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Abstract

We present two novel approaches for obtaining stabil-
ity robustness information about linear time-invariant
systems with norm-bounded time-varying output mul-
tiplicative perturbations using Vinnicombe metrics.
First, a time-varying Vinnicombe metric approxima-
tion between a nominal linear time-invariant system
and the perturbed linear time-varying system is devel-
oped, and we show that a calculable tight upper bound
may be placed on the approximation for a subclass of
small, periodic output multiplicative errors. Second,
we show that a worst-case time-invariant Vinnicombe
metric may be used to obtain stability robustness in-
formation about the perturbed time-varying system.

1 Introduction

Vinnicombe metrics provide a means of quantifying
feedback system stability robustness, yet in the linear
time-invariant case alone does computation of the met-
ric generally remain straight forward. Of course, linear
time-invariance is not a truthful characteristic of ‘real-
life’ physical systems, and it is these ‘real-life’ systems
for which we wish to design feedback controllers such
that they are stable and achieve a certain level of per-
formance. It is therefore desirable to construct Vinni-
combe metric methods requiring simple calculation for
nonlinear and linear time-varying cases if one wishes
to utilize the Vinnicombe metric to examine the feed-
back system’s stability robustness. In this paper we
present two such methods with respect to the linear
time-varying case.

1This work was supported by the Australian Government
through the Department of Communications, Information Tech-
nologies and the Arts and by the Australian Research Council
via a Discovery-Project Grant and the Centre of Excellence pro-
gram.

The Vinnicombe, or ν-gap, metric, was developed by
[14] for linear time-invariant (LTI) systems. Together
with the generalized robust stability margin bP0,C (for
instance, [6]), it was shown to have properties which
provided conditions for LTI system feedback control
stability [14]. As was done with the gap metric, in-
troduced by [15] and later exploited by [5], it was
shown that for a given nominal LTI plant and con-
troller achieving a specified robust stability margin,
the same controller is guaranteed to stabilize a per-
turbed LTI plant provided the distance between the
original and perturbed plant measured in the gap or
ν-gap metric is sufficiently small. On occasions, the
ν-gap metric may be of more advantage than the gap
metric in that its calculation is simpler. It also has
the additional property that if the distance between a
nominal and perturbed LTI plant measured in the ν-
gap metric is not sufficiently small, then the perturbed
plant will be destabilized by some controller achieving
a specified robust stability margin with the nominal.

Nonlinear (for instance, [13] and [1]) and time-varying
(such as [1]) Vinnicombe metrics have been developed,
just as the gap metric was extended to nonlinear sys-
tems [4], though calculation of these metrics has not
been analytically possible for classes of general sys-
tems. For example, [4] developed an input-output
framework for robustness analysis of nonlinear systems
utilizing the gap metric, and performed stability calcu-
lations for tractable examples. The calculation of non-
linear and time-varying ν-gap metric upper bounds for
simple classes of nonlinear and time-varying systems
has also been attempted, as has been done in the gap
metric case. For instance, [13] places an upper bound
on the nonlinear ν-gap metric by describing the nonlin-
earities in terms of integral quadratic constraints and
using convex optimization. [1] placed an upper bound
on the time-varying ν-gap metric between two linear
time-varying plants related by an output multiplicative
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error (see figure 1 with time-varying P0).

P0

P0
+

∆(t)

Figure 1: System configurations with time-varying out-

put multiplicative error

In this paper, we present two calculable ν-gap met-
ric methods with respect to linear time-varying (LTV)
system stability robustness. We consider LTV systems
and the time-varying ν-gap metric, even though our ul-
timate goal is to use the ν-gap metric to study robust
stability for nonlinear systems. This is because nonlin-
ear systems can be linearized about trajectories to give
LTV systems, and then linear techniques can be uti-
lized for the (much simpler) formulation of the ν-gap
metric. Since these trajectories about which lineariza-
tion is done are generally unknown, it makes sense to
consider classes of LTV systems, rather than single sys-
tems alone. Also, we are considering only the class of
LTI systems in cascade with a small, norm-bounded
output multiplicative time-varying error (see figure 1,
P0 time-invariant) for simplicity’s sake, though the re-
sults may be manipulated to the input multiplicative
error case. Examples of such classes of systems occur
in practice when you have input saturation nonlinear-
ities or output sensor nonlinearities.

The first result is a derivation of a first-order approxi-
mation of the time-varying ν-gap metric, defined by [1],
between a nominal LTI plant, P0, and a LTV plant, re-
lated to the nominal by a norm-bounded output multi-
plicative error, as in figure 1. We then illustrate a tech-
nique which places a computable upper bound on the
ν-gap metric approximation and show that for a class
of small periodic output multiplicative uncertainties,
the upper bound is a tighter result than the general
upper bound of [1].

Secondly, we appeal to a result of [11] and [2] which
gives necessary and sufficient conditions for the system
in figure 2 (that is, the system in figure 1 with closed-
loop) to achieve robust stability for all output LTV per-
turbations, ∆(t), with ||∆|| ≤ ε, and show via the small
gain argument that the system in figure 3 shares the
same necessary and sufficient conditions for all output
stable LTI perturbations, εδ, with ||δ||∞ ≤ 1 for robust
stability achievement. It is also known from [14] that
the system in figure 3 is stable for all norm-bounded
δ if the nominal closed-loop LTI system is stable and
the ν-gap distance between the nominal plant and the

P0
+

∆(t)

C +

+

Figure 2: Closed-loop system with time-varying pertur-

bation

LTI perturbed plant as shown in figure 4 is sufficiently
small (in the generalized robust stability margin sense
[14]). Hence, we formulate a calculable worst-case LTI

P0
+

εδ

C +

+

Figure 3: Closed-loop system with time-invariant pertur-

bation

P0

P0
+

εδ

Figure 4: System configurations with time-invariant out-

put multiplicative error

ν-gap metric with respect to a norm-bounded δ, which
can be used to infer stability robustness information
about the original time-varying system. We allude to
the scenario where the aim is to design a LTI controller
for a nominal LTI plant which has a small nonlinear-
ity on the time-varying gain (after linearization) at the
input or output.

The paper is outlined as follows. Section 2 motivates
in greater detail the use of classes of LTV systems to
study nonlinear system stability robustness. In sec-
tion 3, the mathematical results required for the time-
varying ν-gap metric formulation are given, followed by
the formal definition of the time-varying ν-gap metric
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itself, as developed by [1]. Section 4 states the time-
varying ν-gap metric upper bound for LTV systems
related by a norm-bounded output multiplicative er-
ror, as given by [1]. We then develop our first-order
time-varying ν-gap metric approximation for a nomi-
nal LTI plant and a LTV plant related to the nominal
by a small time-varying output multiplicative pertur-
bation. Following this, the method for placing an up-
per bound on the approximation is illustrated, and by
an example we show that this upper bound is tight
when the output multiplicative error is represented by
a subclass of periodic functions. Lastly, the worst-case
(with respect to norm-bounded δ) time-invariant ν-gap
metric, which can be used to infer stability robustness
information for the system as shown in figure 2, with
output multiplicative norm-bounded time-varying per-
turbation, ∆(t), is formulated in section 5.

1.1 Notation

Let AT and A∗ denote the transpose and complex con-
jugate transpose, respectively, of a matrix A, and X∼

denote the adjoint (in the sense of [10]) of a linear
operator X. L1, L2 and L∞ denote the corresponding
Lebesgue spaces, each with norms ||·||1, ||·||2 and ||·||∞,
respectively. L2[0, T ] is the finite horizon Lebesgue
space, and L2e = {f ∈ L2[0, T ] for all T < ∞} de-
scribes the extended Lebesgue space. Let H∞ denote
the Hardy space which is a closed subspace of L∞ with
functions that are analytic and bounded in the open
right-half plane, and with norm notation also || · ||∞,
and RH∞ denotes the real rational subspace of H∞
which consists of all proper and real rational stable
transfer matrices. || · || denotes the L2-induced norm
for LTV operators, with the L2-induced norm equal-
ing the infinity norm of the transfer function for LTI
systems.

2 Motivation for time-varying system

analysis

Nonlinear differential equations describe the dynamics
of nonlinear systems. Taking a state vector x, an in-
put vector u and an output vector y, these nonlinear
equations may be written as

ẋ(t) = f(x(t), u(t))

y(t) = g(x(t)),

where f , g are continuously differentiable.

Linearizing about some trajectory (x0(t), u0(t)), the
following linear time-varying system is obtained

˙̃x(t) = A(t)x̃(t) + B(t)ũ(t)

ỹ(t) = C(t)x̃(t),

where A(t) = ∂f
∂x

∣

∣

∣

(x0(t),u0(t))
, B(t) = ∂f

∂u

∣

∣

∣

(x0(t),u0(t))

and C(t) = ∂g
∂x

∣

∣

∣

x0(t)
, for which it is now possible to

utilize linear techniques for Vinnicombe metric formu-
lation. Since the trajectories that we are linearizing
about, however, may be unknown a priori, it makes
sense to consider classes of LTV systems rather than
single systems themselves.

This paper considers only strictly proper LTI sys-
tems in cascade with small output multiplicative time-
varying errors, though the methods are also applicable
if the time-variation occurs at the nominal plant’s in-
put. Examples of this occur in practice when you have
input saturation nonlinearities or output sensor non-
linearities.

Let the input and output spaces be U := L2e and Y :=
L2e, respectively. In packed matrix notation, a LTI or
LTV system P can be written as

P =

(

A(t) B(t)
C(t) D(t)

)

, (1)

where A, B, C and D of (1) are constant matrices if
P is LTI.

3 Time-varying ν-gap metric definition

In this section, we state the time-varying ν-gap met-
ric, as developed by [1]. Firstly, however, the prelimi-
nary mathematics necessary for the formulation is pre-
sented.

3.1 Graph symbol representation

A system, P , may be described in terms of its graph.
The graph of a system is its set of all possible input-
output pairs. Formally, the graph of P is

GP :=

{(

Pu

u

)

: u ∈ U , Pu ∈ Y
}

.

Normalized coprime factors (in the sense of [10] and [1])
are a useful way of giving a representation of the graph.
P = NM−1 (where M and N are linear bounded oper-
ators mapping L2 to L2) is said to be a right-coprime
factorization if N and M are right-coprime (that is,
there exists bounded linear operators X and Y map-
ping L2 to L2, such that XM + Y N = I). If the
right-coprime factorization P = NM−1 is such that
M∼M+N∼N = I, we say that {N,M} are normalized
right-coprime factors of P [10]. Similarly, P = M̃−1Ñ

is a left-coprime factorization of P if Ñ and M̃ are
left-coprime (that is, there exists X̃ and Ỹ such that
M̃X̃ + Ñ Ỹ = I), and we say {Ñ , M̃} are normalized
left-coprime factors of P = M̃−1Ñ if {Ñ , M̃} are left-
coprime and M̃M̃∼ + ÑÑ∼ = I [10].

The following lemma shows that uniform stabilizability
and detectability are sufficient to ensure the existence

073-40-3016-9 © 2004 ASCC



and uniqueness of stabilizing solutions to standard con-
trol and filter differential Riccati equations. This result
is used in the formulatioin of normalized right and left
graph symbols.

Lemma 1 [10] Let P be a finite-dimensional linear
time-varying system as in (1) but with D(t) ≡ 0 for all
t and with uniformly stabilizable and detectable realiza-
tion. Define the generalized control differential Riccati
equation (GCDRE) as

−Ẋ(t) = A(t)T X(t) + X(t)A(t) + C(t)T C(t)

− X(t)B(t)B(t)T X(t),
(2)

with X(tf ) = 0 as tf → ∞. Similarly, define the gen-
eralized filtering differential Riccati equation (GFDRE)
as

Ẏ (t) = A(t)Y (t) + Y (t)A(t)T + B(t)B(t)T

− Y (t)C(t)T C(t)Y (t),
(3)

with Y (ts) = 0 as ts → −∞. There exist bounded sym-
metric solutions X(t) ≥ 0 and Y (t) ≥ 0 to the GCDRE
and GFDRE respectively. Furthermore, these solutions
are stabilizing in the sense that ẋ = (A(t)+B(t)F (t))x
and ẋ = (A(t) + H(t)C(t))x are exponentially stable,
where F (t) := −B(t)T X(t) is the generalized control
gain and H(t) := −Y (t)C(t)T is the generalized filter
gain.

Proof: The proof is given in [10].

If P is a strictly proper LTI system, equations (2) and
(3) reduce to the standard generalized control algebraic
Riccati equation (GCARE)

0 = AT X + XA − XBBT X + CT C (4)

and the generalized filter algebraic Riccati equation
(GFARE)

0 = AY + Y AT − Y CT CY + BBT , (5)

respectively, with stabilizing symmetric solutions X ≥
0 and Y ≥ 0, respectively, constant.

Based on the lemma, it has been shown [10] that the

normalized right graph symbol G =

(

N

M

)

for P can

be formulated as





A(t) + B(t)F (t) B(t)
C(t) 0
F (t) I



 and the

normalized left graph symbol G̃ =
(

−M̃ Ñ
)

can be

given as

(

A(t) + H(t)C(t) −H(t) B(t)
C(t) −I 0

)

. Note

that the entries in the realizations are constant if P is
LTI.

3.2 Time-varying ν-gap metric definition

The ν-gap metric for LTV systems, as developed by
[1], is given below. This definition is analogous to the
LTI ν-gap metric [14].

Definition 1 [1] Suppose that P1 and P2 are two
finite-dimensional plants with the same number of
inputs and outputs and with state-space realizations

Pi =

[

Ai(t) Bi(t)
Ci(t) Di(t)

]

, where A is continuous and A,

B, C and D are bounded. Suppose further that each
{Ai(t), Bi(t), Ci(t), Di(t)} is uniformly stabilizable and
detectable and that normalized coprime factorization
descriptions Pi = NiM

−1
i = M̃−1

i Ñi are fixed with

Gi =

[

Ni

Mi

]

and G̃i =
[

−M̃i Ñi

]

. Define

δν(P1, P2) =

{

‖G̃1G2‖ if (i) and (ii) hold,

1 otherwise,

where (i) is the condition that the number of posi-
tive Lyapunov exponents (see [8] for definition) of (6)2

equals the number of positive Lyapunov exponents of
(7)3, and (ii) is the requirement that the Lyapunov ex-
ponents of (6) are all nonzero.

Lyapunov exponents [8] generalize the concept of poles
to LTV systems, so (i) and (ii) are equivalent to re-
quiring det(G∗

1G2) to have zero-winding number and
to being not equal to zero on the jω axis, respectively,
in the time-invariant case.

It is evident that difficulties will arise regarding the
calculation of the time-varying ν-gap metric, such as
the requirement to solve generalized differential Ric-
cati equations for graph symbol formulation which is
in general not analytically possible. For instance, con-

sider a simple LTV plant P =

(

−1 1
1 + ε sin at 0

)

with ε ∈ [0, 1]. From (2), the GCDRE is −Ẋ(t) =
−2X(t) − X(t)2 + (1 + ε sin at)2, which, to the best
of our knowledge, cannot be solved analytically. We
thus turn our attention to formulating upper bounds
or an approximation to the ν-gap metric for classes of
time-varying systems as an alternative to calculating
the metric directly.

2

(

−(A1 − B1SDT

2
C1)T CT

1
(I + D2DT

1
)−1C2

B2ST BT

1
A2 − B2DT

1
(I + D2DT

1
)−1C2

)

,

(6)
where S := (I + DT

2
D1)−1.

3

(

−(A1 + B1F1)T (C1 + D1F1)T (C2 + D2F2) + F T

1
F2

0 A1 + B2F2

)

(7)
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4 Upper bound and approximation to

the time-varying ν-gap metric

In this section, we derive a first-order approximation
to the time-varying ν-gap metric between a LTI plant
and a plant that is related to the nominal by a norm-
bounded time-varying perturbation. We then formu-
late an upper bound on the approximation, and show
by example that this bound is tight for a small pe-
riodic time-varying perturbation with respect to the
upper bound given by [1].

4.1 Time-varying ν-gap metric upper bound

The following corollary of [1] places an upper bound on
the time-varying ν-gap metric between two LTV plants
related by a norm-bounded output multiplicative error,
as shown in figure 1 with time-varying P0.

Corollary 1 [1] Let P0 = NM−1 be a normalized co-
prime factorization description of a finite-dimensional
linear time-varying plant and let ∆ be a stable linear
operator with bound ||∆|| < 1 so that an output mul-
tiplicative perturbation of P0 is given by (I + ∆)P0 =
(I + ∆)NM−1. Then

δν(P0, (I + ∆)P0) ≤ ||∆ N ||. (8)

Proof: The proof is given in [1].

For example, consider P0 =

(

−1 1
1 0

)

and the per-

turbed LTV plant (I + ∆)P0 =

(

−1 1
1 + ε sin at 0

)

.

Solving (4) gives a stabilizing solution of X = −1+
√

2,
from which one obtains N = 1

s+
√

2
. Then, from (8),

an upper bound for the time-varying ν-gap metric
between P0 and (I + ∆)P0 is δν(P0, (I + ∆)P0) ≤
||ε sin at.N || ≤ |ε||| sin at||||N ||∞ = ε√

2
.

4.2 Time-varying ν-gap metric approximation

Now consider a strictly proper LTI system, P0, and a
small time-varying error ∆(t) with ||∆|| � 1, such that
an output multiplicative perturbation of P0 is given by
(I+∆)P0 (as shown in figure 1 with P0 time-invariant).
Assume that the corresponding GCDRE as given by
(2) for the perturbed plant is well-conditioned in the
sense of [9], and the perturbed solution to the GCDRE
is well-defined. A first-order time-varying ν-gap metric
approximation is given as follows.

Theorem 1 Suppose P0 is a finite-dimensional LTI

system with state-space realization P0 =

(

A B

C 0

)

.

Suppose further that (A,B) and (C,A) are stabilizable
and detectable, respectively, and that P0 = NM−1 =
M̃−1Ñ are normalized coprime factorizations with

G =

(

N

M

)

and G̃ =
(

−M̃ Ñ
)

. Let ∆(t) be a

sufficiently small time-varying perturbation such that
(i) and (ii) are satisfied and second/higher order terms
are negligible. Then a first-order approximation of the
time-varying ν-gap metric between a LTI plant P0 and
a LTV plant of the form (I + ∆)P0 is given by

δν(P0, (I + ∆)P0) ≈ ||M̃ ∆ N ||. (9)

Proof: To be published elsewhere.

The approximation is useful since it gives an approxi-
mate value of a time-varying ν-gap metric rather than
simply an upper bound. Furthermore, note that an up-
per bound on the time-varying ν-gap metric approxi-
mation (9) is ||G̃1G2|| ≈ ||M̃ ∆ N || ≤ ||M̃ ||∞||∆ N || =
||∆ N ||, since ||M̃ ||∞ = 1 always for a normalized co-
prime factor of a strictly proper plant P0. This is the
same as (8) for small ∆(t) and LTI P0.

We now illustrate the method for placing an alternative
upper bound on the approximation which, for a class
of periodic output multiplicative errors, is tighter at
the expense of requiring more difficult calculations.

4.3 ν-gap metric approximation upper bound

Note that G̃1G2 ≈ M̃ ∆ N = −M̃ ∆ N =




A − Y CT C Y CT ∆(t)C 0
0 A − BBT X B

C −∆(t)C 0



 . (10)

(10) can be expressed as a function of an output signal,
z(t), as follows. (10) is described by the equations

ẋ(t) = Â(t)x(t) + B̂v(t)

z(t) = Ĉ(t)x(t),

where Â(t) =

(

A − Y CT C Y CT ∆(t)C
0 A − BBT X

)

, B̂ =
(

0
B

)

and Ĉ(t) =
(

C −∆(t)C
)

.

Let x(−∞) = 0. Associated with these equations is
a state transition matrix φ(t, τ), which is the solu-
tion to the array of first-order differential equations
d
dt

φ(t, τ) = Â(t)φ(t, τ), where φ(τ, τ) = I. Note that
φ(t, τ) can easily be obtained analytically due to the
special form of the upper triangular matrix with LTI
terms on the main diagonal. Then the output signal
of the system (10) is

z(t) =

∫ ∞

−∞
h(t, τ)v(τ)dτ, (11)

where h(t, τ) = µ(t−τ)
(

C −∆(t)C
)

φ(t, τ)

(

0
B

)

[7], with µ(·) denoting a unit step function (ie: µ(α) =
1 when α ≥ 0 and µ(α) = 0 otherwise).

The following two lemmas define the L1- and L∞-
induced norms, c1 and c∞, respectively, and give con-
ditions for L1 and L∞ stability of the system given by
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(10). These results are utilized to formulate the upper
bound on the L2-induced norm of system given by (10)
in theorem 2.

Lemma 2 [3] Let z(·) and v(·) be related by (11),
where v(·), z(·) : R → R. Suppose v ∈ L1 and that
h(t, ·) is bounded ∀t ∈ R. Then v ∈ L1 ⇒ z ∈ L1,
and moreover, there exists a constant c < ∞ such that
||z||1 ≤ c||v||1 if and only if supτ∈R

∫∞
−∞ |h(t, τ)|dt =

c1 < ∞.

Proof: The proof is given in [3].

Lemma 3 [3] Let z(·) and v(·) be related by (11),
where v(·), z(·) : R → R. Suppose v ∈ L∞ and that
h(t, ·) is bounded ∀t ∈ R. Then v ∈ L∞ ⇒ z ∈ L∞,
and moreover, there exists a constant c < ∞ such that
||z||∞ ≤ c||v||∞ if and only if supt∈R

∫∞
−∞ |h(t, τ)|dτ =

c∞ < ∞.

Proof: The proof is given in [3].

Theorem 2 [3] Consider (11). If (a) some constant
c1 satisfies

∫∞
−∞ |h(t, τ)|dt ≤ c1 < ∞ for all τ ∈ R, and

(b) some constant c∞ satisfies
∫∞
−∞ |h(t, τ)|dτ ≤ c∞ <

∞ for all t ∈ R, then v ∈ L2 ⇒ z ∈ L2, and moreover,
||z||2 ≤ √

c1c∞||v||2.

Proof: The proof is given in [3].

The method is illustrated with the following exam-
ple where the output multiplicative error is given by

a small periodic function. Let P1 =

(

−1 1
1 0

)

be

the nominal LTI plant and P2 =

(

−1 1
1 + ε sin at 0

)

be the perturbed LTV plant, with ε small. Stabiliz-
ing solutions to (4) and (5) are X = −1 +

√
2 and

Y = −1 +
√

2, respectively, such that, from (10),

G̃1G2 ≈





−
√

2 (−1 +
√

2)ε sin at 0

0 −
√

2 1
1 −ε sin at 0



 . (12)

With a state transition matrix, φ(t, τ) =

(

e−
√

2(t−τ) (−1+
√

2)εe−
√

2(t−τ)(cos aτ−cos at)
a

0 e−
√

2(t−τ)

)

,

system (12) expressed as a function of system output

is z(t) =
∫∞
−∞ µ(t − τ)εe−

√
2(t−τ)f(t, τ)v(τ)dτ , where

f(t, τ) = −1+
√

2
a

(cos aτ − cos at) − sin at, and hence

c1 = sup
τ∈R

ε

{∫ ∞

τ

e−
√

2t|f(t, τ)|dt e
√

2τ

}

(13)

c∞ = sup
t∈R

ε

{∫ t

−∞
e
√

2τ |f(t, τ)|dτ e−
√

2t

}

. (14)

A minor difficulty in calculating c1 and c∞ arises from
the modulus signs appearing in the integrals of (13)
and (14). To calculate these integrals, observe that
f(t, τ) is periodic in t and τ , respectively. Finding
the zeros of f(t, τ) allows for each integral to be split
into the sum of two geometric series, and the modulus
signs are dealt with explicitly by manipulating the sign
of f(t, τ) to make it always equal to |f(t, τ)|.
Once the integrals are calculated, the resulting formu-
lae in the parentheses of (13) and (14) can be plot-
ted in figures, such as figures 5 and 6 with frequency
a = 1 for example, to find the suprema and hence
the induced norms. For example, from figures 5 and

−8 −6 −4 −2 0 2 4 6 8
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

τ

∫∞
 

τ 
e−√

 2
t |f(

t,τ
 )|

dt
 e

√ 
2τ

 

Figure 5: c1

−8 −6 −4 −2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

∫t −∞
 e√ 

2τ
 |f(

t,τ
 )|

dτ
 e

−√
 2

t

Figure 6: c∞

6 we obtain c1 and c∞ to be ε0.5043 and ε0.5773,
respectively. Therefore, from theorem 2, an upper
bound on the approximation to the time-varying ν-
gap metric between systems P1 and P2 for a = 1 is
||M̃ ∆ N || ≤ √

c1c∞ =
√

ε0.5043ε0.5773 = ε0.5396.

Taking the calculation one step further, a worst-case
upper bound may be found by calculating each upper
bound for all frequencies, a, over the range as shown
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in figure 7. So for the class of sine function output
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Figure 7: Worst-case upper bound

multiplicative errors, ε sin at, with ε small, a worst-case
upper bound to the time-varying Vinnicombe metric
approximation is ε0.5786, and this is a tighter result
than that of [1], which in this case is ε0.7071.

5 A worst-case linear time-invariant

ν-gap metric

In this section, we formulate a worst-case time-
invariant ν-gap metric (with respect to a norm-
bounded time-invariant perturbation, δ), which can
be used to postulate stability robustness of a LTV
system. Again, we consider the nominal plant to
be LTI, and the LTV plant to consist of a norm-
bounded, time-varying, output multiplicative pertur-
bation to the nominal. Our formulation, given in sec-
tion 5.2, applies to single-input single-output (SISO)
systems, though the necessary and sufficient condition
for robust stability of a LTI plant with a structured
LTV perturbation given in theorem 3 holds for the
multi-input multi-output (MIMO) case. This theorem
is stated in section 5.1, where it is also shown by use
of a small gain argument that, in the SISO case, a per-
turbed LTI system with structure as shown in figure 3
shares the same necessary and sufficient condition for
robust stability. Finally, in section 5.3, we state a sta-
bility robustness result for the output multiplicatively
perturbed LTV plant which utilizes the worst-case LTI
ν-gap metric.

5.1 The time-varying system stability robust-

ness problem

Suppose P0 is a strictly proper LTI plant. Let ∆̃ de-
note the set of all block diagonal, LTV, causal pertur-
bations, ∆̃, with ||∆̃|| ≤ 1. For simplicity, assume that
each block is a square LTV matrix of dimension pi×pi.

The stability robustness problem for the time-varying
closed-loop system in figure 2 can be cast as shown in

figure 8, where G =

(

0 εP0

I P0

)

is the transfer func-

tion matrix mapping input signals to output signals.
Denoting Z := Fl(G,C), the system of figure 8 is fur-

G

C

∆(t)~

Figure 8: Recasting of the closed-loop time-varying sys-

tem

ther reduced to the system shown in figure 9.

Z

∆(t)~

Figure 9: Stability robustness problem

Associate with ∆̃ a set of scalings that commute with
the set of perturbations. For instance, choose D =
{diag (d1Ip1

, d2Ip2
, . . . , dnIpn

) | di ∈ R, di > 0} such

that D−1∆̃(t)D = ∆̃(t) for all ∆̃(t) ∈ ∆̃. Consider
the closed-loop system in figure 10. It follows that the

Z

D

D-1D

D-1 ∆(t)~

Figure 10: Re-scaled system

stability robustness condition for Z and D−1ZD is the
same for any D ∈ D.

We now quote a theorem from [11] and [2] that gives
the stability robustness condition for the time-varying
system.

Theorem 3 The system in figure 9 achieves ro-
bust stability for all ∆̃(t) ∈ ∆̃ if and only if
infD∈D ||D−1ZD||∞ < 1.

Proof: The proof is given in [11] and [2].
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We now proceed considering only SISO systems. In
this case, the D-scales drop from the formulation and
hence the necessary and sufficient condition for robust
stability in theorem 3 becomes simply ||Z||∞ < 1.

If the LTI system in figure 3 is similarly recast as a ro-
bust stability problem as in figure 9 but with δ ∈ RH∞
and ||δ||∞ ≤ 1 replacing ∆̃(t) ∈ ∆̃, then by the small
gain theorem (for instance, see [16]), the LTI system
shares the same condition for robust stability, that is,
the closed-loop LTI system is also robustly stable for
all δ ∈ RH∞ : ||δ||∞ ≤ 1 if and only if ||Z||∞ < 1. We
thus have lemma 4.

Lemma 4 Robust stability for all δ ∈ RH∞ : ||δ||∞ ≤
1 of the LTI system in figure 3 is equivalent to robust
stability for all ∆(t) : ||∆|| ≤ ε of the LTV system in
figure 2.

Proof: Since both δ and ∆(t) are SISO perturba-
tions, ||Z||∞ < 1 is equivalent to both the first and
second parts of the lemma statement.

5.2 Formulation of a worst-case LTI ν-gap met-

ric

We now recast the stability problem for the LTI system
in figure 3 in terms of the ν-gap metric. From [14], we
know that if the distance between P0 and the perturbed
plant (1+εδ)P0, measured in the ν-gap metric, is suffi-
ciently small in the generalized robust stability margin
sense for all δ ∈ RH∞ : ||δ||∞ ≤ 1, and the nominal
closed-loop system is stable, then the time-invariant
perturbed system as shown in figure 3 is stable for all
δ ∈ RH∞ : ||δ||∞ ≤ 1. That is, if [P0, C] is stable and

δν(P0, (1 + εδ)P0) < bP0,C

∀δ ∈ RH∞ : ||δ||∞ ≤ 1, then [(1 + εδ)P0, C] is stable
∀δ ∈ RH∞ : ||δ||∞ ≤ 1. Clearly, this statement can be
rewritten as follows: if [P0, C] is stable and

sup
δ∈RH∞:||δ||∞≤1

δν(P0, (1 + εδ)P0) < bP0,C , (15)

then [(1+εδ)P0, C] is stable for all δ ∈ RH∞ : ||δ||∞ ≤
1.

Using the SISO chordal distance formula for the LTI
ν-gap metric given by [12], we can now reformulate
supδ∈RH∞:||δ||∞≤1 δν(P0, (1+ εδ)P0) into an easily cal-
culable form for which the winding number condition
is always satisfied by finding upper and lower bounds
on the worst-case ν-gap metric, which both equate to
δν(P0, (1 − ε)P0).

Theorem 4 Given ε ∈ [0, 1),

sup
δ∈RH∞:||δ||∞≤1

δν(P0, (1 + εδ)P0) = δν(P0, (1 − ε)P0).

Proof: To be published elsewhere.

From theorem 4 and (15), we have the following lemma.

Lemma 5 If [P0, C] is stable and δν(P0, (1 − ε)P0) <

bP0,C , then the LTI closed-loop system [(1+εδ)P0, C] as
shown in figure 3 is stable for all δ ∈ RH∞ : ||δ||∞ ≤ 1.

Proof: Follows directly from theorem 4 and theorem
3.8 from [12].

5.3 Stability robustness result for time-varying

systems

We now have the following stability robustness re-
sult for output multiplicatively perturbed SISO time-
varying systems.

Theorem 5 Suppose P0 is a nominal LTI plant and
the closed-loop system [P0, C] is stable. If δν(P0, (1 −
ε)P0) < bP0,C , then the LTV closed-loop system [(1 +
∆)P0, C] as shown in figure 2 is stable for all causal
LTV perturbations ∆(t) satisfying ||∆|| ≤ ε.

Proof: By lemma 5, we know that if the LTI ν-gap
metric between P0 and (1 − ε)P0 is sufficiently small,
then the LTI closed-loop system [(1+εδ)P0, C] is stable
for all δ ∈ RH∞ : ||δ||∞ ≤ 1. Then, by lemma 4, the
LTV closed-loop system[(1 + ∆)P0, C] must be stable
for all ∆(t) such that ||∆|| ≤ ε.

The following example illustrates the power of theorem
5. Again consider P0 = 1

s+1 . The worst-case time-
invariant ν-gap metric calculation gives δν(P0, (1 −
ε)P0) = ε√

2
√

ε2−2ε+2
for some ε ∈ [0, 1). This func-

tion is shown in the following figure (solid line), along
with the time-varying ν-gap metric upper bound, ε√

2
,

from [1] (dashed line), and the time-varying ν-gap met-
ric approximation upper bound, ε0.5786, obtained in
section 4.3 (dotted line), for output multiplicative er-
ror ∆(t) = ε sin at. Note that the upper bound on the
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Figure 11: Comparison of examples
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approximation is only valid for small ε since it is an
approximation.

From the figure, we can deduce that if the time-varying
Vinnicombe metric upper bound of ε√

2
is to be used

to provide stability robustness information about the
time-varying system with form (1 + ε sin at)P0, one
would require a larger generalized robust stability mar-
gin, bP0,C . This is the same as saying that the upper
bound from [1] gives a more conservative test for ro-
bust stability of LTV systems than the results derived
in this paper. For known subclasses of output multi-
plicative errors and small ε, the upper bound on the
ν-gap metric approximation may be able to be used,
thus requiring a smaller bP0,C , though at the expense
of more difficult calculations. However, for both ease of
calculation and for the requirement of a smaller gen-
eralized robust stability margin, the stablity test of
theorem 5 is shown to be a powerful alternative for
determining LTV system stability.

6 Conclusion

One aim of this paper was to present a first-order ap-
proximation to the time-varying Vinnicombe metric
between a LTI nominal system and a LTV system, re-
lated to the nominal by an output multiplicative error.
An approach for placing a relatively tight upper bound
on the approximation was shown for a subclass of small
periodic output multiplicative errors. This calculable
upper bound on the approximation may then be used
to postulate stability robustness of the time-varying
system. For larger or for more general classes of output
multiplicative perturbations, the upper bound from [1]
may be used at the expense of more conservative re-
sults. It was also shown that a worst-case LTI ν-gap
metric which is easily calculated can instead be used
to postulate stability robustness of a SISO LTV out-
put multiplicatively perturbed plant. This worst-case
LTI ν-gap metric calculation is simple to compute and
gives a result that is sufficiently tight in the sense that
it requires a smaller generalized robust stability mar-
gin to guarantee robust stability of the LTV system.
We have made an initial attempt to generalize the re-
sults of this paper to general MIMO systems and our
calculations seem very promising. These MIMO gen-
eralizations will be published elsewhere.
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