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Abstract

This paper presents a new robust trajectory/force controller
for non-redundant rigid manipulators designed using sliding-
mode and adaptive control techniques. Slidlng-mode control
is used to take care of the uncertain robot dynamics, whereas
adaptive control is used to estimate the unknown environ-
ment stiffness. Experimental results show that trajectory
tracking and force regulation are achieved with bounded er-
rors. This paper assumes known location and geometry of
the environment.

Keywords: compliant motion control, constrained mo-
tion control, trajectory control, force control, sliding-mode
control, adaptive control.

1 Introduction

Several researchers have investigated the problem of tra-
jectory control of rigid robots and such control schemes
are now well known [1, 4, 12]. These control techniques
are adequate when the manipulator does not interaction
significantly with the environment, but in applications
where considerable contact is necessary, the control of
both force and position is required. The task then is to
exert a desired profile of force in the constrained degrees
of freedom while following the reference trajectory in the
unconstrained degrees of freedom. This is generally re-
ferred to as the Compliant Motion Control problem.

The problem is non-trivial because the location and
geometry of the environment are usually not well known,
the environment stiffness is also usually unknown, tra-
jectory tracking and force regulation must occur in the
presence of model uncertainty and disturbances, the
controller must be capable of handling changes in con-
straints, and the force measurement is usually very noisy
thus prohibiting force derivatives to be computed.

The problem considered here is that of controlling a
general n-degree of freedom non-redundant rigid ma-
nipulator to track reference trajectories in the uncon-
strained directions and to regulate force at a desired
value in the constrained directions, in the presence of
model uncertainty and unknown environment stiffness.
Furthermore, changes in constraints are also consid-
ered. Alternative ways of addressing this problem can
be found in [5,8,9, 13] and references therein.
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2 Problem Formulation

Consider a non-redundant rigid manipulator with n-
degrees of freedom. Let q be the vector of joint dis-
placements, I-be the vector of joint torques, H(q) be the
manipulator inertia matrix, and h(q, ~) be the nonlinear
term containing centrifugal, Coriolis and gravitational
forces. Also, let F be the environment reaction force
read with respect to the compliance frame (see Figure 2
for direction of compliance frame). Furthermore, let z
be the position vector of the end-effecter measured from
the compliance frame and T(.) be the kinematic trans-
formation mapping joint space (q-coordinates) to task
space (z-coordinates). Note that ‘Y : R“ ~ R“ is a
nonlinear transformation whose Jacobian is denoted by
J(q). Then the manipulator dynamics are given by:

JY(q)d + h(q, g) = T + JT(q)F, (1)

and the kinematic relations are given by:

x = T(q) =+ q = T-l(z),

x = J(q)g * g = .J(q)-li, (2)

i = J(q)Q + ~(q)g + g = J(q)-1 (i – ~(q)~).

Here it is assumed that the manipulator arm does not
pass through a manipulator singularity. This is neces-
sary so that inverse transformations are possible. Note
that J(q) is the Jacobian of the transformation T(o),
and is not the same as the manipulator Jacobian. Drop-
ping the operands for clarity (they are all in joint space)
and using equation (2) in (1) gives 17J-1 (ii – Jg) + h =
r + JTF. The dynamics are then inverted by letting:

~ = Aj–l(u – ~~) + h – jTF, (3)
A.. .

where H, h and J are estimates of H, h and J respec-
tively and u represents a new input to the system which
is yet to be chosen. Applying this torque input T and
rearranging gives:

~ = G(X)U + ~(X) + M(X)F, (4)

in which

G(X) = JH-lfi~-l,

f(x) = JH-’ [(HJ-l~ - ti&l~)g + (k - h)], (5)

M(X) = JH-l(JT – ~T).
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Note that, in the above equations, the expressions on the
right-hand side are functions of q and q whereas those on
the left-hand side are functions of X = (XT, i?)~ E R2n.
This is valid since equations (2) provide a mapping from

(’JTIQT)T to (~T, ~T)T
In equation (4), z, u, F E R“, x = (x~,iq~Ew,

f , ~z”+ ~“ andG,M: ~2”-+~“x”.Equation (4) is

now suitable for sliding-mode controller synthesis [10].
Designing a controller for this equation immediately
yields a controller for the robot arm H(q)g + h(q, ~) =
~ + JT (q) F, since equation (3) provides a mapping from
the control input u to the torque input ~.

3 Controller Design

The controller is derived in two steps. In the first step,
the environment stiffness is assumed to be completely
known, and in the second step an adaptive algorithm is
derived to relax this assumption. The reader is referred
to [6] for a more detailed synthesis derivation.

3.1 Known Environment Stiffness

Consider the system described by equation (4). Let the
components of ~(X) be denoted by ~(X)~ and the ele-
ments of G(X) and M(X) be g(X)ij and m(X)ij respec-
tively. Here u is the control input, X = (z~, ti~)~ is the
state-vector — wherein z is the output position, and F
is the reaction force exerted by an environment placed
at z = O and having environment stiffness k. Thus,
Fi = –lcxi if xi >0 and F~ = O otherwise. There is no
loss of generality in assuming that the environment is
located at x = O. Expressing equation (4) in component
form yields:

[
tii=g(X)iiui + ~(X)i + ci(X, u, F)] + m(X)~~F~ (6)

where ci(X, u, F) = ~j~i [g(x)ij~j + ~(-Y)ijFj].

G(X), f(X) and M(X) are, in general, nonlinear
matrix functions of the state. They are not exactly
known but the extent of imprecision from their cor-
responding nominal functions 1, 0 and O [see equa-
tions (5)] is bounded component-wise by the specified
matrix functions V : R2n -+ R*x n, U : li%2n+ R“ and
W : R2n + IWxm respectively as follows: V(X)~l <
g(X)ii s V(X)~~, lg(X)ij[ < V(X)ij whenever j’ # i,

If(x)il S U(x)i md Im(X)ijl s W(X)ij. Here
U(X)~ are the components of 17(X) and W(X)~j and
V(X)~i are the elements of W(X) and V(X) respec-
tively. Above, it is assumed that g(X)ii >01 and that
V(X)ii ~ 1 for a sensible problem. g(X)ii is bounded
differently from g(X)~j [when j # i] because g(X)~~ ap-
pears multiplying u~.

Let A be a scalar design parameter representing the
desired control bandwidth. Define ti = x – xd as the er-
ror between the actual position and the desired position

1This assumptionis very mild. It only meansthat w con-
tributesto xi with knownsign.

and let the desired position xd be obtained by subtract-
ing some internal control signal a(t) from the reference
SignalG. (i.e.~d= G.—CI).Thus $d, zT, a ● Rn. It
will be seen that a(t) plays an important role in force
control. a(t) = O in trajectory control, hence giving
xd (t) = XT(t), and varies so that force control is achieved
when the system is in contact with the environment.

Let the variables of interest be ~Lii dT and define
time-varying sliding surfaces in state-spaces R’ by the

equations si(X, t) = O, where si = (~ + A) ‘-’ ~L?i dT

with r = 3. The integral St ii dT is defined to within a
constant as there is no lower limit of integration. This
constant is chosen so that si (i!= O) = O regardless of any
initial condition. Here r = 3 as the system described by
equation (6) is third-order with respect to the variable

of interest st ki dT. Thus Si can be rewritten as:

I

t

s~ = ii + 2kii + A2 ii dT~– ;i (0) ~ 2Aii (0}. (7)
o

sothat
s;= Oatt=O

Let ‘sat’ denote the saturation function defined as
saty = y if Iyl < 1 and saty = y/ Iyl otherwise; and
let @i be the (non-constant) thickness of a boundary
layer neighboring the switching surface si (t) = O. This
boundary layer is required so that the switched control
law (which causes control chattering) can be approxi-
mated by a continuous control law inside this bound-
ary [11]. Differentiating equation (7), substituting for tia
from equation (6) and choosing

U~= x& —2~&i —~22~ —~i sat ‘,
+i

(8)

where Vi is the extent of nonlinearity required to guar-
antee that state-trajectories outside the boundary layer
converge to within the boundary layer, together give:

Si = (g(x)~~ – l)(~& – 2~~i – ~2~i) + ~(X)i

+ ci(Xl U, F) + ~(X)iiFi – g(X)ii Vi sat ~. (9)
a

When IsiI > *i, all state-trajectories are required to
converge to within the sliding region. This is ensured
by satisfying the Lyapunov Condition ~ ~ S: = ~~si ~

(~i – ~) Isil [10], where q is a positive constant required
to ensure that this convergence occurs in finite time.
By substituting equation (9) in the Lyapunov Condition

above and rearranging, one can show that this Lyapunov
Condition is satisfied and boundary layer attractiveness
is guaranteed if IOi is chosen as:

[
~~=(v(x)zi–l)l~d; –2~ki –~2Zil +V(X)ii ~+U(X)i

+Ci(X, u, F)+ W(X)ii lFil] –V(X)~sgn&’&i (10)

where Cz(X, u,F) = ~j#a [V(x)ij lujl + ~(x)ij IFj I] ~
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When ls~I < +~, from equation (9) we see that:

“+(9(X:7)s~ = (g(x)ii – I)(idi – 2Aii – A2iJ

+ f(x)i + Ci(x, ‘u, F) + m(x)iiFi. (11)

By letting (+) = A we get:, max

This condition is known as the “Balanced Condition”.
Using equation (12) in (10) gives:

6i + v(x); l+sgn6’A@i =

V(x)::sgn“ [q+U(x)z+Ci(x,‘U,F’)+ W(x),i@

+ V(x)yz’(v(x)ii – 1) lid, – 2Aii – Aq . (13)

From the above synthesis, it should be clear that the con-
trol inputs make xi follow xd,. Thus llwjectory Control
is achieved by setting ai = O (as in this case z~i = z.;)
and Force Control can be obtained, while in contact with
the environment, by varying ai (t) so that Fi remains
constant at the value of the desired contact force Fd
(one value of F~ for all directions i).

Then during contact (i.e. Zi ~ O), we have Fi = –k~~
2

and defining Fi = Fi – Fd gives Fa = Fi = –k?i and

Fa = Fi = –kxi, as Fd is a constant. Note that due to
our sign convention, the desired contact force Fd should
be defined as a negative number. Substituting the above
contact relations and equation (8) into equation (6) gives
the following closed-loop contact error dynamics:

- (fi~ + 2ACii + A2fl!i)+ (1 - g(X)~l)tii +g(X)~’ [~(X)i

1 }
+ Ci(X, U,F) + ~(X)iiFi – Qi sat ~ . (14)

a

We now seek an equation which determines how q(t)

should vary during contact so as to achieve Force Con-
trol. Treating equation (14) as our contact system dy-
namics and thinking of & + 2A&i + A2~i as our contact
control input, we again use a sliding-mode control ap-
proach to get such a relation. Let the variables of inter-

est be st ~ dT and define time-vaxying sliding surfaces
in state-spaces R’ by the scalar equations Pi(X, t) = O,

where Pi = (~ + A) ‘-’ s’ ~ dT with r = 3. Thus,

J
t

(-k~i) = Fi + 2A~i + A2 fii dT – ~i(0) – 2A~i(0). (15)
o

Similarly to before, let & be the thickness of a bound-
ary layer neighboring the force control switching sur-
face Pi(t) = O and let @i be the extent of nonlinear-
ity required to ensure that state-trajectories outside this

boundary layer converge to within it. Then differenti-

ating equation (15), substituting for Fi + 2A~i + AZFa
from equation (14) and choosing

~2Fd
tii +2A&~ + A2~i = —

k
+ (z-, + 2Air, + A2ZT,)

- ‘i‘at;+‘i‘at3 ’16)
gives (after some rearrangement):

@i = (g(X)ii – 1)% + .f(X)i

+ ci(X, u, F) + m(X)iiFi – vi sat ~~i . (17)

By an analogous argument to above, when lpiI > @i,
state-trajectories are required to satisfy the Lyapunov
Condition ~~ p? = Pipi < (ii – q) lPil for boundary
layer attractiveness, which is the case if @i is chosen as:

‘@i = ~ + (v(X)ii – 1) l~il + U(X)i

+C’i(X, U,.F) + W(X)ii 1-111––&. (18)

When lpiI ~ #i, equation (17) reduces to:

()

+i

‘i+ &
f% = (9(x)ii – l)~i + f(x)i

+ ci(x, u,F) + ~(X)iiFi. (19)

Hence let
@i

x
= k + @i = (k~i). (20)

Using this in equations (18) and (19) gives:

ii+ (k#i) = (V(x)ii – 1) lUil + v + ~(x)i
(21)

+ C’i(X, ~,F) + W(X)ii lFil ,

and ii + kpi = (g(-Y)ii – l)~i + f(x)i

+ ci(x,~, F) + ~(X)iiFi.
(22)

Now note that for a rigid environment k is very large
(around 107 Nm-l) and hence equations (21) and (22)
become approximately algebraic. This, however, does
not imply that there will be high control activity lead-

ing to control chattering since ~i sat ~ = –-+i sat ~.

Thus the ratio pi/$i remains unchanged and it is this ra-
tio which is directly related to the control activity [1].

However, if one applies two different control laws (one
for the non-contact phase and one for the contact phase)
and switch between them when the system is entering or
leaving contact, then the closed-loop system may enter
a limit cycle with the manipulator oscillating to and fro
between the two control laws. To eliminate this effect
we define the signal C~Un(zri, i~i ) to be the low-pass
filtered version of the signal LP(z.,, ir, ) through the

second-order filter2 ~Z+2e~~~+WZ, and Cu(zTi, i~~) is de-

fined to be 1 when x,, + px,i Z O and O otherwise. The

2Hereafter, t will be the Laplace variable; so as not to confuse
it with the sliding surfaces s.
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reasons for choosing such a continuous gating signal will
not be discussed here due to space constraints, however
the reader is referred to [6] for a detailed discussion.
Consequently, we modify equation (16) by multiplying
its right-hand side with ,CfiWn(zrl, tir~) as follows:

[

~2Fd
& + 2Ah!i + A2CY2= —

k
+ (i., + 2Ai.i + A2&i )

Summing up, the resulting multivariable controller for
the dynamicals ystem described by equation (4), assum-
ing known k, is given by equations (7), (8), (12), (13),
(15), (20), (21) and (23).

3.2 Unknown Environment Stiffness

The assumption that the environment stiffness k is
known will now be removed by deriving an adaptive al-
gorithm that estimates it. Adaptation only makes sense
when the system is in contact with the environment and
is in force control. During this time CfiWn(G.,, ti,i ) = 1
[see equation (23)]. The procedure used here to derive
an adaptive observer uses some of the ideas described
in [3], although the techniques used in this study are
different from those presented there.

In practice k is unknown — only an estimate ~ is

available. Consequently, since cq (t) depends on k [see
equation (23)], then only an estimate of a~(t) is available.
Denote this estimate by &i(t). If this estimate is used in
the control law, then equation (8) becomes:

u~ = (i,, – &i) – 2A[ii – (i,, – &i)]

– ~2 [zi – (G., – d~)] – Vi sat ~. (24)
a

Define 6 = l/k, b = l/~ and fl = A2Fd and consider the
following adaptive observer structure:

with fii +pni = Q, o<p <2A, (26)

e = –-@aFi, 0 <-f. (27)

Note that the adaptation gain -y is to be chosen small
enough so that adaptation is slow when compared to the
closed-loop system dynamics produced by the sliding-
mode controller. This is required to ensure two different
time-scales in design [2]. Note also that we have only one
adaptive law, as the environment stiffness k is assumed
to be the same in all directions i. Substituting equa-
tion (25) with CfiUn(z.,, i.,) = 1 into equation (24),
then the resulting control law into the system dynam-
ics (6) and making use of the contact relations Fi = —kra

stated earlier, we get:

[
– g(X);l f(X)i + ci(X, U,F’) + m(x)idl

1

(-iiPi)
1

– (1 – g(X)~l)2~ – (t#i) sat P .
(kq$)

(28)

Introducing 8 = @– 9 and noting that ~ = 6 (as 0 is con-

stant), we observe that 80+ ~fii – 8!2 = (~ + p){~~i },

by equation (26). Now, taking the Laplace Transform
-!% of the above equation gives:

{
X-%’ g(X)~l [f(X)i+Ci(x, U,F) + ~(X)iiFe

1

+ (1 – g(X)~l)~z + (&#~)sat 1(:ipi,(k@J,
The seco~d input will be approximately equal to zero
since (–k~i) is varying so as to cancel out the affects
of the other terms3. It will in fact be exactly zero in
the absence of uncertainty and will otherwise be very

!+Psmall. Define W(f) = k~. Then the equation

above reduces to ~i (1) w W(.!?)Y’{~~i }, which can be
rewritten in state-space form as:

where a is the state vector and A is Hurwitz. Further-
more, since p < 2A [by equation (26)], then it can be
easily shown that W(1) is strictly positive real and con-
sequently by the Kalman-Yakubovich-Popov lemma [7]:

3P= PT>O, Q= QT>O:ATP+PA= –Q (31)

bTP = CT. (32)

Thus, choosing V = UTPO + 62jT as a Lyapunov candi-
date function, differentiating it and using equations (29)

to (32), gives V = – CJTQCJ+ 2~ [fiil?i + ~/7]. This

reduces to V = —IJTQO < 0 v~ # O by using equa-
tion (27), which in turn implies that ~i + O and ~ + O
as t + m by equations (29) and (30).

Summing up, the resulting adaptive sliding-mode con-
troller for the dynamical system described by equa-
tion (4) is obtained by combining the controller derived
in the previous section with the adaptive observer given
in this section. Hence recalling that here x~i = x~i —~i,

~ = 1/8 and O = ~2Fd; then the final controller is given
by equations (7), (12), (13), (15) and (21) with k re-
placed by ~, (24), (25), (26), and (27).

3Thi~ can be seen, after some algebra, by eliminating W from

equations (6) and (22).
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4 Physical Implementation

The controller derived above was tested on the planar
two-degree of freedom robot arm shown in Figure 1.
This figure also shows the environment (a perspex plate)
and the force sensor (a strain gauge bridge) which was
mounted behind the environment, rather than on the
end-effecter, due to ease of construction. The chosen
reference signal was a repeating circular trajectory of
radius 7cm and period 4 seconds, as illustrated in Fig-
ure 2. This figure also shows the location of the envi-
ronment. The resulting semi-circular path traced by the
end-effecter and the reaction force exerted by the manip-
ulator on the environment are depicted in Figure 3. The
effects of adaptation can clearly be seen in the reaction
force data. Finally, Figure 4 confirms that trajectory
control and force regulation were achieved without ex-
cessive control activity.

5 Conclusions

A single controller which achieves bounded trajectory-
tracking and force-regulation errors in the presence of
bounded uncertainty and disturbances and unknown en-
vironment stiffness was derived. The control action
was also designed to be smooth (i.e. differentiable) at
the contact boundary, thus ensuring that the controller
‘gracefully’ handles changes in constraints. The price
paid for using only one control law is increased controller
complexity. The experimental results presented in this
paper demonstrate the applicability of the controller and
show how the controller handles changes in constraints.
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Figure 1: End-effecter and environment
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