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Abstract—Flexible structure dynamics with collocated force
actuators and position sensors lead to negative imaginary (NI)
systems. In this paper, we study the extension of NI theory
to descriptor systems. We derive an NI lemma for descriptor
systems. An illustrative example is presented to support the
result.
Index Terms—Negative imaginary systems, positive real sys-

tems, descriptor systems, Negative imaginary lemma.

I. INTRODUCTION

The Kalman Yakubovich Popov lemma and associated
results are used to characterize positive real (PR) systems
in terms of state-space realizations [1], [2]. PR systems, in
the single-input single-output (SISO) case, can be defined
as systems where the real part of the transfer function is
nonnegative. In general, most systems that dissipate energy
fall under the category of PR systems. For instance, they
can be realized by electric circuits with passive components
and magnetic couplings. However, in spite of their success,
a drawback of PR theory is the requirement for the relative
degree of the underlying system transfer function to be either
zero or one [2]. Due to this restriction on the relative degree
of the transfer function, PR systems theory cannot be applied
to systems such as flexible structures with collocated force
actuators and position sensors [3].
Lanzon and Petersen introduce a new class of systems in

[4], [5] called negative imaginary (NI) systems, which have
less restriction on the relative degree of the transfer function.
In the SISO case, such systems are defined by considering the
properties of the imaginary part of the frequency response
G(jω) = D + C(jωI − A)−1B, satisfying the condition
j (G(jω)−G(jω)∗) ≥ 0 for all ω ∈ (0,∞).
In general, NI systems are stable systems with their

frequency response having a phase lag between 0 and −π
for all ω > 0. That is, the Nyquist plot lies below the real
axis when the frequency varies in the open interval (0,∞)
(for strictly negative-imaginary systems, the Nyquist plot
should not touch the real axis except at zero frequency and at
infinity). This is similar to PR systems where the frequency
response is constrained to lie in the right half of the complex
plane [1], [2]. However, in constrast to PR systems, transfer
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functions for NI systems can have relative degree more than
unity.
NI systems can be transformed into PR systems and vice

versa under certain technical assumptions. However, this
equivalence is not complete. For instance, such a transfor-
mation applied to a strictly negative imaginary (SNI) system
always leads to a non-strict PR system. Hence, the passivity
theorem [1], [2] cannot capture the stability of the closed-
loop interconnection of an NI and an SNI system. Also, any
approach based on strict PR synthesis cannot be used for the
control of an NI system, irrespective of whether it is strict or
non-strict. Also, transformations of NI systems to bounded-
real systems for application of the small-gain theorem also
suffer from the exact same difficulty of giving a non-strict
bounded real system despite the original system being SNI;
see [6] for details.
Many practical systems can be considered as NI systems.

For example, when considering the transfer function from a
force actuator to a corresponding collocated position sensor
(for instance, a piezoelectric sensor) in a lightly damped
structure [3]–[5], [7]–[9] and in the case of large vehicle
platoons [10]. In [10], the authors apply stability results for
interconnecting negative imaginary systems to the decentral-
ized control of large vehicle platoons and demonstrate that
various designs can be used to enhance robust stability with
respect to small variations of coupling gains.
NI systems theory has been extended by Xiong et. al. in

[11]–[13] by allowing for simple poles on the imaginary
axis of the complex plane except at the origin. Further-
more, NI controller synthesis has also been discussed in
[4], [5]. In addition, it has been shown in [4], [5] that a
necessary and sufficient condition for the internal stability
of a positive-feedback interconnection of an NI system with
transfer function matrix M(s) and an SNI system with
transfer function matrix N(s) is given by the DC gain
condition λmax(M(0)N(0)) < 1. Here, the notation λmax(·)
denotes the maximum eigenvalue of a matrix with only real
eigenvalues. In addition, [5] presents an NI lemma which
gives a state space characterization of the NI property. This
NI lemma is used in the proof of the stability result of [5]
and the controller synthesis result of [3]. The more general
version of the NI lemma are contained in the papers [11]–
[14].
The existing NI lemma is restricted to regular time-

invariant linear systems. However, in many applications, the
underlying linear systems are in fact singular descriptor
systems and the existing NI theory cannot be applied to such
systems. Another motivation to consider the descriptor form
is that it often provides a more natural and general system
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representation than regular state-space systems see; e.g., [15].
The descriptor form is useful in representing systems such as
mechanical systems, electric circuits, interconnected systems,
and parameter-varying systems, to name a few.
In this paper, we extend the NI lemma in [3]–[5], [11]–

[14] to derive an NI lemma for descriptor systems.
This paper is further organized as follows: Section II

introduces the concept of PR and NI systems. The main
results of this paper are presented in Section III. A numerical
example is provided in Section IV. The paper is concluded
with a summary and remarks on future work in Section V.

II. PRELIMINARIES
In this section, we introduce the concept of PR and NI

systems in terms of previously established definitions and
lemmas.

A. Positive Real Systems
The definition of PR systems is motivated by the study

of linear electric circuits composed of resistors, capacitors,
and inductors. The same definition applies for analogous
mechanical and hydraulic systems. This idea can be extended
to study electric circuits with nonlinear passive components
and magnetic couplings. For a detailed discussion on PR
systems, see [1], [2] and references therein.
Definition 1: A transfer function f(s) is said to be posi-

tive real if:
1. f(s) is analytic in Re[s] > 0.
2. Re(f(s)) ≥ 0 for all Re[s] > 0.
3. f(s) is real for positive real s.
Definition 2: A square transfer function matrix F (s) is

positive real if:
1. F (s) has no pole in Re[s] > 0.
2. F (s) is real for all positive real s.
3. F (s) + F (s)∗ ≥ 0 for all Re [s] > 0.

Here F (s)∗ denotes the complex conjugate transpose of
F (s).

B. Negative Imaginary Systems
Definition 3: [14] A square transfer function matrix G(s)

is said to be NI if the following conditions are satisfied:
1) G(s) has no pole in Re[s] > 0.
2) For all ω ≥ 0, such that jω is not a pole of G(s),

j (G(jω)−G(jω)∗) ≥ 0.
3) if s = jω0 is a pole of G(s) then it is a simple
pole. Furthermore, if ω0 > 0 the residual matrix
K0 = lim

s−→jω0
(s − jω0)jG(s) is positive semidefinite

Hermitian.
4) s = ∞ is not a pole of G(s).

The following lemma is the existing NI lemma that we will
extend to descriptor systems. Consider the following LTI
system,

ẋ(t) = Ax(t) + Bu(t), (1)
y(t) = Cx(t) + Du(t), (2)

where, A ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×n, and D ∈

R
m×m.

Lemma 1: [14] Let (A,B, C, D) be a minimal realization
of the transfer function matrix G(s) for the system in (1)-
(2). Then, G(s) is NI if and only if there exist matrices
P = PT ≥ 0, W ∈ R

m×m, and L ∈ R
m×n such that the

following LMI is satisfied:[
PA + AT P PB −AT CT

BT P − CA −(CB + BT CT )

]
=

[
−LT L −LT W

−WT L −WT W

]

≤ 0. (3)

C. Descriptor Systems
Here, we consider some basic concepts concerning de-

scriptor systems, which can be found in [15], [16]. Consider
the following LTI descriptor system.

Eẋ(t) = Ax(t) + Bu(t), (4)
y(t) = Cx(t) + Du(t), (5)

where, E,A ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×n, and D ∈

R
m×m.
A pair (E,A) is said to be regular if det(sE − A) is

not identically zero, and is said to be impulsive-free if
deg det(sE−A) is equal to rank(E). The zeros of det(sE−
A) are called finite poles of (E,A). A pair (E,A) is called
stable if and only if all the finite poles of (E,A) lie in
Re[s] < 0, and (E,A) is called admissible if it is regular,
impulsive-free and stable.

D. Reduction to Weierstrass Form
To derive the main results in the paper, we introduce

the Weierstrass Form transformation [17]. The Weierstrass
transformation shows that the matrices A and E can be
assumed to be in a special form. The matrices A and E
are real n × n matrices and A − sE is assumed to be a
regular pencil. For any such pair of matrices A and E there
exist real nonsingular matrices T and Q such that [17]

QAT =

[
A1 0
0 In−q

]
, QET =

[
Iq 0
0 N

]
, (6)

where N ∈ R(n−q)×(n−q), A1 ∈ Rq×q and N l = 0 for some
integer l ≥ 1.

III. MAIN RESULTS
The main result of this paper is to extend Lemma 1 to

include descriptor systems.
Theorem 1: Suppose the descriptor system (4)-(5) such

that A− sE is a regular pencil, rank[A− sE B] = n and
rank[AT − sET CT ] = n. Then the corresponding transfer
function matrix G(s) is NI if:
1) The matrix N in (6) satisfies N = 0,
2) There exists a matrix P = PT ≥ 0 such that the
following LMIs are satisfied:[

PA + AT P PB −AT ET CT

BT P − CEA −(CEB + BT ET CT )

]
≤ 0,

PET = EP. (7)
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Proof: Without loss of generality, we can assume that
the matrices A and E are in Weierstrass form:

A =

[
A1 0
0 In−q

]
, E =

[
Iq 0
0 N

]
(8)

and the positive semidefinite matrix P takes the form

P =

[
P1 P3

PT
3 P2

]
≥ 0. (9)

It follows that

(sE −A)−1 =

[
(sE −A1)−1 0

0 (sN − I)−1

]
. (10)

Also, since N l = 0 for some l ≥ 1, we have

(sN − I)−1 = −
∞∑

i=0

N isi = −
l−1∑
i=0

N isi. (11)

Then, the transfer function of the descriptor system (4)-(5)
takes the form

G(s) = D + C1(sI −A1)−1B1 − C2(
l−1∑
i=0

N isi)B2 (12)

where

B =

[
B1

B2

]
;C =

[
C1 C2

]
. (13)

Now, since N = 0 and the matrix A − sE is a regular
pencil, it follows from (12) that the transfer function G(s)
takes the form

G(s) = D + C1(sI −A1)−1B1 − C2B2 (14)
= D1 + C1(sI −A1)−1B1, (15)

where D1 = D − C2B2.
Substituting (8) and (9) with N = 0 in the equation

PET = EP , it follows that

P =

[
P1 0
0 0

]
≥ 0. (16)

Substituting (8) and (16) in the LMI[
PA + AT P PB −AT ET CT

BT P − CEA −(CEB + BT ET CT )

]
≤ 0,

we get:⎡
⎢⎣

P1A1 + AT
1 P1 0 P1B1 −AT

1 CT
1

0 0 0
BT

1 P1 − C1A1 0 −(C1B1 + BT
1 CT

1 )

⎤
⎥⎦ ≤ 0. (17)

This implies that[
P1A1 + AT

1 P1 PB1 −AT
1 CT

1

BT
1 P1 − C1A1 −(C1B1 + BT

1 CT
1 )

]
≤ 0. (18)

Finally, Substituting (8) into [A − sE B] and [AT −
sET CT ] we get

[A− sE B] =

[
A1 − sI 0 B1

0 In−q B2

]
, (19)

[AT − sET CT ] =

[
AT

1 − sI 0 CT
1

0 In−q CT
2

]
. (20)

Since, rank[A−sE B] = n and rank[AT −sET CT ] = n
this implies that rank[A1 − sI B1] = q and rank[AT

1 −
sI CT

1 ] = q which implies that the state space realization[
A1 B1

C1 D1

]
is minimal.

It now follows from the LMI (18) and Lemma 1 that the
transfer function matrix G(s) is NI.
Remark 1: Using the Weierstrass form in (8) and (13), a

necessary and sufficient condition for the descriptor system
to be NI can be given as follows:
Consider the transfer function matrix G(s) for the system

(4), (5), (8) and (13) with A−sE a regular pencil, (A1, B1)
controllable and (A1, C1) observable. Then G(s) is NI if and
only if:
1) The matrix C2N

lB2 = 0 for all l ≥ 1.
2) There exist matrices P1 = PT

1 ≥ 0, W ∈ R
m×m, and

L ∈ R
m×n such that the following LMI is satisfied:[

P1A1 + AT
1 P1 P1B1 −AT

1 CT
1

BT
1 P1 − C1A1 −(C1B1 + BT

1 CT
1 )

]

=

[
−LT L −LT W

−WT L −WT W

]
. (21)

This fact follows directly from (12) and Lemma 1.

IV. ILLUSTRATIVE EXAMPLE
To illustrate the results in this paper, consider a descriptor

system with the following state space representation:

A =

⎡
⎢⎣
−1 0 0
0 −2 0
0 0 1

⎤
⎥⎦ ;E =

⎡
⎢⎣

1 0 0
0 1 0
0 0 0

⎤
⎥⎦

B =

⎡
⎢⎣

1
1
0

⎤
⎥⎦ ;C =

[
1 1 1

]
;D = 0.

Note that this descriptor system is already in Weierstrass
form.
For this descriptor system, the transfer function is:

G(s) =
(

2s + 3
s2 + 3s + 2

)
. (22)

By solving the LMI in (7), we get the following positive
semidefinite solution:

P =

⎡
⎢⎣

2.484 −2.969 0
−2.969 7.939 0

0 0 0

⎤
⎥⎦
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Fig. 1. The imaginary part of the frequency response of G(jω).

which implies that the system is NI using Theorem 1.
Also, a plot of the imaginary part of the transfer function

(22) is depicted in Fig 1, which verifies that the system is
NI.

V. CONCLUSION
In this paper, we presented an extension of the NI lemma

for regular time-invariant linear systems to the singular
(descriptor) case. The NI lemma for descriptor systems is
given by formulating LMI conditions in a similar fashion to
the corresponding regular case. The results in this article can
be employed to check for the negative imaginary property of
descriptor systems via solution to certain LMIs.
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