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Abstract—This paper presents a new definition of negative
imaginary (NI) systems to include poles at the origin. Also, a
necessary and sufficient stability conditions of positive feedback
interconnection of NI systems that have poles at the origin with
a strictly NI system is provided. As an application of this class
of systems, an example of a train system is presented.

I. INTRODUCTION

Highly resonant structural modes in machines and robots,
ground and aerospace vehicles, and precision instrumenta-
tion, such as atomic force microscopes and optical systems,
can limit the ability of control systems in achieving a desired
level of performance [1]. This problem is simplified to some
extent by using force actuators combined with collocated
measurements of velocity, position, or acceleration.
The use of force actuators combined with velocity mea-

surements has been studied using positive real (PR) theory
for linear time invariant (LTI) systems; e.g., see [2], [3]. PR
systems, in the single-input single-output (SISO) case, can
be defined as systems where the real part of the transfer
function is nonnegative. Many systems that dissipate energy
fall under the category of PR systems. For instance, they can
arise in electric circuits with linear passive components and
magnetic couplings. In spite of its success, a drawback of
the PR theory is the requirement for the relative degree of
the underlying system transfer function to be either zero or
one [3]. Hence, the control of flexible structures with force
actuators combined with position measurements, cannot use
the theory of PR systems.
Lanzon and Petersen introduce a new class of systems in

[4] called negative imaginary (NI) systems, which has fewer
restrictions on the relative degree of the system transfer func-
tion than in the PR case. In the SISO case, such systems are
defined by considering the properties of the imaginary part
of the frequency response G(jω) = D + C(jωI − A)−1B,
and requiring the condition j (G(jω) − G(jω)∗) ≥ 0 for all
ω ∈ (0,∞).
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In general, NI systems are stable systems having a phase
lag between 0 and −π for all ω > 0. That is, their Nyquist
plot lies below the real axis when the frequency varies in the
open interval (0,∞) (for strictly negative-imaginary systems,
the Nyquist plot should not touch the real axis except at zero
frequency and/or at infinity). This is similar to PR systems
where the Nyquist plot is constrained to lie in the right half
of the complex plane [2], [3]. However, in contrast to PR
systems, transfer functions for NI systems can have relative
degree greater than unity.
NI systems can be transformed into PR systems and

vice versa under some technical assumptions. However, this
equivalence is not complete. For instance, such a transfor-
mation applied to a strictly negative imaginary (SNI) system
always leads to a non-strict PR system. Hence, the passivity
theorem [2], [3] cannot capture the stability of the closed-
loop interconnection of an NI and an SNI system.
Many practical systems can be considered as NI systems.

For example, such systems arise when considering the trans-
fer function from a force actuator to a corresponding collo-
cated position sensor (for instance, a piezoelectric sensor)
in a lightly damped structure [1], [4]–[7]. Also, stability
results for interconnected systems with an NI frequency
response have been applied to the decentralized control of
large vehicle platoons in [8]. In [8], the authors discuss the
stability of various designs to enhance the robust stability of
the system with respect to small variations in coupling gains.
NI systems theory has been extended by Xiong et. al. in

[1], [9] by allowing for simple poles on the imaginary axis
of the complex plane except at the origin. In addition, it has
been shown in [4] that a necessary and sufficient condition
for the internal stability of a positive-feedback interconnec-
tion of an NI system with transfer function matrix G1(s) and
an SNI system with transfer function matrix G2(s) is given
by the DC gain condition λmax(G1(0)G2(0)) < 1. Here,
the notation λmax(·) denotes the maximum eigenvalue of a
matrix with only real eigenvalues.
A generalization of the NI lemma in [9] to allow for

systems with a simple pole at the origin was presented in
[10], [11]. In [10], stability analysis for a special class of
generalized NI systems with the inclusion of an integrator
connected in parallel with an NI system was discussed. The
assumption in [10] restricts the application of the proposed
stability result to NI systems which can be decomposed
into a parallel connection of an NI system (with no pole
at the origin) and an integrator. A sufficient condition for
the internal stability of a feedback interconnection for NI
systems including a sample pole at the origin given in [11].
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In this paper, we extend the results in [1], [4], [9]–[11] for
NI systems to allow for the existence of one or two poles at
the origin, with a more general structure than allowed in the
result of [10], [11]. Also, a necessary and sufficient condition
for the internal stability of a feedback interconnection for
NI systems including a simple or a double pole at the
origin is presented. This extension allows us to stabilize any
NI system with a pole at the origin without any parallel
decomposition assumption. Such NI systems commonly arise
in the case of force actuators and position sensors where the
system to be controlled is allowed free body motion.
This paper is further organized as follows: Section II

introduces the concept of PR and NI systems and presents
a relationship between them. The main results of this paper
are presented in Section III. Section IV provides an example
to support the main result and the paper is concluded with a
summary and remarks on future work in Section V.

II. PRELIMINARIES
In this section, we introduce the definitions of PR and NI

systems. We also present a lemma describing the connection
between PR and NI systems and some technical results which
will be used in deriving the main results of the paper.
The definition of PR systems can be motivated by the

study of linear electric circuits composed of resistors, capac-
itors, and inductors. For a detailed discussion of PR systems,
see [2], [3] and references therein.
Definition 1: A square transfer function matrix F (s) is

positive real if:
1) F (s) has no pole in Re[s] > 0.
2) F (jω) + F (jω)∗ ≥ 0 for all positive real ω such that

jω is not a pole of F (jω).
3) If jω0, is a finite or infinite pole of F (jω), it is
a simple pole and the corresponding residual matrix
K0 = lim

s−→jω0

(s − jω0)F (s) is positive semidefinite
Hermitian.

To establish the main results of this paper, we consider a
new generalized definition for NI systems which allows for
poles at the origin as follows:
Definition 2: A square transfer function matrix G(s) is NI

if the following conditions are satisfied:
1) G(s) has no pole in Re[s] > 0.
2) For all ω ≥ 0 such that jω is not a pole of G(s),

j (G(jω) − G(jω)∗) ≥ 0.
3) If s = jω0, ω0 > 0 is a pole of G(s) then it is a simple
pole. Furthermore, if s = jω0, ω0 > 0 is a pole of
G(s), the residual matrix K = lim

s−→jω0

(s− jω0)jG(s)

is positive semidefinite Hermitian. If s = 0 is a pole
of G(s), then it is a simple pole or a double pole. If
it is double pole then lim

s−→0
s2G(s) ≥ 0.

Definition 3: A square transfer function matrix G(s) is
SNI if the following conditions are satisfied:
1) G(s) has no pole in Re[s] ≥ 0.
2) For all ω > 0, j (G(jω) − G(jω)∗) > 0.
In order to use advances in the theory of PR systems

and the complementary definitions of PR and NI systems

to further develop the theory of NI systems, it is useful
to establish a lemma which shows the relationship between
these notions. In order to do so, we consider the possibility
of having a simple pole or double pole at the origin and relax
the determinant condition required in a corresponding result
given in [9]. This leads to a modification of the relationship
between PR and NI systems as follows:
Lemma 1: Consider a square real rational proper transfer

function matrix G(s) with state space realization

[
A B

C D

]

such that D = DT and the transfer function matrix G̃(s) =
G(s) − D. Then the transfer function matrix G(s) is NI if
and only if the transfer function matrix F (s) = sG̃(s) is
PR. Here, we assume that any pole-zero cancellation which
occurs in sG̃(s) has been carried out to obtain F (s).

Proof: (Necessity) It is straightforward to show that
if G̃(s) is NI then G(s) is NI and vice-versa; e.g., see [9].
Now suppose that j

(
G̃(jω) − G̃(jω)∗

)
≥ 0, for all ω > 0

such that jω is not a pole of G(s). Then given any such
ω > 0, F (jω) + F (jω)∗ = jω

(
G̃(jω) − G̃(jω)∗

)
≥ 0,

and (F (jω) + F (jω)∗) ≥ 0. This means that F (−jω) +
F (−jω)∗ ≥ 0 for all ω > 0 which implies that F (jω) +
F (jω)∗ ≥ 0 for all ω < 0 such that jω is not a pole of
G(s). Hence, (F (jω) + F (jω)∗) ≥ 0 for all ω ∈ (−∞,∞)
such that jω is not a pole of G̃(jω).
Now, consider the case where jω0 is a pole of G̃(s) and

ω0 = 0. In the case that G̃(s) has only a simple pole at the
origin, F (s) = sG̃(s) will have no pole at the origin because
of the pole zero cancellation. This implies that F (0) is finite.
Since F (jω)+F (jω)∗ ≥ 0 for all ω > 0 such that jω is not
a pole of G(s) and F (jω) is continuous, this implies that
F (0)+F (0)∗ ≥ 0. In the case where G̃(s) has a double pole
at the origin, F (s) = sG̃(s) will have a simple pole at the
origin because of the pole zero cancellation. Since G̃(s) is
NI, then lim

s−→0
s2G(s) ≥ 0 which implies that lim

s−→0
sF (s) ≥

0.
Also, if jω0 is a pole of G̃(s) and ω0 > 0, then G̃(s)

can be factored as 1

s2+ω2

0

R(s), which according to the
definition for NI systems implies that the residual matrix
K0 = 1

2ω0

R(jω0) is positive semidefinite Hermitian. Hence,
R(jω0) = R(jω0)

∗ ≥ 0. Now, the residual matrix of F (s)
at jω0 with ω0 > 0 is given by,

lim
s−→jω0

(s − jω0)F (s) = lim
s−→jω0

(s − jω0)sG̃(s),

= lim
s−→jω0

(s − jω0)s
1

s2 + ω2
0

R(s),

=
1

2
R(jω0)

which is positive semidefinite Hermitian. Hence, F (s) is
positive real.
(Sufficiency) Suppose that F (s) is positive real. Then,

F (jω) + F (jω)∗ ≥ 0 for all ω ∈ (−∞,∞) such that jω is
not a pole of F (s). This implies jω

(
G̃(jω) − G̃(jω)∗

)
≥ 0

for all ω ≥ 0 such that jω is not a pole of G(s). Then
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G̃(jω)− G̃(jω)∗ ≥ 0 for all such ω ∈ [0,∞). In addition, if
jω0 is a pole of F (s), then it follows from the definition of
PR systems that the residual matrix lim

s−→jω0

(s− jω0)F (s) is
positive semidefinite Hermitian. Also,

lim
s−→jω0

(s − jω0)F (s) = lim
s−→jω0

(s − jω0)sG̃(s),

= ω0 lim
s−→jω0

(s − jω0)jG̃(s).

Then using Definition 2, we can conclude that G̃(s) is NI
and hence G(s) is NI.
Now, we present a generalized NI lemma, which allows

for a simple pole or a double pole at the origin.
Consider the following LTI system,

ẋ(t) = Ax(t) + Bu(t), (1)
y(t) = Cx(t) + Du(t), (2)

where, A ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×n, and D ∈

R
m×m.

Lemma 2: Let

[
A B

C D

]
be a minimal realization of the

transfer function matrix G(s) for the system in (1)-(2). Then,
G(s) is NI if and only if D = DT and there exists a matrix
P = PT ≥ 0 such that the following LMI is satisfied:[

PA + AT P PB − AT CT

BT P − CA −(CB + BT CT )

]
≤ 0. (3)

Furthermore, if G(s) is SNI, then det(A) �= 0 and there
exists a matrix P > 0 such that (3) holds.

Proof: Suppose that G(s) is NI, which implies from
Lemma 1 that F (s) = sG̃(s) with state space realization[

A B

CA CB

]
is PR. It follows from Corollary 2 and

Corollary 3 in [12] that there exists a matrix P = PT ≥ 0,
such that the LMI (3) is satisfied.
Conversely , suppose that the LMI (3) is satisfied. Then

F (s) is PR via Corollary 1 and Corollary 3 in [12], which
implies from Lemma 1 that G(s) is NI. The proof of the last
statement follows from Lemma 7 [9].

III. MAIN RESULTS
The main result of this paper is to generalize the stability

results in [10] and combine these results with the main results
in [4] to give a complete set of stability conditions. This
generalization is stated in Theorem 1. which is the main
result of this paper:
Theorem 1: Suppose that the transfer function matrix

G1(s) is strictly proper and NI and the transfer function
matrix G2(s) is SNI. Then, we consider the following two
cases:
Case 1) G1(s) has no pole at the origin and G2(∞) ≥ 0.

In this case, the closed-loop positive-feedback inter-
connection between G1(s) and G2(s) is internally
stable if and only if λmax(G1(0)G2(0)) < 1.

Case 2) G1(s) has either a simple pole or a double at
the origin such that lims→0 sG1(s) > 0 in case of

simple pole or lims→0 s2G1(s) > 0 in case of a
double pole. In this case, the closed-loop positive-
feedback interconnection between G1(s) and G2(s)
is internally stable if and only if G2(0) < 0 and the
matrix A1 + B1G2(0)C1 is nonsingular.

Proof: The proof of necessity and sufficiency of Case
1) in the theorem has been established in [4], [9]. To
prove sufficiency in Case 2) of the theorem, suppose the
transfer function matrix G1(s) with a minimal realization[

A1 B1

C1 D1

]
is NI, and G2(s) with a minimal realization[

A2 B2

C2 D2

]
is SNI. Using Lemma 2, it follows that there

exist P1 ≥ 0, P2 > 0, Wi ∈ R
m×m, and Li ∈ R

m×n

(i = 1, 2) such that can be written as,

P1A1 + AT
1 P1 = −LT

1 L1, P2A2 + AT
2 P2 = −LT

2 L2,

P1B1 − AT
1 CT

1 = −LT
1 W1, P2B2 − AT

2 CT
2 = −LT

2 W2,

C1B1 + BT
1 CT

1 = WT
1 W1, C2B2 + BT

2 CT
2 = WT

2 W2,
(4)

The internal stability of the closed-loop positive-feedback
interconnection of G1(s) and G2(s) can be guaranteed by
considering the transfer function matrix,

T (s) = G1(s)(I − G2(s)G1(s))
−1

with a corresponding system matrix Ă, where,

Ă =

[
A1 B1C2

0 A2

]
+

[
B1D2

B2

]
(I − D1D2)

−1
[
C1 D1C2

]
.

(5)

Now, we show that the matrix Ă in (5) is Hurwitz; i.e., all
the poles of Ă lie in the left-half of the complex plane. Let

T =

[
P1 − CT

1 D2C1 −CT
1 C2

−CT
2 C1 P2

]
be a candidate Lyapunov

matrix. Since G2(0) < 0 and P1 ≥ 0, we have

P1 − CT
1 G2(0)C1 ≥ 0. (6)

We claim that

P1 − CT
1 G2(0)C1 > 0. (7)

In order to prove this claim, consider M = P1 −
CT

1 G2(0)C1 ≥ 0 and N (M) = {x : Mx = 0}, where
N (·) denotes the null space. Also, given any x ∈ N (M) we
have P1x = 0 and C1x = 0. Now, consider the equations

P1A1 + AT
1 P1 = −LT

1 L1, (8)
BT

1 P1 − C1A1 = −WT
1 L1 (9)

given in (4). Pre-multiplying and post-multiplying (8) by xT

and x respectively, we get,

L1x = 0. (10)

Also, post-multiplying (8) by x results in

P1A1x = 0. (11)
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Subsequently, post-multiplying (9) by x, gives

C1A1x = 0. (12)

Now, let y = A1x, which from (11) and (12) gives

P1y = 0, C1y = 0 (13)

which implies y ∈ N (M). Thus, we have established that

A1 N (M) ⊂ N (M) and N (M) ⊂ N (C1). (14)

This leads to the fact that N (M) is a subset of the unob-
servable subspace of (A1, C1); e.g., see Chapter 18 of [13].
It now follows from the minimality of (A1, B1, C1,D1) that
N (M) = {0}. Hence, M = P1 − CT

1 G2(0)C1 > 0. This
completes the proof of the claim.
Now, using this claim, we have

P2 > 0 and P1 − CT
1 (D2 + G2(0) − D2)C1 > 0,

⇒P2 > 0 and P1 − CT
1 (D2 + C2(−A2)

−1B2)C1 > 0,

⇒P2 > 0 and P1 − CT
1 D2C1 − CT

1 C2P
−1
2 CT

2 C1 > 0,

where B2 = −A−1
2 P−1

2 CT
2 via Lemma 7 in [9]. It follows

that [
P1 − CT

1 D2C1 −CT
1 C2

−CT
2 C1 P2

]
> 0.

That is, T > 0.
Now, the corresponding Lyapunov inequality is given by,

TĂ + ĂT T =

[
P1 − CT

1 D2C1 −CT
1 C2

−CT
2 C1 P2

]

×

[
A1 + B1D2C1 B1C2

B2C1 A2

]

+

[
A1 + B1D2C1 B1C2

B2C1 A2

]T

×

[
P1 − CT

1 D2C1 −CT
1 C2

−CT
2 C1 P2

]
,

= −

[(
CT

1 D2W
T
1 + LT

1

)
CT

1 WT
2

CT
2 WT

1

(
LT

2

)
]

×

[
(W1D2C1 + L1) W1C2

W2C1 (L2)

]

≤0.

This implies that Ă has all its poles in the closed left-half
of the complex plane [13]. We now show that det(Ă) �=
0. Indeed, using the assumption that (A1 + B1G2(0)C1) is
nonsingular, we obtain

det(Ă) = det(A2) det((A1 + B1D2C1 − B1C2 (A2)
−1

B2C1)

= det(A2) det(A1 + B1G2(0)C1)

= det(A2) det(A1 + B1G2(0)C1)

�= 0 (15)

since det(A2) �= 0. Also, using Lemma 4 in [4] and the
fact that G1(s) is NI and G2(s) is SNI, we conclude that
det(I − G1(jω)G2(jω)) �= 0 for all ω > 0. This implies
that Ă has no eigenvalues on the imaginary axis for ω > 0.
Hence, the matrix Ă is Hurwitz. This completes the proof of
sufficiency for Case 2).
To prove necessity for Case 2), suppose that the matrix

Ă is Hurwitz. It follows that det(Ă) �= 0 which implies
that det(A1 + B1G2(0)C1) �= 0 as in (15). Also, the fact
that Ă is Hurwitz implies that [G1(s), G2(s)] is internally
stable, which leads to the fact that T (s) = G1(s)(I −
G2(s)G1(s))

−1 is SNI via Theorem 2 in [1]. Now, since
T (∞) = 0, this implies that T (0) > 0 via Lemma 2 in [4].
Now if the pole at the origin is a simple pole, we write

G1(s) =
1

s
Ḡ1(s),

⇒ T (s) = Ḡ1(s)(sI − G2(s)Ḡ1(s))
−1,

⇒ T (0) = Ḡ1(0)(−G2(0)Ḡ1(0))−1,

⇒ G2(0) < 0,

where Ḡ1(0) > 0, since lims→0 sG1(s) > 0.
If the pole at the origin is a double pole, we have

G1(s) =
1

s2
Ḡ1(s),

⇒ T (s) = Ḡ1(s)(s
2I − G2(s)Ḡ1(s))

−1,

⇒ T (0) = Ḡ1(0)(−G2(0)Ḡ1(0))−1,

⇒ G2(0) < 0,

where Ḡ1(0) > 0, since lims→0 s2G1(s) > 0. This complete
the proof of necessity for Case 2).

�

Remark 1: In the case whereG1(s) is the controller which
is required to include an integrator and the plant transfer
function G2(s) does not satisfy the condition G2(0) < 0,
a negative direct feed-through can be added to the plant to
enforce the condition G2(0) < 0; e.g., see [14], [15] for more
details including a discussion onthe modelling of flexible
structures.
Also, the condition G2(0) < 0 can be satisfied in spring-

mass-damper systems with combined acceleration, position,
and velocity sensors. For instance, consider the following
system

ẍ + αẋ + βx = u,

y = γ1ẍ + γ2ẋ + γ3x,

where x is the position state variable and y is the output.
Also, α, β, γ1, γ2, and γ3 are given constants. The corre-
sponding transfer function for this system is

G2(s) =
γ1s

2 + γ2s + γ3

s2 + αs + β
. (16)

For α > 0, β > 0, γ3 < 0 and any γ1, γ2 satisfying βγ2 −
αγ3 < 0, αγ1 − γ2 < 0, the transfer function (16) will be
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M1 M2

Fig. 1. A train system consisting of an engine with mass M1 and a car
with mass M2 .

x1

F

μM1gv1

k(x1 − x2)

x2

−k(x1 − x2)

μM2gv2

M1 M2

Fig. 2. Free body diagram of the train system depicted in Fig. 1. Here
F is the force acting on the engine, k is the spring constant of the spring
holding the two cars together, M1 is the engine mass, M2 is the mass of
the car, and μ is the coefficient of rolling friction.

SNI with G2(0) < 0. For example, if we choose α = 3, β =
5, γ1 = −3, γ2 = −5, γ3 = −5, the transfer function (16)
will be SNI with G2(0) = −1.

IV. ILLUSTRATIVE EXAMPLE

In this section, we will consider an example of a physical
system involving a train consisting of an engine and one
car as shown in Fig.1. Here, the transfer function from the
applied force to the measured position of the train satisfies
the NI property and has a simple pole at the origin. For this
system the stability results in [4] and [10] are not applicable.

A. Free body diagram

A free body diagram for the train system depicted in Fig.
1 is given in Fig. 2. As shown in Fig. 2, the forces acting
on the engine with mass M1 consist of the forces due to the
spring with spring constant k, the friction force with fraction
coefficient μ, and the force generated by the engine F . The
forces acting on car with massM2 are those due to the spring
and friction. In the vertical direction, the force due to gravity
is canceled by the normal force of the ground acting on the
train.

B. Equations of motion

From Newton’s second law of motion, the force, mass,
and acceleration of the bodies are related according to

M1ẍ1 = F − k(x1 − x2) − μM1gẍ1,

M2ẍ2 = k(x1 − x2) − μM2gẍ2. (17)

The equations of motion (17) can be rewritten in state-space
form (18) by considering x1, x2, ẋ1 and ẋ2 as state variables.
Here, x1 and x2 represent the positions of the engine and
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Fig. 3. Imaginary part of G1(jω).
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Fig. 4. Bode plot of G1(jω), which shows that the phase lies between 0
and −π for all ω > 0.

the car respectively:
⎡
⎢⎢⎢⎣

ẋ1

ẍ1

ẋ2

ẍ2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 1 0 0

− K
M1

−μg K
M1

0

0 0 0 1
K
M2

0 − K
M2

−μg

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x1

ẋ1

x2

ẋ2

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0
1

M1

0

0

⎤
⎥⎥⎥⎦F.

(18)

The output equation which gives the position of the engine
is given by

y =
[
1 0 0 0

]
⎡
⎢⎢⎢⎣

x1

ẋ1

x2

ẋ2

⎤
⎥⎥⎥⎦ . (19)

By choosing the following system constants M1 =
2 kg;M2 = 1 kg; k = 1 Nm−1;F = 5N ;μ = .001; g =
9.8 m/s2, the corresponding transfer function from the force
input to the position output is given by

G1(s) =
0.5s2 + 0.0049s + 0.5

s4 + 0.0196s3 + 1.5s2 + 0.0147s
. (20)

This transfer function satisfies the NI property and has a
pole at the origin. This fact is illustrated in the plot of the
imaginary part of G1(jω) given in Fig. 3 and in the Bode
plot given in Fig. 4.
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with k ∈ [0.8, 1.3] where Φ = 5× 10−3, D = 200.7 and Γ = 23× 103.

C. Controller design
By using the results in Theorem 1, we can stabilize the

train system by designing an SNI controller G2(s) satisfying
G2(0) < 0. A modified integral resonant controller is given
by

G2(s) =
Γ

s + ΦΓ
− D. (21)

This controller will stabilize the system for any Φ > 0
provided G2(0) = 1

Φ
− D < 0. Also, a desired level of

performance can be obtained by varying the parameter Γ.
By choosing Φ = 5 × 10−3,D = 200.7, and Γ = 23 × 103,
we can achieve adequate damping as depicted in Fig. 5. Also,
this controller is robust against plant uncertainty which my
may arise due to an uncertain spring constant k. To illustrate
this robustness, the step response of the closed-loop system
with different values of k ∈ [0.8, 1.3] is depicted in Fig. 6.

V. CONCLUSION

In this paper, stability results for a positive-feedback
interconnection of negative imaginary (NI) systems have
been derived. A generalization of the NI lemma, allowing
for a simple pole or double pole at the origin has been
used in deriving these results. This work can be used in
controller design to allow for a broader class of NI systems

than considered in previous work. Also, the stability result
for an NI system with poles at the origin connected with an
SNI system with positive feedback can be used for controller
design including integral action. The validity of the main
results in this paper have been illustrated via a physical
example corresponding to a train system.
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