and compute a spectral factorD̄?i ∈DTF

(AD̄,BD̄)
for 2?i (s).

4. (a) Solve the following convex optimisation problem

min
W̄∈WTF

(AW̄ ,BW̄ )

∥∥W̄ϒ
∥∥2

2

such that

min
K∈KTF

G

∥∥∥∥∥
(

D̄?i 0
0 Im

)
Fl (G, K )T

(
D̄?−1

i 0
0 W̄−1

)∥∥∥∥∥∞< 1

by making use of Theorem 6.1 and Theorem 8.1. Let the
value of this minimum cost be denoted byη?i and let the value
of W̆ (a matrix decision variable in the LMI constraints of
Theorem 8.1) that achieves this minimum be denoted byW̆?

i .

(b) Using the previously fixed values of(AW̄, BW̄) ∈ 4(AW̄,BW̄)

and the value ofW̆?
i ∈ 4W̆ just obtained, define

5?i (s) :=
[
BT

W̄
(−s Is

W
− AT

W̄
)−1 In

]
W̆?

i

[
(s Is

W
− AW̄)

−1BW̄
In

]
and compute a spectral factorW̄?

i ∈WTF
(AW̄,BW̄)

for5?i (s).

(c) Using Corollary 8.2, find a controller of smallest order that
achieves the minimum costη?i obtained in the above optimi-
sation problem. Denote this controller byK ?i .

5. Evaluate(η?i−1− η?i ). If this difference (which is always positive)
is very small and has remained very small for the last few iterations,
then EXIT. Otherwise return to Step 2.



Outputs from the algorithm: (after i iterations)

• The inverse of the largest performance weights obtained by the
algorithm inW̄?

i ∈WTF,

• The controllerK ?i ∈ KTF
G that achieves robust performance

with respect to these weights,

• The final scalingsD̄?i ∈DTF,

• The value of the minimum costη?i obtained.

10 Numerical Example

The algorithm proposed in the previous section will now be illustrated
by a numerical example. The same example used in [1] to illustrate the
standard D-K iterative procedure will be used here for ease of com-
parison. This example considers the design of a pitch axis controller
for an experimental highly maneuverable aeroplane, the HIMAT. A
block diagram for the closed-loop system is shown in Figure 2. The

Po

1

Wu

+
+

+
+++

[
d1
d2

]

[
e1
e2

]

[
d3
d4

]
Wn

Wp

K

P

Figure 2:Block diagram of HIMAT and required feedback structure

state-space realisations ofPo, Wu andWn are given in [1].

It is required to maximise the performance weightWp subject to
the existence of an internally stabilising controllerK that guarantees
robust performance with respect to this maximised weight. For a sen-
sible control problem,Wp should be maximised in the low-frequency
region, thereby achieving disturbance rejection at the plant output.
Consequently, the directionality function used in this design example
was simply 5

(s+0.005) I2.

The results obtained from using this algorithm are depicted in Fig-
ure 3 together with the results obtained from the standard D-K iterative
procedure, so that comparison can be made. Observe that the final
µ-curve obtained from using the proposed algorithm is flat across fre-
quency and very close to unity. This reflects that robust performance
has been maximised. In fact, the inverse performance weights syn-
thesised by the proposed algorithm are everywhere less than those
used in [1] to explain the standard D-K iterative procedure. That is,
a higher level of robust performance is synthesised by the proposed
algorithm. Of course, different performance weights then lead to dif-
ferent D-scales and a different internally stabilising controller.

11 Conclusions

The problem of maximising performance weights subject to the ex-
istence of an internally stabilising controller that guarantees robust
performance with respect to these maximised weights was posed as
an optimisation problem in Section 2. This optimisation problem is
very similar to the one posed in [8], the important differences being
such that the optimisation problem proposed here admits a solution
algorithm based on state-space techniques.

The algorithm presented here eliminates all of the disadvantages of
the pointwise approach in [8] and considerably enhances the benefits
of using such a method. More specifically, (a) the controller is no
longer parametrised by a basis function, (b) the order of the controller
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Figure 3: Clockwise from top left: Upper bounds forµ-curves,
Magnitude plots of|w11( jω)|−1 and|w22( jω)|−1, Magnitude plot of
|d( jω)|, Singular values of controllerK

is guaranteed to be less than or equal to that of the scaled generalised
plant, (c) frequency gridding is no longer necessary and hence the
conditions given here guarantee thatµ < 1 rather than simply give
confidence, (d) maximisation of performance weights occurs over the
entire frequency range from−∞ to∞, (e) the additional freedom
provided by the parametrisation ofall controllers that achieve the
designed robust performance may be exploited by adding additional
LMI constraints to simultaneously achieve other closed-loop objec-
tives such as regional pole placement,H2-norm minimisation, etc.

In summary, this paper presents a conceptually new method for per-
formingµ-synthesis robust performance based designs and is hence a
valuable alternative to the standard D-K iterative procedure. The ap-
proach presented here greatly simplifies the often long and tedious trial
and error process of designing “good” performance weights directly.
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