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Foundations of a Bicoprime Factorization Theory
Mihalis Tsiakkas, Member, IEEE, and Alexander Lanzon, Senior Member, IEEE

Abstract—Bicoprime factorizations (BCFs) are a generalization
of the well known coprime factorizations commonly used in con-
trol theory. However they have received negligible attention from
the academic community so far. This technical note lays the foun-
dations of a BCF theory. The theory is built from the ground up,
starting with the basic characteristics of such factorizations before
moving on to state space parameterizations of BCFs and internal
stability. Some advantages of BCFs are outlined including the pos-
sibility of reduced dimension internal stability tests. An uncertainty
structure induced by BCFs is also examined and the associated ro-
bust stability analysis tests provided. In multiple instances it is
shown how coprime factor results have their roots in the more ab-
stract, and more general, BCFs.

Index Terms—Bicoprime factorizations, coprime factorizations,
feedback systems, internal stability, robust stability, stability
margin.

I. INTRODUCTION

Coprimeness is a useful property widely exploited in many areas of
control theory. Left coprime factorizations (LCFs) and right coprime
factorizations (RCFs) find extensive use in various fields of robust
control such as H∞ loop-shaping [1] and distance measures [2], [3].
The notion of matrix coprimeness is a generalization on that of integers
having a greatest common denominator of 1. The polynomial case of
this problem was studied by Bézout who showed that two polynomials
a and b have greatest common divisor d if there exist polynomials x and
y such that the linear Diophantine equation ax + by = d is satisfied.
Such an equation is now commonly referred to as Bézout’s identity, a
version of which is used as a coprimeness test for polynomial matrices.

A coprime factorization is one where a rational object is decomposed
into two factors that satisfy the coprimeness condition over some set,
usually RH∞. One of the most important features of coprime factor-
izations is the fact that every object in R admits a coprime factorization
over RH∞. Hence, any coprime factor results can be directly applied
to a wide class of systems.

Bicoprime factorizations (BCFs) are a generalization of the afore-
mentioned coprime factorizations. They were briefly introduced in [4]
with only a handful of results given. Two motivating points given
therein for the study of BCFs are that they naturally arise in closed
loop transfer matrices and the simple fact that a minimal state space
representation of a plant is itself a BCF over the ring of polynomials.
In fact, such factorizations do arise in many areas of interest such as
J -spectral factorizations [5] and chain scattering theory [6].
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The relation between a special set of BCFs (where one of the factors
is assumed to be zero—though this condition is lifted for some of the
results) and classical coprime factorizations was studied in [7]. A set of
simple preliminary results were derived including internal stability for
the feedback interconnection of a plant given as a BCF and controller
expressed as a RCF or LCF. Those results were extended in [8] and
given a decentralized control context.

It has also been shown that BCFs can be useful in the study of
decentralized or distributed control problems. For example, in [9],
BCFs are used to characterize the location of fixed transmission zeros
of a plant which then allows one to deduce whether a decentralized
controller exists or not. Furthermore, BCFs are used in the design of a
decentralized stabilizing controller for a plant in [10].

BCFs bear many similarities to the polynomial methods extensively
studied in the 60’s and 70’s, particularly the work of Rosenbrock [11]
relating to polynomial matrix descriptions (PMDs) of the plant. This
seminal work gave rise to state space methods and coprime factor
theory both of which proved to be tremendously important and suc-
cessful in many control related problems. The material developed in
this technical note can be viewed as a combination of these two fields
of control theory, dealing with the aspects of Rosenbrock’s work that
were sidelined in favor of the above and thus not advanced in the past
few decades.

This technical note provides the foundations to the general study of
BCF theory and its applicability to various control related problems.
The results presented herein cover a range of topics including inter-
nal stability in terms of BCFs of the plant and controller, state space
parameterizations of BCFs for a given system and BCF uncertainty
characterization. Although BCFs are not a substitute for LCFs or RCFs
in control theory, it will become apparent through the course of this
technical note that their use can be beneficial.

II. PRELIMINARIES

The sets R and C are defined as the real and complex numbers,
respectively. C+ = {s ∈ C : �(s) > 0} is used to denote the open
right half of the complex plane while C̄+ = C+ ∪ jR.

Let A ∈ Cm ×n , then A∗ denotes its complex conjugate transpose,
while its rank is denoted by rank A. If m = n, Λ(A) denotes the
spectrum of A and det A its determinant. The geometric multiplicity
of λi ∈ Λ(A) is denoted by γA (λi ).

The operators diag (·) and adiag (·) define block diagonal and anti-
diagonal matrices starting from the top left and top right respectively.

R denotes the set of all real-rational, proper transfer matrices. The
subset of R containing all stable transfer matrices is given by RH∞
and the set of units in RH∞ is given by GH∞ (f ∈ GH∞ ⇔ f, f−1 ∈
RH∞).

Let P ∈ R, then P =
[

A B

C D

]
is shorthand notation for the state

space realization P = C (sI − A)−1 B + D.
The normal rank of a transfer matrix P (s) ∈ R is defined as

maxs∈C rank P (s) and is denoted by nrank P .
Let H ∈ R and Δ ∈ R, then the lower and upper linear frac-

tional transformations (LFTs) of H with respect to Δ are denoted
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by Fl (H, Δ) and Fu (H, Δ) respectively. Furthermore, the Redheffer
star product of H and Δ is denoted by (H � Δ). See [12] for definitions
and details.

As mentioned previously, coprime factorizations are an important
part of control theory. The following definition presents, in a formal
way, right coprimeness over RH∞ as well as RCFs of a plant over
RH∞.

Definition 1 ([12] Definition 5.3): The ordered pair {N, M} is
right coprime (RC) in RH∞ if N, M ∈ RH∞ and there exist Yr , Zr ∈
RH∞ such that Zr M + Yr N = I . Furthermore, the pair is a RCF of a
plant P ∈ R over RH∞ if, additionally, M is square, det M (∞) �= 0
and P = NM−1 .

Left coprimeness and LCFs of a plant are dually defined.
Definition 2: The set of all RC (resp. LC) pairs in RH∞ is defined

as Cr (resp. Cl ). Similarly, the set of all RCFs (resp. LCFs) of a plant
P ∈ R over RH∞ is defined as Cr (P ) (resp. Cl (P )).

The following lemma gives necessary and sufficient conditions for
well-posedness and internal stability of a standard positive feedback
interconnection.

Lemma 1 ([12] Lemma 5.3): Consider the standard positive feed-
back interconnection of a plant P ∈ R and controller C ∈ R. Then
[P, C ] is well-posed if and only if det (I − CP )(∞) �= 0. Further-
more, [P, C ] is internally stable if and only if it is well-posed and

[
I −C

−P I

]−1

∈ RH∞. (1)

III. BICOPRIME FACTORIZATION FUNDAMENTALS

BCFs over RH∞ first appeared in literature in [4] where their ex-
istence was acknowledged with no significant results given. In the
original definition, BCFs of a plant were presented as a quad of objects
in RH∞ as follows.

Definition 3 ([4] Definition 4.3.1): The ordered quad
{N, M, L, K} is bicoprime (BC) in RH∞ if {L, M} ∈ Cl ,
{N, M} ∈ Cr and K ∈ RH∞. Furthermore, the quad is a BCF of a
plant P ∈ R over RH∞ if, additionally, M is square, det M (∞) �= 0
and P = NM−1L + K .

Similar to LC and RC pairs and factorizations, the following defini-
tion presents the notation used for the sets of all BC quads and BCFs
of a plant.

Definition 4: The set of all BC quads in RH∞ is defined as B. The
set of all BCFs of a plant P ∈ R over RH∞ is defined as B(P ).

It is often convenient to pack a BC quad into a matrix as in the
following definition.

Definition 5: The set Bm is defined as

Bm =
{[

M −L
N K

]
: {N, M, L, K} ∈ B

}

When representing a BCF of a plant P ∈ R, the notation Bm (P ) will
be used.

Objects in Bm (P ) will henceforth be referred to as the BCF symbols
of P . This naming is chosen to parallel the graph symbols encountered
in classical coprime factorizations.

Note that the BCF symbols of a plant are also system matrices as
defined by [11], often referred to as Rosenbrock matrices. Thus a BCF
is also a PMD of the plant; specifically of the third form. As such, BCF
symbols inherit many of the properties of PMDs and thus much of the
theory developed in the past for such objects can be readily adapted to
BCF theory. However, imposing the bicoprimeness property onto the
factors yields additional advantages.

It is a well known result [4, Theorem 4.3.12] that any plant P ∈ R
with a RCF {N, M} ∈ Cr (P ) is stable if and only if M ∈ GH∞. The
following lemma presents an equivalent result for BCFs.

Lemma 2 ([4, Theorem 4.3.12]): Let P ∈ R have a BCF
{N, M, L, K} ∈ B(P ). Then P ∈ RH∞ ⇔ M ∈ GH∞.

The following lemma relates the transmission zeros of a plant to
those of its BCF symbols.

Lemma 3: Let P ∈ R and G ∈ Bm (P ). Then z0 ∈ C̄+ is a trans-
mission zero of P if and only if it is a transmission zero of G.

Proof: Let the BCF of P associated with G be given by
{N, M, L, K} ∈ B(P ). Furthermore let {Ñ , M̃} ∈ Cl (NM−1 ) and
suppose that Yr and Zr is the Bézout factor pair associated with
{N, M}. Then

[
Zr Yr

−Ñ M̃

][
M −L
N K

]
=

[
I Yr K − Zr L

0 M̃P

]
,

which implies that G and M̃P share any transmission zeros.
The result then follows by noting that {ÑL + M̃K, M̃} ∈ Cl (P )
[7, Proposition 2.5]. �

The first advantage of imposing bicoprimeness is now revealed as
the properties given by Lemmas 2 and 3 do not hold for Rosenbrock
matrices in general. A special case for which these results do hold is
when the PMD defines a minimal state space realization of the plant.
However, as suggested by [4], this is equivalent to the factorization
being BC over the ring of polynomials.

A. Internal Dimension

It is simple to show that the dimensions of the coprime factors of a
plant are constant. Suppose that {N, M} ∈ Cr (P ) where P ∈ Rp×q ,
then it follows trivially from the definition of RCFs that N ∈ RH p×q

∞
and M ∈ RH q×q

∞ .
Such a restriction does not apply to BCFs. Let P ∈ R and sup-

pose that {N, M, L, K} ∈ B(P ). Furthermore, define Ñ =
[
N 0

]
,

M̃ = diag (M, I) , L̃ =
[
L∗ 0

]∗
. Then it is easy to show that

{Ñ , M̃ , L̃, K} ∈ B(P ) is also a BCF of P with arbitrarily inflated
factor dimensions. This fact gives rise to the following definition.

Definition 6: The internal dimension of a BC quad
{N, M, L, K} ∈ B is defined as the number of rows/columns
of M . The set of all BC quads of internal dimension r > 0 is defined
as Br (or Br (P ) if the quad is a BCF of P ∈ R).

An interesting case arises when the additive term of a BCF is set to
zero, as outlined in the following lemma.

Lemma 4: Let P ∈ Rp×q and suppose that {N, M, L, 0} ∈
Br (P ). Then nrank P ≤ r.

Before proving the above lemma we need the following result.
Lemma 5: Let P1 ∈ Rp×n and P2 ∈ Rn×q with n ≤ min{p, q}.

Then nrank (P1P2 ) = n if and only if nrank P1 = nrank P2 = n.
Proof: (⇒) Suppose that nrank (P1P2 ) = n, then for some s0 ∈

C rank (P1 (s0 )P2 (s0 )) = n and the result follows from Sylvester’s
rank inequality [12, Lemma 2.3].

(⇐) Suppose that nrank (P1P2 ) < n while nrank P1 =
nrank P2 = n, then for all s ∈ C rank (P1 (s)P2 (s)) < n. This
implies that for all s0 ∈ C where rank P1 (s0 ) = n, rankP2 (s0 ) < n
and vice versa. By noting that a system can only have a finite number
of transmission zeros a contradiction arises which concludes the
proof. �

Proof of Lemma 4: Suppose on the contrary that r < nrank P and
note that nrank M = r since by definition det M (∞) �= 0. Then, us-
ing Lemma 5, nrank (NM−1L) ≤ r < nrank P which is a contra-
diction since P = NM−1L and hence the proof is complete. �
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Note that as a consequence of Lemma 4, it follows that a BCF can
always be chosen to have internal dimension no greater than min{p, q}.
Now using Lemma 4, a lower bound on the achievable internal dimen-
sion for the BCFs of a plant can be stated as in the following theorem.

Theorem 6: Let P ∈ R and suppose that {N, M, L, K} ∈ Br (P ).
Then inf P̃ ∈RH∞ nrank (P − P̃ ) ≤ r.

Proof: Since {N, M, L, 0} ∈ Br (P − K) it follows from
Lemma 4 that nrank (P − K) ≤ r. Now suppose that r < inf P̃ ∈RH∞
nrank(P − P̃ ). Then nrank (P − K) < inf P̃ ∈RH∞ nrank (P − P̃ )
which is a contradiction since K ∈ RH∞ and the proof is
complete. �

B. BCF Parameterization

All LCFs or RCFs of a plant can be simply parameterized by pre- or
post-multiplication of the factors by an object in GH∞. For example, let
P ∈ R and suppose that {N, M} ∈ Cr (P ), then it is easy to show that
{NQ, MQ} ∈ Cr (P ) for any Q ∈ GH∞ of compatible dimensions.

On the other hand, parameterizing BCFs is not as simple. The fol-
lowing lemma uses a strict system equivalence [13] to parameterize a
set of BCFs for a plant P ∈ R.

Lemma 7: Let P ∈ R have the BCF {N, M, L, K} ∈ Bn (P ).
Then[

M̃ −L̃

Ñ K̃

]
=

[
Ql 0
Rl I

][
M −L
N K

][
Qr −Rr

0 I

]
∈ Bm

n (P )

for all Ql , Qr ∈ GH∞ and Rl , Rr ∈ RH∞ with compatible
dimensions.

Before proving the above lemma we need the following result. This
gives sufficient conditions for a BC quad to retain its bicoprimeness
under stable perturbations of the factors.

Lemma 8: Let {N, M, L, K} ∈ B, Q, R, S, T ∈ RH∞ and
U, V ∈ GH∞. Then {(N − QM )U, V (M − LSN )U, V (L −
MR), K + T } ∈ B if [Q, LS] and [SN, R] are internally stable.

Proof: Since U, V ∈ GH∞ it follows that they can always be ab-
sorbed into the Bézout factors, hence:

{(N − QM )U, V (M − LSN )U} ∈ Cr

⇔ ∃Ỹr , Z̃r ∈ RH∞ : Z̃r (M − LSN ) + Ỹr (N − QM ) = I

⇔ ∃Ỹr , Z̃r ∈ RH∞ :
[
Z̃r Ỹr

][ I −LS
−Q I

][
M
N

]
= I

⇐
[

I −LS
−Q I

]
∈ GH∞

⇔ [Q, LS] is internally stable.

The fact that {V (L − MR), V (M − LSN )U} ∈ Cl if [SN, R] is
internally stable can be proven similarly. Finally, since K + T ∈ RH∞
the conclusion follows. �

Proof of Lemma 7: Using Lemma 8 it can be shown that
{Ñ , M̃ , L̃, K̃} ∈ B and then P = ÑM̃−1 L̃ + K̃ follows from [11,
Theorem 3.1]. �

Observe that the parameterization of Lemma 7 does not allow for
variation in the internal dimension of the BCFs, it is therefore imme-
diate that it does not cover the entire set of BCFs for a given plant.

IV. STATE SPACE FORMULAE AND CHARACTERIZATIONS

Coprime factorizations can be easily obtained from a state space
realization of the plant using the formulae of [14]. A trivial method
of obtaining a BCF of a plant is to construct a LCF or RCF and
set the remaining factors accordingly. For example, let P ∈ R and

choose {N, M} ∈ Cr (P ) then it follows trivially that {N, M, I, 0} ∈
B(P ). However, a more systematic state space approach is needed.
This problem is addressed in this section.

The following theorem gives a parameterization of BCFs of a plant
based on state space data, that generalizes the formulae given by [14].

Theorem 9: Let P ∈ Rp×q have a stabilizable and detectable state

space realization P =
[

A B

C D

]
. Furthermore, suppose that Q ∈ Rn×r ,

S ∈ Rr×r and R ∈ Rr×n are such that A + QSR is Hurwitz, where
det(S) �= 0. Finally, let DN ∈ Rp×r and DL ∈ Rr×q be arbitrarily
chosen matrices and define

[
M −L

N K

]
=

⎡
⎣ A + QSR QS B + QSDL

SR S SDL

C + DN SR DN S D + DN SDL

⎤
⎦ . (2)

Then {N, M, L, K} ∈ Br (P ).
Proof: First, it is easy to show that P = NM−1L + K . Let

F ∈ Rq×n and H ∈ Rn×p be such that A + BF and A + HC are
Hurwitz. Then the following holds after some simple albeit tedious
linear algebra:

[
M −L

]
⎡
⎣ A + BF Q

−(R + DL F ) S−1

F 0

⎤
⎦ = I and

[
A + HC −(Q+HDN )H

R S−1 0

] [
M
N

]
= I,

which completes the proof. �
The BCF presented in Theorem 9 will henceforth be referred to as

the QR-BCF parameterization.
Remark 1: The QR-BCF parameterization given in Theorem 9 re-

duces to the standard LCF and RCF parameterizations of [14] by
an appropriate selection of Q, S, R, DN and DL . For example,
let P ∈ R and {N, M, L, K} ∈ B(P ) given by (2) with Q = B,
S = I , DN = D and DL = −I . Then L = I , K = 0 and {N, M}
∈ Cr (P ). �

Remark 2: The matrices Q, S and R satisfying the conditions of
Theorem 9 exist regardless of the stabilizability and detectability of
the given state space realization of the plant. However, the assumption
is necessary for the resulting factorization to be BC. This can be seen
as follows. The pair {N, M} is RC if and only if the associated graph
symbol has no transmission zeros in C̄+ or equivalently

rank
[

M
N

]
= r ∀s ∈ C̄+

⇔ rank

⎡
⎣ A + QSR − sI QS

SR S
C + DN SR DN S

⎤
⎦ = n + r ∀s ∈ C̄+

⇔ rank

⎡
⎣ A − sI Q

0 I
C DN

⎤
⎦ = n + r ∀s ∈ C̄+

⇔ rank
[

A − sI
C

]
= n ∀s ∈ C̄+

⇔ (C, A) is detectable,

where n denotes the order of the plant or equivalently the dimension
of A. Hence, the detectability of (C, A) is necessary for the QR-BCF
parameterization to generate a valid BCF of the plant. It can similarly
be shown that {L, M} ∈ Cl if and only if (A, B) is stabilizable. �

An interesting question that arises from the BCF characterization
of Theorem 9 is “what is the smallest internal dimension achievable
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using the QR-BCF parameterization?”. This is equivalent to finding the
smallest dimension Q such that (A, Q) is stabilizable. This question is
answered by the following lemma.

Lemma 10: Let A ∈ Rn×n , then there exists a matrix B ∈ Rn×q

such that (A, B) is controllable if and only if

max
λi ∈Λ(A )

{γA (λi )} ≤ q.

Proof: This is a consequence of [15, Theorem 1.2]. �
Then, by a direct application of the above result, it becomes appar-

ent on using Theorem 9 that the minimum BCF internal dimension
achievable is given by r = maxλi ∈Λ(A )∩C̄+

{γA (λi )}.

V. INTERNAL STABILITY

As is the case for RCFs and LCFs, BCFs can be used to establish the
internal stability of the feedback interconnection of two systems. Some
internal stability results based on BCFs of the plant and controller are
presented in the following theorem.

Theorem 11: Consider the standard positive feedback intercon-
nection of a plant P ∈ Rp×q and controller C ∈ Rq×p . Let
{N, M, L, K} ∈ Br (P ) and {U, V, W, X} ∈ Br̂ (C), with GP ∈
Bm

r (P ) and GC ∈ Bm
r̂ (C) being the associated BCF symbols. Then

the following statements are true:
a) [P, C ] is internally stable if and only if

[
GP −diag (0r×r̂ , Ip )

−diag (0r̂×r , Iq ) GC

]
∈ GH∞. (3)

b) Suppose that [K, X ] is internally stable. Then [P, C ] is internally
stable if and only if

GP �

(
adiag (Iq , Ir̂ ) GC adiag (Ir̂ , Ip )

)
∈ GH∞. (4)

c) Suppose that X = 0. Then [P, C ] is internally stable if and only if
[

M −LU
−W N V − W KU

]
∈ GH∞. (5)

d) Suppose that [K, C ] is internally stable. Then [P, C ] is internally
stable if and only if

M − LC (I − KC)−1 N ∈ GH∞. (6)

Before proving the above theorem, the following useful result is
provided.

Lemma 12: Let A =
[

A11 A12

A21 A22

]
∈ RH∞ and suppose that

A22 ∈ GH∞. Then A ∈ GH∞ if and only if A11 − A12A
−1
22 A21 ∈

GH∞.
Proof: The proof follows trivially via a Schur complement decom-

position of A. �
Proof of Theorem 11: Define

G[P ,C ] =

⎡
⎢⎢⎣

0 M L 0
V 0 0 W

U 0 I −X
0 N −K I

⎤
⎥⎥⎦ (7)

and note that G[P ,C ] ∈ Bm

([
I −C

−P I

])
. It then follows from

Lemmas 1 and 3 that [P, C ] is internally stable if and only if
G[P ,C ] ∈ GH∞. The theorem statements can then be proven via con-
secutive applications of Lemmas 2 and 12 in addition to some elemen-
tary row/column permutations to (7).

Fig. 1. Perturbed plant block diagram with BC factor uncertainty.

To prove (d) it is also necessary to note that given {U, V, W, 0} ∈
B(C), then {U, V − W KU, W, 0} ∈ B(C (I − KC)−1 ). However
the supposition that X = 0 is not necessary as the term can always be
absorbed into the other BC factors of C . �

Remark 3: It follows from Theorem 11 that the internal stability
tests induced by classical coprime factorizations [12, Lemma 5.10] are
special cases of their BCF counterparts. �

VI. UNCERTAINTY AND ROBUST STABILITY CONDITIONS

Just like RCFs and LCFs, BCFs can be used to define an uncertainty
structure and by extent a robust stability margin. In this section, sta-
ble additive perturbations on the BC factors of a plant are examined.
Following coprime factor convention, a BCF perturbed plant can be
defined as

PΔ = (N +ΔN ) (M +ΔM )−1 (L+ΔL )+(K+ΔK ). (8)

Fig. 1 shows a block diagram representation of the proposed BCF un-
certainty structure given by (8). As expected, the uncertainty structure
induced by a plant BCF contains elements from both LCF and RCF un-
certainty. Therefore, like coprime factor uncertainty, BCF uncertainty
is suitable for capturing low frequency parameter errors, neglected high
frequency dynamics and uncertain C̄+ poles and zeros. Another inter-
esting fact about this structure is that it closely resembles the standard
four-block problem commonly studied in robust control as is evident
from Fig. 1.

Given a coprime factorization of a plant, any perturbations on the
coprime factors of the plant must preserve coprimeness, otherwise
the perturbed plant is not robustly stabilizable [16, Remark 4.4]. A
similar condition will be imposed herein with {N +ΔN , M +ΔM , L+
ΔL , K+ΔK } ∈ B(PΔ ).

From the very definition of BCF uncertainty it is obvious that this
structure will always be at least as good as classical coprime factor
uncertainty at capturing modeling errors. This follows by noting that
the former forms a superset of the latter. Consider for example the
LCF of a plant {L, M} ∈ Cl (P ) being perturbed to P LC F

Δ = (M +
ΔM )−1 (L + ΔL ). Now, if we were to allow uncertainty on the induced
BCF {I, M, L, 0} ∈ B(P ), the resulting perturbed plant would be
given by P B C F

Δ = (I + ΔN )(M + ΔM )−1 (L + ΔL ) + ΔK which
allows for capturing output multiplicative and additive modeling errors
[12, Table 9.1] in addition to the coprime factor errors normally rep-
resented by LCF uncertainty. Thus it becomes apparent that LCF and
RCF uncertainty is a special structured case of BCF uncertainty.

A central part in the study of any uncertainty structure is the con-
struction of a generalized plant. In the case of BCF uncertainty this can
be obtained as follows. Define z =

(
z∗

2 z∗
1

)∗
and w =

(
w∗

1 w∗
2

)∗
.

Then from Fig. 1 a generalized plant Π :
(
w∗ u∗ )∗ �→ (

z∗ y∗ )∗
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and uncertainty matrix Δ : z �→ w can be defined as

Π =

⎡
⎣ M−1 0 M−1L

0 0 I

NM−1 I P

⎤
⎦ and (9)

Δ =
[−ΔM ΔL

ΔN ΔK

]
. (10)

It is straightforward to confirm that using the above Π and Δ yields
PΔ = Fu (Π, Δ).

Though a BCF robust stability margin can be obtained by directly
calculating ‖Fl (Π, C)‖−1

∞ (see [17] for details), the procedure is sim-
plified when a BCF of the controller is used. This robust stability result
is given in the following theorem.

Theorem 13: Consider the standard positive feedback interconnec-
tion of a plant P ∈ R and stabilizing controller C ∈ R and suppose
that {N, M, L, K} ∈ B(P ) and {U, V, W, 0} ∈ B(C). Furthermore,
define Δ ∈ RH∞ as in (10), PΔ = Fu (Π, Δ) with Π as in (9) and sup-
pose that {N + ΔN , M + ΔM , L + ΔL , K + ΔK } ∈ B(PΔ ). Then
[PΔ , C ] is internally stable for all ‖Δ‖∞ < γ if and only if

∥∥∥∥∥
[

I 0
0 U

][
M −LU

−W N V − W KU

]−1[
I 0
0 W

]∥∥∥∥∥
∞

≤ 1
γ

.

Proof: First, define S =
[

M −LU
−W N V − W KU

]
which from

Theorem 11 (c) belongs to GH∞ since [P, C ] is internally stable.
Then, using the same result again, [PΔ , C ] is internally stable if and
only if

[
M + ΔM −(L + ΔL )U

−W (N + ΔN ) V − W (K + ΔK )U

]
∈ GH∞

⇔
(

S −
[

I 0
0 W

][−ΔM ΔL

ΔN ΔK

][
I 0
0 U

])−1

∈ RH∞

⇔
([

I 0
0 I

]
−

[
I 0
0 U

]
S−1

[
I 0
0 W

]
Δ

)−1

∈ RH∞.

The conclusion then follows from the small gain theorem. �

VII. NUMERICAL EXAMPLE

A numerical example is provided in this section to illustrate how
the results presented in this technical note can be used in a practical
setting.

Before providing the numerical example we briefly discuss a BCF
based controller parameterization. Suppose that a plant P ∈ R has the
BCF {N, M, L, K} ∈ B(P ). Since K ∈ RH∞, using the Youla pa-
rameterization [18] a set of stabilizing controllers for K is given by
{C = U (I + KU )−1 : U ∈ RH∞, det(I + KU )(∞) �= 0} so that
C (I − KC)−1 = U . Then using Theorem 11 (d), a set of stabilizing
controllers for P can be defined as C(P ) = {C = U (I + KU )−1 :
U ∈ RH∞, det(I + KU )(∞) �= 0, M − LUN ∈ GH∞}.

Consider the plant P ∈ R given by

P =

⎡
⎢⎢⎣

1 0 1 1
0 −2 1 1
1 2 0 0
2 1 0 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

3s

(s + 2)(s − 1)
2s + 1

(s + 2)(s − 1)
3(s + 1)

(s + 2)(s − 1)
5s + 7

(s + 2)(s − 1)

⎤
⎥⎥⎦.

Then with Q =
[
1 0

]∗
, S = I , R =

[−4 0
]
, DN = 0 and DL =

0, a BCF of P is obtained via Theorem 9 as

[
M −L

N K

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

s − 1
s + 3

− 4
s + 3

− 8
s + 3

1
s + 3

3s + 8
(s + 3)(s + 2)

4s + 10
(s + 3)(s + 2)

2
s + 3

3s + 7
(s + 3)(s + 2)

5s + 11
(s + 3)(s + 2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈Bm

1 (P).

A controller can now be synthesized for P using the procedure de-
scribed above. Since the internal dimension of the given BCF is
1, this is a simple scalar problem; a solution to which given by
U = − s+3

s+4 diag
(
1, 1

8

)
. This yields the controller

C = − 1
d(s)

[
8s3 + 67s2 + 182s + 159 4s2 + 22s + 30

3s2 + 16s + 21 s3 + 6s2 + 9s

]
∈ C(P ),

where d(s) = 8s3 + 51s2 + 68s − 35.
Now consider the reverse problem. That is, given P and C , estab-

lish whether or not [P, C ] is internally stable. Then using BCF theory,
specifically Theorem 11 (d), internal stability can be established by
inspection of the transmission zeros of a scalar transfer function [19].
As a comparison, using a coprime factor result would require the in-
version of a 2× 2 matrix at best. Such a scalar test is possible for any
P ∈ Rp×q for which B1 (P ) �= ∅, regardless of the magnitudes of p
and q. One could hence easily imagine benefits in a variety of control
problems; for example multi-agent systems, such as those motivated in
[20] and [21].

VIII. CONCLUSION

The foundations of a BCF theory are developed in this technical
note. Many fundamental, yet important, results such as state space
parameterization and internal stability tests are presented. It is also
demonstrated that many RCF or LCF results can be obtained from
the more general BCFs via the appropriate restrictions. The QR-BCF
parameterization is presented which is shown to capture the standard
coprime factor parameterizations given by [14]. Finally, the uncertainty
structure induced by a BCF is defined and shown to have an appeal-
ing nature that encompasses the classical LCF and RCF uncertainty
structures.
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[8] A. N. Gündeş and C. A. Desoer, Algebraic Theory of Linear Feedback Sys-
tems with Full Decentralized Compensators. Berlin, Germany: Springer-
Verlag, 1990.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 62, NO. 9, SEPTEMBER 2017 4603

[9] K. A. Ünyelioğlu, U. Özgüner, and A. B. Özgüler, “Fixed zeros of decen-
tralized control systems,” IEEE Trans. Autom. Control, vol. 45, no. 1, pp.
146–151, Jan. 2000.

[10] D. Baski, V. V. Patel, K. B. Datta, and G. D. Ray, “Decentralized stabiliza-
tion and strong stabilization of a bicoprime factorized plant,” Kybernetika,
vol. 35, no. 2, pp. 235–253, 1999.

[11] H. H. Rosenbrock, State-space and Multivariable Theory. London, U.K.:
Nelson, 1970.

[12] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control. Upper
Saddle River, NJ: Prentice-Hall, Inc., 1996.

[13] P. A. Fuhrmann, “On strict system equivalence and similarity,” Int. J.
Control, vol. 25, no. 1, pp. 5–10, 1977.

[14] C. N. Nett, C. A. Jacobson, and M. J. Balas, “A connection between state-
space and double coprime fractional representations,” IEEE Trans. Autom.
Control, vol. 29, pp. 831–832, 1984.

[15] W. M. Wonham, Linear Multivariable Control, 3rd ed. New York:
Springer, 1985.

[16] K. Glover and D. McFarlane, “Robust stabilization of normal-
ized coprime factor plant descriptions with H∞-bounded uncer-
tainty,” IEEE Trans. Autom. Control, vol. 34, no. 8, pp. 821–830,
Aug. 1989.

[17] A. Lanzon and G. Papageorgiou, “Distance measures for uncertain linear
systems: A general theory,” IEEE Trans. Autom. Control, vol. 54, no. 7,
pp. 1532–1547, July 2009.

[18] D. Youla, H. Jabr, and J. Bongiorno, “Modern Wiener-Hopf design of
optimal controllers part II: The multivariable case,” IEEE Trans. Autom.
Control, vol. 21, no. 3, pp. 319–338, Jun. 1976.

[19] M. Tsiakkas and A. Lanzon, “Bicoprime factor stability criteria and uncer-
tainty characterisation,” in Proc. 8th IFAC Symp. Robust Control Design,
Bratislava, Slovakia, Jul. 2015, pp. 228–233.

[20] J. Wang, A. Lanzon, and I. R. Petersen, “Robust output feedback consensus
for networked negative-imaginary systems,” IEEE Trans. Autom. Control,
vol. 60, no. 9, pp. 2547–2552, Sept. 2015.

[21] J. Wang, A. Lanzon, and I. R. Petersen, “Robust cooperative control of
multiple heterogeneous negative-imaginary systems,” Automatica, vol. 61,
pp. 64–72, Nov. 2015.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


