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Abstract— This paper is concerned with finite frequency
negative imaginary (FFNI) systems. The paper introduces the
concept of FFNI transfer function matrices, and the relationship
between the FFNI property and the finite frequency positive real
(FFPR) property of transfer function matrices is established.
The paper also establishes an FFNI lemma which gives a
necessary and sufficient condition on the matrices appearing
in a minimal state-space realization for a transfer function
to be FFNI. Also, a time-domain interpretation of the FFNI
property is provided in terms of system input, output and state.
An example is presented to illustrate the FFNI concept and the
FFNI lemma.

I. INTRODUCTION

Loosely speaking, negative imaginary linear systems are

Lyapunov stable dynamical systems whose transfer func-

tion matrices satisfying the negative imaginary condition:

j[G(jω) − G∗(jω)] ≥ 0 for all ω ∈ (0,∞) [1], [2]. In

the SISO case, a scalar negative imaginary transfer function

G(s) will have non-positive imaginary part when s = jω for

ω ∈ (0,∞). In other words, the phase of the transfer function

satisfies ∠G(jω) ∈ [−π, 0] for ω ∈ (0,∞). Many practical

physical systems can be modeled as negative imaginary

systems. For example, a lightly damped flexible structure

with collocated position sensors and force actuators can be

modeled by a sum of second-order transfer functions as

G(s) =
∑

∞

i=0
ψ2

i

s2+2ζiωis+ω2
i

, where ωi > 0 is the mode

frequency associated with the i-th mode, ζi > 0 is the

damping coefficient, and ψi is determined by the boundary

conditions on the underlying partial differential equation [1].

Also, a transfer function of the form G(s) = k1
s2+2σ1ω1s+ω2

1

+

d1 has been used to model the voltage subsystem in a

piezoelectric tube scanner system [3]; this transfer function

turns out to be negative imaginary. The theory of negative

imaginary systems is closely related to the theory of positive

real systems [4]–[6]. Also, the concept of systems with

counterclockwise input-output dynamics [7] is related to the

concept of negative imaginary systems.

In [1], a complete state-space characterization of negative

imaginary linear systems was established in terms of the

solvability of a linear matrix inequality and a linear matrix

equation. A necessary and sufficient condition was derived

to guarantee the internal stability of a positive feedback
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interconnection of negative imaginary linear systems in terms

of their DC loop gains. All of the results in [1] have been

extended to the case where system poles may be on the

imaginary axis [2]. Also, a concept of lossless negative

imaginary systems has been developed to model negative

imaginary systems with purely imaginary poles only [8]. The

corresponding lossless negative imaginary systems theory

has been developed as well.

In this paper, a new concept—finite frequency negative

imaginary (FFNI) transfer function matrices—will be intro-

duced. Roughly speaking, an FFNI transfer function matrix

is a square real-rational proper transfer function which is

not only stable in the Lyapunov sense but also possesses the

negative imaginary property j[G(jω) − G∗(jω)] ≥ 0 for a

finite frequency range, say ω ∈ (0, ω̄). This concept can be

considered as a generalization of the concept of negative

imaginary transfer function matrices. The study of FFNI

transfer function matrices is motivated by the fact that many

such transfer functions arise in practical control problems.

For example, the capacitance subsystem of the piezoelectric

tube scanner in [3] is modeled by G(s) = c1s
2+c2s+c3

s2+2σ1ω1s+ω2
1

,

with the parameter values obtained through experiment. This

transfer function is FFNI; more details of this example are

provided in the example section of this paper. Also, for

some lightly damped flexible structures, when the position

sensors and the force actuators are slightly non-collocated,

the resulting transfer functions may be FFNI. The study

of FFNI transfer function matrices is also inspired by the

work in [9]. In [9], the concept of finite frequency positive

real (FFPR) transfer function matrices was proposed. The

FFPR theory was developed and applied to design dynamical

systems with the FFPR property.

The organization of the paper is as follows. Section II

introduces the FFNI concept for square real-rational proper

transfer function matrices. Several properties of such matri-

ces are studied. The relationship between the FFNI property

and the FFPR property of transfer function matrices is also

established in this section. In Section III, the FFNI lemma—

the main result of the paper—is established in terms of a

linear matrix inequality and two linear matrix equations. The

FFNI lemma gives a complete state-space characterization of

FFNI linear systems in terms of their minimal realizations.

When the bandwidth of an FFNI transfer function matrix

approaches infinity, the FFNI lemma is shown to reduce to

the negative imaginary lemma of [1], [2]. Moreover, a time-

domain interpretation of the FFNI property is presented in

terms of the system input, output and state. The validity

of the FFNI lemma developed in this paper is verified by
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numerical computations in Section IV. Section V concludes

the paper.

II. FINITE FREQUENCY NEGATIVE IMAGINARY

TRANSFER FUNCTION MATRICES

In this section, the concept of FFNI transfer function

matrices will be introduced. The idea behind the definition of

FFNI transfer function matrices is that the negative imaginary

conditions, which are used in [2] to define negative imaginary

systems, are required to hold on a finite frequency range.

Definition 1: A square real-rational proper transfer func-

tion matrix R(s) is said to be finite frequency negative

imaginary with bandwidth ω̄ if it satisfies the following

conditions:

1) R(s) has no poles at the origin and in the open right-

half of the complex plane.

2) j[R(jω) − R∗(jω)] ≥ 0 for all ω ∈ Ω, where Ω =
{ω ∈ R : 0 < ω ≤ ω̄, jω is not a pole of R(s)}.

3) Every pole of R(s) on jΩ̄, if any, is simple

and the corresponding residue matrix of jR(s)
is positive semidefinite Hermitian, where Ω̄ =
{ω ∈ R : 0 < ω ≤ ω̄}.

4) R(∞) = RT (∞).
Remark 1: Based on the above definition, an FFNI trans-

fer function matrix R(s) with bandwidth ω̄ has the following

properties:

1) j[R(jω) − R∗(jω)] ≤ 0 for all ω ∈ Ω1, where Ω1 =
{ω ∈ R : −ω̄ ≤ ω < 0, jω is not a pole of R(s)}. A

brief proof is as follows: For 0 < ω ≤ ω̄

and jω is not a pole, we know that j[R(jω) −
R∗(jω)] ≥ 0. In view of Lemma 2 of [2], we have

0 ≤ j[R(jω)−R∗(jω)] = −j[R(jω) − R∗(jω)] =
−j[R(−jω) − R∗(−jω)]. That is, j[R(−jω) −
R∗(−jω)] ≤ 0 for 0 < ω ≤ ω̄ with jω not a pole. In

other words, j[R(jω)−R∗(jω)] ≤ 0 for −ω̄ ≤ ω < 0
where jω is not a pole.

2) Every pole of R(s) on jΩ̄1, if any, is simple

and the corresponding residue matrix of jR(s)
is negative semidefinite Hermitian, where Ω̄1 =
{ω ∈ R : −ω̄ ≤ ω < 0}. A brief proof is as fol-

lows: Firstly, note that R(s) can be factored into

R(s) = 1
(s−jω)(s+jω)R1(s) whenever jω is a pole.

Suppose jω0 (0 < ω0 ≤ ω̄) is a pole of R(s).
Then lims→jω0

(s − jω0)jR(s) = lims→jω0
(s −

jω0)
1

(s−jω0)(s+jω0)
jR1(s) = 1

2ω0
R1(jω0). There-

fore R1(jω0) is positive semidefinite Hermitian, that

is, R1(jω0) = R∗

1(jω0) ≥ 0. So R1(jω0) =
R∗

1(jω0) ≥ 0, that is, R1(−jω0) = R∗

1(−jω0) ≥
0. On the other hand, at the pole of −jω0,

lims→−jω0
(s + jω0)jR(s) = lims→−jω0

(s +
jω0)

1
(s−jω0)(s+jω0)

jR1(s) =
1

−2ω0
R1(−jω0) ≤ 0.

Similar to the case where the negative imaginary concept is

closely related to the positive real concept, the FFNI concept

in this paper is closely related to the FFPR concept developed

in [9]. Before formally establishing this relationship, let us

recall the concept of FFPR transfer function matrices.

Definition 2: [9, Definition 4] A square real-rational

proper transfer function matrix G(s) is said to be finite

frequency positive real with bandwidth ω̄ if it satisfies the

following conditions:

1) G(s) has no poles in the open right-half of the complex

plane.

2) G(jω) + G∗(jω) ≥ 0, for all ω ∈ Ω, where Ω =
{ω ∈ R : |ω| ≤ ω̄, jω is not a pole of G(s)}.

3) Every pole of G(s) on jΩ̄, if any, is simple and the

corresponding residue matrix is positive semidefinite

Hermitian, where Ω̄ = {ω ∈ R : |ω| ≤ ω̄}.

Now, we are ready to state the relationship between

FFNI transfer function matrices and FFPR transfer function

matrices based on their definitions.

Lemma 1: Given a square real-rational proper transfer

function matrix R(s). Suppose R(s) has no poles at the

origin, and R(∞) = RT (∞). Then the following statements

are equivalent:

1) R(s) is FFNI with bandwidth ω̄.

2) R̂(s) , R(s)−R(∞) is FFNI with bandwidth ω̄.

3) F (s) , sR̂(s) is FFPR with bandwidth ω̄.

Proof: (1 ⇔ 2) For R(s) and R̂(s), when jω is

not a pole, we have j[R(jω) − R∗(jω)] = j[{R̂(jω) +
R(∞)} − {R̂(jω) +R(∞)}∗] = j[R̂(jω)− R̂∗(jω)]; when

jω0 is a pole, lims→jω0
(s − jω0)jR(s) = lims→jω0

(s −
jω0)j{R̂(s)+R(∞)} = lims→jω0

(s−jω0)jR̂(s). Then the

equivalence follows from Definition 1.

(2 ⇔ 3) Note that F (s) and R̂(s) have the same set

of poles; when jω is not a pole, F (jω) + F ∗(jω) =
jωR̂(jω)−jωR̂∗(jω) = jω[R̂(jω)−R̂∗(jω)]; when jω0 is a

pole, lims→jω0
(s− jω0)F (s) = lims→jω0

(s− jω0)sR̂(s) =
lims→jω0

(s− jω0)jω0R̂(s) = ω0 lims→jω0
(s− jω0)jR̂(s).

Then the equivalence follows from their definitions and the

properties in Remark 1.

This lemma allows us to translate an FFNI problem to an

FFPR problem. In the next section, the FFNI lemma will be

developed in this way.

III. FINITE FREQUENCY NEGATIVE IMAGINARY LEMMA

The FFNI Lemma developed in this section establishes

a necessary and sufficient condition for a transfer function

matrix to be FFNI in terms of the matrices appearing in a

minimal state-space realization of the transfer function. This

lemma could be considered as a generalization the Negative

Imaginary Lemma [1], [2] and is analogous to the FFPR

Lemma [9].

Theorem 1 (Finite Frequency Negative Imaginary Lemma):

Consider a real-rational proper transfer function matrix

R(s) with a minimal state-space realization (A,B,C,D).
Suppose all poles of R(s) are in the closed left-half

of the complex plane, and the poles on the imaginary

axis, if any, are simple. Let a positive scalar ω̄ be given.

If A has eigenvalues jωi (i ∈ {1, . . . , q}) such that

0 < ωi ≤ ω̄, the residue of (sI − A)−1 at s = jwi is given

by Φi , lims→jωi
(s − jωi)(sI − A)−1. The following

statements are equivalent:
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1) The transfer function matrix R(s) is FFNI with band-

width ω̄.

2) det(A) 6= 0, D = DT , and the transfer function

matrix F (s) with a minimal state-space realization

(A,B,CA,CB) is FFPR with bandwidth ω̄.

3) det(A) 6= 0, D = DT , CAΦiB = (CAΦiB)∗ ≥ 0
for all i ∈ {1, . . . , q} if A has any eigenvalues on jΩ̄
where Ω̄ = {ω ∈ R : 0 < ω ≤ ω̄}, and there exist real

symmetric matrices P = PT and Q = QT ≥ 0 such

that

PA+ATP −ATQA+ ω̄2Q ≤ 0, (1)

C +BTA−TP = 0, (2)

QA−1B = 0. (3)

4) det(A) 6= 0, D = DT , CAΦiB = (CAΦiB)∗ ≥ 0
for all i ∈ {1, . . . , q} if A has any eigenvalues on jΩ̄
where Ω̄ = {ω ∈ R : 0 < ω ≤ ω̄}, and there exist real

symmetric matrices Y = Y T and X = XT ≥ 0 such

that

AY + Y AT −AXAT + ω̄2X ≤ 0, (4)

B +AY CT = 0, (5)

CX = 0. (6)

Proof: (1 ⇔ 2) Because R(s) = C(sI − A)−1B +
D, R̂(s) = C(sI − A)−1B = R(s) − R(∞) and F (s) =
CA(sI − A)−1B + CB = sR̂(s), this equivalence follows

from their definitions and Lemma 1.

(2 ⇔ 3) In view of Theorem 3 of [9], the transfer function

matrix F (s) with a minimal realization (A,B,CA,CB)
is FFPR with bandwidth ω̄ if and only if CAΦiB =
(CAΦiB)∗ ≥ 0 for all i ∈ {1, . . . , q} if A has any

eigenvalues on jΩ̄, and there exist real symmetric matrices

P = PT and Q = QT ≥ 0 such that
[

A B

I 0

]T [

−Q P

P ω̄2Q

] [

A B

I 0

]

≤

[

0 ATCT

CA CB +BTCT

]

. (7)

So we only need to prove that the inequality (7) is equivalent

to the inequality in (1) and the equations in (2), (3).

Note that the inequality in (7) can be re-written as
[

Ξ11 Ξ12

ΞT12 Ξ22

]

≤ 0,

where

Ξ11 = −ATQA+ PA+ATP + ω̄2Q,

Ξ12 = −ATQB + PB −ATCT ,

Ξ22 = −BTQB − CB −BTCT .

Pre- and post-multiplying this inequality by
[

I 0
−BTA−T I

]

and its transpose, respectively, we obtain
[

Ξ11 Ξ̄12

Ξ̄T12 ω̄2BTA−TQA−1B

]

≤ 0,

where Ξ̄12 = −ATPA−1B−ω̄2QA−1B−ATCT . Therefore

we must have ω̄2BTA−TQA−1B = 0, which is equivalent

to (3). Furthermore, the above inequality becomes
[

Ξ11 −ATPA−1B −ATCT

−BTA−TPA− CA 0

]

≤ 0. (8)

Therefore, the inequality (8) is equivalent to (1), (2) as the

matrix A is nonsingular. Now we can conclude that the

inequality (7) is equivalent to the inequality in (1) and the

equations in (2), (3).

(2 ⇔ 4) In view of Theorem 3 of [9], the transfer function

matrix F (s) with a minimal realization (A,B,CA,CB)
is FFPR with bandwidth ω̄ if and only if CAΦiB =
(CAΦiB)∗ ≥ 0 for all i ∈ 1 {1, . . . , q} if A has any

eigenvalues on jΩ̄, and there exist real symmetric matrices

Y = Y T and X = XT ≥ 0 such that
[

A I

CA 0

] [

−X Y

Y ω̄2X

] [

A I

CA 0

]T

≤

[

0 B

BT CB +BTCT

]

. (9)

So we only need to prove that the inequality (9) is equivalent

to (4), (5), (6).

The inequality in (9) can be re-written as
[

Θ11 Θ12

ΘT12 Θ22

]

≤ 0,

where

Θ11 = −AXAT + Y AT +AY + ω̄2X,

Θ12 = −AXATCT + Y ATCT −B,

Θ22 = −CAXATCT − CB −BTCT .

Pre- and post-multiplying the above inequality by
[

I 0
−C I

]

and its transpose, respectively, we obtain
[

Θ11 Θ̄12

Θ̄T12 ω̄2CXCT

]

≤ 0,

where Θ̄12 = −AY CT − ω̄2XCT −B. Therefore we must

have ω̄2CXCT = 0, which is equivalent to (6). Furthermore,

the above inequality becomes
[

Θ11 −AY CT −B

−CY AT −BT 0

]

≤ 0.

Therefore, the above inequality is equivalent to (4), (5), and

we conclude that the inequality (9) is equivalent to (4), (5),

(6). This completes the proof.

Remark 2: In Theorem 1, another method to compute the

residue matrix Φi is to use the formula Φi = ril
∗

i where ri
and li are column vectors such that Ari = jωiri, l

∗

iA =
jωil

∗

i , and l∗i ri = 1; see Lemma 6 of [9] for more details.

It follows from the definitions (i.e., Definition 3 of [2]

and Definition 1) that when the bandwidth ω̄ → ∞, the

FFNI transfer function matrix R(s) reduces to a normal neg-

ative imaginary transfer function matrix. In the next result,
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the conditions in the Finite Frequency Negative Imaginary

Lemma are proved to reduce to the conditions in the Negative

Imaginary Lemma in [2].

Corollary 1: Under the same assumptions as in Theo-

rem 1. Let the bandwidth ω̄ → ∞. Then the finite frequency

negative imaginary lemma reduces to the negative imaginary

lemma. That is, the following two statements are equivalent:

1) The transfer function matrix R(s) is negative imagi-

nary.

2) det(A) 6= 0, D = DT , and there exists a real

symmetric matrix Y = Y T > 0 such that

AY + Y AT ≤ 0, and B +AY CT = 0. (10)

Proof: To complete the proof, we need to show, under

the assumptions of Theorem 1, that (a) the inequality in

(4) and the equations in (5) and (6) are reduced to (10);

(b) the real symmetric matrix Y = Y T is positive definite;

and (c) the matrix CAΦiB is always positive semidefinite

Hermitian. The proof is accordingly divided into three steps.

Step 1: We show that the inequality in (4) with the

equality constraints in (5) and (6) reduces to the inequality

and the equation in (10).

Since the bandwidth ω̄ approaches infinity, the parameter

X in (4) must approach zero. So we have X = 0. Then the

inequality in (4) and the equations in (5) and (6) reduce to

the inequality and the equation in (10).

Step 2: Under the condition that all the eigenvalues of

A are in the closed left-half of the complex plane, we will

prove that the real symmetric matrix Y = Y T satisfying (10)

is positive definite.

Because all of the poles of R(s) are assumed to be in the

closed left-half plane, that is, ℜ[λi(A)] ≤ 0, it follows from

the inequality in (10) that Y = Y T ≥ 0. Next we prove that

Y is nonsingular by contradiction.

Suppose that Y is singular. Then an unitary congruence

transformation can be used to give

U∗Y U =

[

Y1 0
0 0

]

, U∗AU =

[

A11 A12

A21 A22

]

,

U∗B =

[

B1

B2

]

, CU =
[

C1 C2

]

,

where Y1 = Y T1 > 0 is nonsingular and U is an unitary

matrix, that is, U∗U = I . Hence we can assume that the

matrices Y , A, B and C are of the following forms without

loss of generality:

Y =

[

Y1 0
0 0

]

, Y1 = Y T1 > 0, A =

[

A11 A12

A21 A22

]

,

B =

[

B1

B2

]

, C =
[

C1 C2

]

.

With those forms, the inequality in (10) can be re-written as
[

A11Y1 + Y1A
T
11 Y1A

T
21

A21Y1 0

]

≤ 0.

Because the (2, 2) block of the above LMI is zero, we must

have A21Y1 = 0. Furthermore, the non-singularity of Y1

leads to A21 = 0. Therefore, the matrix A is of the form

A =

[

A11 A12

0 A22

]

. (11)

Similarly, the equation in (10) can be re-written as
[

B1 +A11Y1C
T
1

B2 +A21Y1C
T
2

]

= 0.

Because A21 = 0, we have B2 = 0. Therefore, the matrix

B is of the form

B =

[

B1

0

]

. (12)

It follows from the matrix forms in (11) and (12) that the

matrix pair (A,B) is not controllable. This contradicts the

controllability of (A,B). Hence Y must be nonsingular.

In summary, we have that Y = Y T ≥ 0 and that Y is

nonsingular. So Y = Y T > 0.

Step 3: Under the assumption that the purely imaginary

poles of R(s), if any, are simple, we will prove that the

matrix CAΦiB is always positive semidefinite Hermitian.

Firstly, in view of the equation in (10), we have that

CAΦiB = −CAΦiAY C
T . In the sequel, it suffices to show

that AΦiAY is negative semidefinite Hermitian.

Suppose that R(s) has a purely imaginary pole pair at

±jωi, ωi > 0; that is, the matrix A has eigenvalues at ±jωi.
Then there exists a unique nonsingular real matrix T (e.g.,

by considering the real canonical form of the matrix A) such

that

TAT−1 =

[

A1 0
0 A2

]

.

where A1 ∈ R
(n−2)×(n−2) has no eigenvalues at ±jωi, and

A2 ∈ R
2×2 is of the form

A2 =

[

0 −ωi
ωi 0

]

.

Hence, we can assume that the matrices Y , A, B and C are

of the following forms without loss of generality:

Y =

[

Y1 Y3
Y T3 Y2

]

= Y T > 0, A =

[

A1 0
0 A2

]

,

B =

[

B1

B2

]

, C =
[

C1 C2

]

,

where A1 is nonsingular and has no eigenvalues at ±jωi,

and A2 =

[

0 −ωi
ωi 0

]

.

Now, we calculate

Ψi , lim
s→jωi

(s− jωi)(sI −A2)
−1

= lim
s→jωi

(s− jωi)
1

s2 + ω2
i

[

s −ωi
ωi s

]

=
1

2

[

1 j

−j 1

]

.

Therefore,

Φi , lim
s→jωi

(s− jωi)(sI −A)−1

326



= lim
s→jωi

(s− jωi)

[

(sI −A1)
−1 0

0 (sI −A2)
−1

]

=

[

0 0
0 Ψi

]

.

On the other hand, the inequality in (10) can be re-written

as
[

A1Y1 + Y1A
T
1 A1Y3 + Y3A

T
2

Y3A
T
1 +A2Y

T
3 A2Y2 + Y2A

T
2

]

≤ 0. (13)

Hence, we have A2Y2 + Y2A
T
2 ≤ 0 with Y2 = Y T2 > 0. Let

Y2 be

Y2 =

[

y1 y3
y3 y2

]

.

Then

A2Y2 + Y2A
T
2 =

[

2ωiy3 ωi(y2 − y1)
ωi(y2 − y1) −2ωiy3

]

≤ 0.

So we must have y3 = 0 and y1 = y2 > 0. That is, the

matrix Y2 must be of the form

Y2 =

[

y 0
0 y

]

, y > 0.

Now, we have that A2Y2 + Y2A
T
2 = 0; that is, the (2, 2)

block of (13) is zero. Therefore,

A1Y3 + Y3A
T
2 = 0. (14)

Because the matrices A1 and −AT2 have no common eigen-

values, the Sylvester equation (14) has a unique solution

which is given by Y3 = 0. Therefore, the matrix Y is of

the form

Y =

[

Y1 0
0 Y2

]

= Y T > 0.

Now, we can calculate

A2ΨiA2Y2 =

[

0 −ωi
ωi 0

]

1

2

[

1 j

−j 1

] [

0 −ωi
ωi 0

] [

y 0
0 y

]

= −
ω2
i y

2

[

1 j

−j 1

]

.

Therefore, A2ΨiA2Y2 = (A2ΨiA2Y2)
∗ ≤ 0. Hence

AΦiAY =

[

0 0
0 A2ΨiA2Y2

]

.

Therefore, AΦiAY = (AΦiAY )∗ ≤ 0. So we have

−CAΦiAY C
T = (−CAΦiAY C

T )∗ ≥ 0, that is,

CAΦiB = (CAΦiB)∗ ≥ 0. This completes the proof.

The following theorem provides a time-domain interpre-

tation of the FFNI properties in terms of the system input,

output and state. It is hoped that this result can provide a

deeper understanding of FFNI systems.

Theorem 2: Consider a proper stable transfer function

matrix R(s) with R(∞) = RT (∞). Let u, y and x be the

input, the output and the state of any minimal realization of

R(s). Then, the following statements are equivalent:

1) R(s) is FFNI with bandwidth ω̄.

2) The inequality
∫

∞

−∞

[ẏ(t)−Du̇(t)]Tu(t)dt ≥ 0 (15)

holds for all square integrable and differentiable inputs

u such that
∫

∞

−∞

ẋ(t)ẋT (t)dt ≤ ω̄2

∫

∞

−∞

x(t)xT (t)dt. (16)

Proof: Let (A,B,C,D) be a minimal state-space

realization of R(s). Then the linear system whose transfer

function is given by R(s) can be represented as
{

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t).
(17)

Let us consider a new transfer function matrix F (s) ,

s[R(s)−R(∞)]. Then (A,B,CA,CB) is a minimal state-

space realization of F (s) and the corresponding dynamical

system is represented by
{

ẋ(t) = Ax(t) +Bu(t),

ỹ(t) = CAx(t) + CBu(t).
(18)

In view of Lemma 1, the transfer function matrix R(s)
is FFNI with bandwidth ω̄ if and only if the transfer

function matrix F (s) is FFPR with bandwidth ω̄. In view

of Theorem 4 of [9], F (s) is FFPR with bandwidth ω̄ if and

only if the passivity property
∫

∞

−∞

ỹT (t)u(t)dt ≥ 0

holds for all square integrable inputs u such that the inequal-

ity (16) holds.

On the other hand, it follows from the system equations

in (17) and (18) that

ỹ(t) = C[Ax(t) +Bu(t)] = Cẋ(t) = ẏ(t)−Du̇(t)

Therefore, F (s) is FFPR with bandwidth ω̄ if and only if

the inequality in (15) holds for all square integrable and

differentiable inputs u such that (16) holds. This completes

the proof.

Remark 3: When the transfer function matrix R(s) in

Theorem 2 is strictly proper (i.e., D = 0), the requirement

of differentiability of the inputs can be removed.

IV. ILLUSTRATIVE EXAMPLES

In this section, an illustrative example is presented to

illustrate the application of the FFNI concept and the FFNI

lemma developed in this paper. The example is the ca-

pacitance subsystem of a piezoelectric tube scanner system

studied in [3].

Let us consider the piezoelectric tube studied in [3],

[10]. Such a piezoelectric tube is used in the scanning

unit of scanning tunneling microscopes and atomic force

microscopes. The inputs to the piezoelectric tube are two

voltage signals: Vx+ and Vy+ , which are applied to the

“input” ends of the electrodes of the piezoelectric tube.

The outputs to the piezoelectric tube are classified into two
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groups. The first group includes the voltages Vx− and Vy− ,

which are the voltages at the “output” ends of the electrodes.

The second output group includes the distances dx (x-axis

direction) and dy (y-axis direction) between the aluminum

cube being positioned and the capacitive sensors’ heads.

These distances are measured by the capacitance sensors in

terms of the change in the capacitance between the aluminum

cube and the heads of the capacitive sensors. Accordingly, the

system transfer function from input
[

Vx+ Vy+
]T

to output
[

Vx− Vy−
]T

is called the voltage subsystem of the tube; the

system transfer function from input
[

Vx+ Vy+
]T

to output
[

dx dy
]T

is called the capacitance subsystem of the tube;

see [3] for more details.

For the capacitance subsystem of the tube, the experiment

in [3] shows that the transfer functions form Vx+ to dx and

from Vy+ to dy are given by

G
(v)
dxx

(s) = G
(v)
dyy

(s) =
c1s

2 + c2s+ c3

s2 + 2σ1ω1s+ ω2
1

.

Note that the equality G
(v)
dxx

(s) = G
(v)
dyy

(s) is expected

because of the symmetric alignment of the capacitive sensors

and the faces of the aluminum cube in the x and y direc-

tions [3]. The parameter values of the transfer function are

given by 2σ1ω1 = 60.2, ω2
1 = 2.8488 × 107, c1 = 0.0055,

c2 = −112.3 and c3 = 1.807× 106; see Table I of [3].

Now, we illustrate that the above transfer function is

actually FFNI. We will also determine the corresponding

bandwidth. Since the transfer function G
(v)
dxx

(s) has no purely

imaginary poles, we only need to consider the imaginary

part of G
(v)
dxx

(jω) on the (0,∞). It follows from a direct

computation that

ℑ[G
(v)
dxx

(jω)] = =
ω(−3.3080× 109 + 112.6311ω2)

(2.8488× 107 − ω2)2 + 3624ω2
.

Therefore, G
(v)
dxx

(s) is FFNI with bandwidth ω̄ =
√

3.3080×109

112.6311 = 5419.4. The Nyquist plot of this transfer

function is shown in Figure 1. It can be seen from this
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Fig. 1. Nyquist plot of piezo tube frequency response (ω ≥ 0)

figure that the imaginary part of G
(v)
dxx

(jω) is negative for

0 < ω < 5419.4.

To verify the FFNI Lemma, we first found a minimal state-

space realization of G
(v)
dxx

(s) with

A =

[

−60.2 −6955.0781
4096 0

]

, B =

[

32
0

]

,

C =
[

−3.5197 12.5909
]

, D = 0.0055.

Now, solving the linear matrix inequality in (1) and the linear

matrix equations in (2), (3) with ω̄ = 5419.4, we found a set

of feasible solutions. If we set the bandwidth ω̄ in (1) to be a

slightly larger number, say 5419.5, then (1), (2), (3) have no

feasible solutions. According to the FFNI lemma, the transfer

function G
(v)
dxx

(s) is FFNI with bandwidth ω̄ = 5419.4 but

not FFNI with bandwidth ω̄ = 5419.5. This confirms the

above findings via direct computations and the Nyquist plot.

V. CONCLUSIONS

This paper has studied the FFNI properties of dynamical

systems. The concept of FFNI transfer function matrices was

first introduced. Then an FFNI lemma was derived which

gave a condition for dynamical systems to be FFNI in terms

of their minimal state-space realizations. A time-domain

interpretation of the FFNI property was also proposed in

terms of the system input, output and state. Finally, the FFNI

lemma was illustrated by examples involving a piezoelectric

tube scanner system and a mass-spring-damper system. A

area for future research is to develop some stability results

for the interconnected FFNI systems.
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