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Negative Imaginary Lemmas for Descriptor Systems
Junlin Xiong, Alexander Lanzon, Ian R. Petersen

Abstract—This paper studies the negative imaginary properties
of descriptor linear systems based on state-space realizations.
Under the assumption of a minimal realization, necessary and
sufficient conditions are established to characterize the negative
imaginary properties of descriptor systems in terms of linear
matrix inequalities with equality constraints. In particular, a
negative imaginary lemma, a strict negative imaginary lemma
and a lossless negative imaginary lemma are developed. A
multiple-input and multiple-output RLC circuit network is used
as an illustrative example to validate the developed theory.

Index Terms—Descriptor systems, linear matrix inequalities,
negative imaginary systems, RLC circuits.

I. INTRODUCTION

The negative imaginary property is often satisfied for linear
dynamical systems stemming from flexible structures and
passive linear electrical circuits [1], [2]. The question of how to
characterise negative imaginary properties in terms of system
matrices is one of the main research problems in the study
of negative imaginary systems theory. Under the assumption
of minimal state-space realizations, necessary and sufficient
conditions have been established, and are summarized as
the Negative Imaginary Lemma in [1], [3]. As a result,
the negative imaginary properties can be numerically tested
efficiently. Along this line of research, lossless and finite
frequency negative imaginary lemmas have been proposed in
[4], [5], respectively. The negative imaginary lemma in [1],
[3] has also been generalized by removing the minimality
assumption [6]. Furthermore, the definition of negative imagi-
nary systems has been modified to symmetric transfer function
matrices in [7], and to allow poles at the origin in [8]. Negative
imaginary lemmas have been applied to the stability analysis of
interconnected negative imaginary systems [1], [3], [9], [10],
and to the synthesis of negative imaginary systems [2], [6].

In this paper, we are interested in developing negative imag-
inary lemmas for descriptor systems. In practice, descriptor
systems provide a convenient way to model many realistic
systems, such as electrical circuits [11], and electric power
grids [12]. In particular, the descriptor state-space models
can be readily obtained via modified nodal analysis [13],
[14] for RLC circuit networks. The research in this paper is
partially motivated by the model reduction problem of VLSI
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circuits, where some particular structure properties need to be
preserved in the reduced models. For example, the passivity
property is one such property deserving preservation [11].
Because RLC circuits may exhibit the negative imaginary
property by choosing appropriate inputs and outputs [2], it
may also be desirable to preserve the negative imaginary
property when the order of descriptor models is reduced.
This expectation motivates the current study: how can we
test negative imaginary properties directly from the descriptor
state-space models? A simplified version of the negative
imaginary lemma for descriptor systems has been proposed
in [15], and the lemma there is based on the Weierstrass
form of the system. Unfortunately, the Weierstrass form is
usually difficult to obtain. Another criteria to test the negative
imaginary property of descriptor systems is provided in [16],
where the criteria is given in terms of a Kronecker canonical
decomposition of a matrix pencil determined from the system
matrices. Here, we aim to develop negative imaginary lemmas
for descriptor systems without knowledge of the Weierstrass
form, and in terms of the system matrices directly.

The main results of the paper give negative imaginary lem-
mas for descriptor systems. A negative imaginary lemma for
descriptor systems is derived under the assumption of minimal
realizations. A strict negative imaginary lemma and a lossless
negative imaginary lemma are also established in terms of
system matrices based on a spectral factorization result. These
lemmas provide necessary and sufficient conditions to test
the negative imaginary properties of descriptor systems by
solving a set of LMIs with linear equality constrains. When
the descriptor systems reduce to standard linear systems, our
results coincide with the results in the literature. The developed
negative imaginary theory is validated by an example from
multiple-input and multiple-output RLC networks.

Notation: Let Rm×n and Rm×n denote the set of m×n real
matrices and real-rational proper transfer function matrices,
respectively. AT and A∗ denotes the transpose and the com-
plex conjugate transpose of a complex matrix A, respectively.
R∼(s) presents the adjoint of transfer function matrix R(s)
and is given by RT (−s). ℜ[·] is the real part of complex
numbers. The notation X > 0 or X ≥ 0, where X is a real
symmetric matrix, means that the matrix X is positive definite
or positive semidefinite.

II. PROBLEM FORMULATION

Consider a class of dynamical systems described by{
Eẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t),
(1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the control
input and y(t) ∈ Rm is the measurement output. The matrices
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E ∈ Rn×n, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n and D ∈
Rm×m are constant matrices. The matrix E is often a singular
matrix. The pair (E,A) is called regular if det(sE −A) ̸= 0
for some s ∈ C; it is called stable if the roots to det(sE−A) =
0 lie in the left half of the complex plane. When (E,A) is
regular, the descriptor system (1) has a transfer function

R(s) = C(sE −A)−1B +D. (2)

The regularity of (E,A) also ensures that there exist non-
singular matrices Q ∈ Rn×n, P ∈ Rn×n such that

QEP =

[
I 0
0 N

]
, QAP =

[
A1 0
0 I

]
, (3a)

QB =

[
B1

B2

]
, CP =

[
C1 C2

]
, (3b)

where N ∈ Rn2×n2 is a nilpotent matrix, A1 ∈ Rn1×n1 ,
B1 ∈ Rn1×m, B2 ∈ Rn2×m, C1 ∈ Rm×n1 , C2 ∈ Rm×n2 and
n1 +n2 = n. The matrices on the right sides of equations (3)
are called the Weierstrass form of the descriptor system (1).

Definition 1: [3] A transfer function matrix R(s) ∈ Rm×m

is negative imaginary if
1) R(s) has no poles at the origin and in ℜ[s] > 0;
2) j[R(jω)−R∗(jω)] ≥ 0 for all ω ∈ (0,∞) except values

of ω where jω is a pole of R(s);
3) If jω0, ω0 ∈ (0,∞), is a pole of R(s), it is at most a

simple pole, and the residue matrix K0 ≜ lims→jω0(s−
jω0)jR(s) is positive semidefinite Hermitian.

Remark 1: Both the negative imaginary and the positive
real properties are concerned with the phase characteristics of
transfer functions over all frequencies. In contrast, the bounded
real property is a property about the gain characteristics of
transfer functions over all frequencies [17]. For example, the
transfer function R1(s) = b1

s+1 with b1 > 0 is both negative
imaginary and positive real for any b1 > 0, and is bounded
real with gain no greater than unity only for b1 ≤ 1. The
transfer function R2(s) =

b2
s2+1 with b2 > 0 is always negative

imaginary, and is neither positive real nor bounded real for any
b2 > 0. The transfer function R3(s) = b3s

s2+1 with b3 > 0 is
only positive real.

Definition 2: [1] A transfer function matrix R(s) ∈ Rm×m

is termed strictly negative imaginary if
1) R(s) has no poles in ℜ[s] ≥ 0;
2) j[R(jω)−R∗(jω)] > 0 for ω ∈ (0,∞).
Remark 2: Because negative imaginary properties (see Def-

inition 1 and 2) are defined for transfer function matrices
R(s) ∈ Rm×m, they are independent of the state-space
realization of R(s). As a result, the results expressed in terms
of transfer functions in [1]–[4] are still valid for the transfer
functions of descriptor systems.

The objective of the paper is to develop state-space negative
imaginary lemmas for descriptor systems.

III. NECESSARY AND SUFFICIENT NEGATIVE IMAGINARY
LEMMAS

In this section, three negative imaginary lemmas are de-
veloped for descriptor systems under the minimal realization
assumption of transfer functions. These lemmas extend the

negative imaginary lemma (that is, Lemma 7 of [3]), the
strict negative imaginary lemma (that is, Lemma 8 of [3]),
the lossless negative imaginary lemma (that is, Theorem 1 of
[4]) to the descriptor systems case, respectively.

Assumption 1: The state-space realization (E,A,B,C,D)
is both controllable and observable.

In view of Theorem 2-6.3 of [18], Assumption 1 is equiv-
alent to that (E,A,B,C,D) is a minimal realization of the
transfer function in (2); see also Theorem 6.3 of [19]. The
system (1) is controllable if and only if both (A1, B1) and
(N,B2) are controllable. It is observable if and only if both
(A1, C1) and (N,C2) are observable.

Now, we are ready to state our first result, which extends
Lemma 7 of [3] to the descriptor systems case.

Theorem 1: Consider a state-space realization
(E,A,B,C,D) of the transfer function R(s) ∈ Rm×m.
Suppose Assumption 1 holds. Then R(s) is negative
imaginary if and only if

1) det(A) ̸= 0, R(∞) = RT (∞);
2) there exist matrices X ∈ Rn×n, Y ∈ Rn×m such that

ATX +XTA ≤ 0 (4)

CT +XTEA−1B = ATY (5)

ETX = XTE ≥ 0 (6)

ETY = 0. (7)

Proof: (=⇒) Because the transfer function R(s) has no
poles at the origin, one has that the system matrix A is non-
singular. The non-singularity of A further implies that the
pair (E,A) is regular. Hence the transfer function R(s) has a
Weierstrass form (3). Therefore we have

R(s) = C1(sI −A1)
−1B1 +D − C2B2 −

h−1∑
i=1

siC2N
iB2,

where h < n2 is the smallest integer such that Nh = 0.
Because R(s) is proper, which implies that C2N

iB2 = 0
for i = 1, 2, . . . , h− 1, one has

C2N
[
B2 NB2 · · · Nn2−1B2

]
= 0.

Because (N,B2) is controllable, one has that[
B2 NB2 · · · Nn2−1B2

]
is of full row rank. It

follows from the above equality that C2N = 0. On the other
hand, the observability of (N,C2) implies that

C2

C2N
...

C2N
n2−1


is of full column rank. Therefore, C2 must be of full column
rank, which implies that N = 0 from C2N = 0.

As a result, the transfer function R(s) has a standard state-
space realization

R(s) = C1(sI −A1)
−1B1 +D − C2B2. (8)

Assumption 1 ensures that the state-space realization
(A1, B1, C1, D − C2B2) is a minimal realization. In view of
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Lemma 7 of [3], R(s) is negative imaginary if and only if the
following conditions hold:

1) det(A1) ̸= 0, D − C2B2 = (D − C2B2)
T ;

2) there exists a matrix X1 ∈ Rn1×n1 , X1 = XT
1 > 0,

such that

AT
1 X1 +X1A1 ≤ 0 (9)

CT
1 +X1A

−1
1 B1 = 0. (10)

Considering the Weierstrass form (3), the first condition above
is equivalent to the first condition in Theorem 1.

Now we prove that there exist matrices X and Y satisfying
(4)–(7). Let

X = QT

[
X1 0
0 0

]
P−1, Y = QT

[
0
CT

2

]
,

where the matrix X1 = XT
1 > 0 satisfies (9) and (10). We

will verify that X and Y satisfy (4)–(7).
Equation (6) holds because of the following equivalences:

ETX = XTE ≥ 0

⇐⇒ PTETQTQ−TXP = PTXTQ−1QEP ≥ 0

⇐⇒
[
X1 0
0 0

]
=

[
XT

1 0
0 0

]
≥ 0

⇐= X1 = XT
1 > 0.

Equation (7) follows from the equivalences:

ETY = 0 ⇐⇒ PTETQTQ−TY = 0

⇐⇒
[
I 0
0 0

] [
0
CT

2

]
= 0.

Equation (4) holds because

ATX +XTA ≤ 0

⇐⇒ PTATQTQ−TXP + PTXTQ−1QAP ≤ 0

⇐⇒
[
AT

1 X1 +X1A1 0
0 0

]
≤ 0

⇐⇒ AT
1 X1 +X1A1 ≤ 0.

Equation (5) is true due to

CT +XTEA−1B = ATY

⇐⇒ PTCT + PTXTQ−1QEPP−1A−1Q−1QB

= PTATQTQ−TY

⇐⇒
[
CT

1 +X1A
−1
1 B1

CT
2

]
=

[
0
CT

2

]
⇐⇒ CT

1 +X1A
−1
1 B1 = 0.

(⇐=) Because det(A) ̸= 0, the pair (E,A) is regular.
This implies that the Weierstrass form (3) exists for R(s).
In view of the properness of R(s) and the controllability and
observability assumption, one can conclude that N = 0 by
following the same lines as in the necessary part of the proof.

Suppose there exist matrices X and Y such that equations
(4)–(7) hold. Let

Q−TXP =

[
X1 X2

X3 X4

]
, Q−TY =

[
Y1

Y2

]
.

We will first verify that X1 satisfies (9) and (10) and then
prove X1 = XT

1 > 0.
Firstly, it follows from (6) that

ETX = XTE ≥ 0

⇐⇒
[
X1 X2

0 0

]
=

[
XT

1 0
XT

2 0

]
≥ 0

⇐⇒ X1 = XT
1 ≥ 0, X2 = 0.

Therefore

Q−TXP =

[
X1 0
X3 X4

]
, X1 = XT

1 ≥ 0.

Secondly, it follows from (7) that

ETY = 0 ⇐⇒ PTETQTQ−TY = 0 ⇐⇒ Y1 = 0.

Therefore,

Q−TY =

[
0
Y2

]
.

Inequality (9) follows from

ATX +XTA ≤ 0

⇐⇒
[
AT

1 X1 +X1A1 XT
3

X3 X4 +XT
4

]
≤ 0

=⇒ AT
1 X1 +X1A1 ≤ 0.

Equality (10) holds because

CT +XTEA−1B = ATY

⇐⇒
[
CT

1 +X1A
−1
1 B1

CT
2

]
=

[
0
Y2

]
⇐⇒ CT

1 +X1A
−1
1 B1 = 0, Y2 = CT

2 .

Because we have shown that X1 = XT
1 ≥ 0, we need to

prove that X1 is non-singular to obtain that X1 = XT
1 > 0.

Suppose that X1 is singular. Then there exists an orthogonal
matrix U such that

UTX1U =

[
X11 0
0 0

]
, UTA1U =

[
A11 A12

A13 A14

]
,

UTB1 =

[
B11

B12

]
, C1U =

[
C11 C12

]
,

where X11 = XT
11 > 0, UTU = UUT = I . Also note that A1

is non-singular.
It follows from (9) that

AT
1 X1 +X1A1 ≤ 0

⇐⇒ UTAT
1 UUTX1U + UTX1UUTA1U ≤ 0

⇐⇒
[
AT

11X11 +X11A11 X11A12

AT
12X11 0

]
≤ 0

⇐⇒ AT
11X11 +X11A11 ≤ 0, X11A12 = 0

=⇒ A12 = 0 (because X11 is non-singular).

Following from (10), we have

CT
1 +X1A

−1
1 B1 = 0

⇐⇒ UTCT
1 + UTX1UUTA−1

1 UUTB1 = 0

⇐⇒
[
CT

11 +X11A
−1
11 B11

CT
12

]
= 0

=⇒ C12 = 0.
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Therefore, one has

UTA1U =

[
A11 0
A13 A14

]
, C1U =

[
C11 0

]
.

Hence
C1

C1A1

...
C1A

n1−1
1

U =


C1U

C1UUTA1U
...

C1U(UTA1U)n1−1

 =


C11 0

C11A11 0
...

...
C11A

n1−1
11 0

 .

This means that

rank




C1

C1A1

...
C1A

n1−1
1


 < n1,

which contradicts the observability assumption on (A1, C1).
Therefore, we have that X1 is non-singular; hence X1 > 0.
Therefore, R(s) is negative imaginary according to Lemma 7
of [3]. This completes the proof.

Remark 3: Because the equality constraints in (5) and (7)
are linear constraints, the solution set for (4)–(7) is a convex
set. Free toolboxes such as YALMIP may be used to solve
the conditions directly. Also, optimization techniques could
be used to find a feasible solution to (4)–(7) by constructing
the objective function from the equality constraints.

Remark 4: Theorem 1 can be considered as an extension of
the negative imaginary lemma to the descriptor systems case.
When E = I , Lemma 7 of [3] can be recovered.

Remark 5: It follows from (8) that R(∞) = D − C2B2,
which seems dependent on the Weierstrass form (3). However,
it follows from the sufficient part of the proof that if X and Y

satisfy the equations in (4)–(7), then one has Q−TY =
[

0
CT

2

]
.

This leads to Y TB = C2B2. Therefore, we have R(∞) =
D− Y TB. In other words, the condition R(∞) = RT (∞) in
Theorem 1 can be replaced by D − Y TB = (D − Y TB)T .

The next result is an extension of Corollary 1 of [3], and
gives a spectral factorization of negative imaginary transfer
function matrices. This result will be used to prove the strict
negative imaginary lemma for descriptor systems.

Corollary 1: Consider a state-space realization
(E,A,B,C,D) of the transfer function R(s) ∈ Rm×m.
Suppose Assumption 1 is satisfied. If R(s) is negative
imaginary, then there exists a real rational strictly proper
transfer function matrix

M(s) = LA−1E(sE −A)−1B (11)

such that

R(s)−R∼(s) = −sM∼(s)M(s) (12)

for all s with s not a pole of R(s). Here, L ∈ Rn×n is a matrix
satisfying LTL = −(ATX + XTA), where X is a solution
to the conditions in Theorem 1. In particular, one has

j[R(jω)−R∗(jω)] = ωM∗(jω)M(jω) (13)

for all ω ∈ [0,∞) with jω not a pole of R(s).

Proof: Note that Assumption 1, together with the proper-
ness of R(s), implies that N = 0, as shown in the proof of
Theorem 1. Let LP =

[
L1 L2

]
. We first have that M(s) is

strictly proper by noting

M(s) = L1A
−1
1 (sI −A1)

−1B1. (14)

Because R(s) is negative imaginary, it follows from The-
orem 1 that there exist two matrices X , Y satisfying (5)–(7)
and a matrix L satisfying ATX +XTA+ LTL = 0.

In a similar way to the sufficient part of the proof of
Theorem 1, one can conclude that there exist matrices X1 ∈
Rn1×n1 , X1 = XT

1 > 0, L1 ∈ Rn1×n1 such that

AT
1 X1 +X1A1 + LT

1 L1 = 0, and CT
1 +X1A

−1
1 B1 = 0.

Let Ỹ1 = X−1
1 > 0 and L̃1 = L1X

−1
1 . The above

conditions are equivalent to

A1Ỹ1 + Ỹ1A
T
1 + L̃T

1 L̃1 = 0, and B1 +A1Ỹ1C
T
1 = 0.

Then we have

M(s) = L̃1Ỹ
−1
1 A−1

1 (sI −A1)
−1B1.

Let M1(s) = L̃1Ỹ
−1
1 A−1

1 (sI − A1)
−1B1 and R1(s) =

R(s)−R(∞) = C1(sI −A1)
−1B1. Then

R(s)−R∼(s) = R(s)−RT (−s)

= [R1(s) +R(∞)]− [R1(−s) +R(∞)]T

= R1(s)−RT
1 (−s) = R1(s)−R∼

1 (s)

= −sM∼
1 (s)M1(s) = −sM∼(s)M(s)

for all s with s not a pole of R(s). The second last equality
follows from Corollary 1 of [3] and Remark 6 of [3]. This
proves that (12) holds. By letting s = jω, (12) becomes

R(jω)−R∗(jω) = −jωM∗(jω)M(jω).

Multiplying both sides of the above equation by j leads to
(13).

The next result is an extension of Lemma 8 of [3], and gives
a strict negative imaginary lemma for descriptor systems.

Theorem 2: Consider a state-space realization
(E,A,B,C,D) of the transfer function R(s) ∈ Rm×m.
Suppose Assumption 1 is satisfied. Then R(s) is strictly
negative imaginary if and only if

1) (E,A) is stable, R(∞) = RT (∞);
2) there exist matrices X ∈ Rn×n, Y ∈ Rn×m such that

(4)–(7) hold;
3) rank(M(jω)) = m for all ω ∈ (0,∞), where M(s) is

defined in (11).
Proof: It can be seen from Definition 1 and Definition 2

that a strictly negative imaginary transfer function is also a
negative imaginary one, but the converse is not true. Hence,
the results in Theorem 1 and Corollary 1 are applicable to
strictly negative imaginary transfer functions. The proof here
will concentrate on the differences.

(=⇒) It follows from Definition 2 that R(s) has no poles
in ℜ[s] ≥ 0. Therefore, the matrix A1 in (3) is Hurwitz, and
(E,A) is stable.
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Because R(s) is strictly negative imaginary, it is also
negative imaginary. According to Theorem 1, we have that
R(∞) = RT (∞) and the second condition holds.

Furthermore, in view of Corollary 1 and Definition 2,
respectively, we have

j[R(jω)−R∗(jω)] = ωM∗(jω)M(jω) > 0, ∀ω ∈ (0,∞).

Therefore, M(jω) is of full column rank for ω ∈ (0,∞).
(⇐=) Firstly, the condition that (E,A) is stable means

that R(s) has no poles in ℜ[s] ≥ 0. Secondly, in view of
Theorem 1, the first and second conditions in the theorem
imply that R(s) is negative imaginary. Then according to
Corollary 1 we have

j[R(jω)−R∗(jω)] = ωM∗(jω)M(jω), ∀ω ∈ (0,∞).

Finally, the third condition implies that M∗(jω)M(jω) > 0.
Therefore j[R(jω) − R∗(jω)] > 0 for all ω ∈ (0,∞).
Therefore, R(s) is strictly negative imaginary.

The third condition in Theorem 2 can be replaced by other
conditions as shown in the following lemma.

Lemma 1: The third condition in Theorem 2 and the
following statements are equivalent:

1) rank(R(jω)−R∗(jω)) = m for all ω ∈ (0,∞).

2) rank

([
A− jωE B
LA−1E 0

])
= n+m for all ω ∈ (0,∞).

3) rank

A− jωE 0 B
0 −AT − jωET CT

C BT D −DT

 =

2n+m for all ω ∈ (0,∞).
Proof: Condition 3 in Theorem 2 ⇐⇒ 1). It follows

from Corollary 1 that

j[R(jω)−R∗(jω)] = ωM∗(jω)M(jω), ω ∈ (0,∞).

Hence R(jω)−R∗(jω) is non-singular if and only if M(jω)
is of full column rank.

Condition 3 in Theorem 2 ⇐⇒ 2). Note that[
A− jωE B
LA−1E 0

]
=

[
I 0

LA−1E(A− jωE)−1 I

]
×
[
A− jωE 0

0 M(jω)

] [
I (A− jωE)−1B
0 I

]
.

Hence,

rank

([
A− jωE B
LA−1E 0

])
= rank(A− jωE) + rank(M(jω))

= n+ rank(M(jω)).

Therefore,

rank

([
A− jωE B
LA−1E 0

])
= n+m ⇐⇒ rank(M(jω)) = m.

1) ⇐⇒ 3). Firstly note that

G(s) ≜ R(s)−R∼(s)

=
[
C BT

](
s

[
E 0
0 ET

]
−
[
A 0
0 −AT

])−1 [
B
CT

]
+D −DT .

By noting G(jω) = R(jω) − R∗(jω), statement 1 ⇐⇒
rank(G(jω)) = m ⇐⇒ statement 3. The last equivalence
follows from applying the result of the equivalence between
the third condition in Theorem 2 and the second statement in
this lemma.

Next result extends Theorem 1 of [4] to the descriptor
systems case, and gives us a lossless negative imaginary
lemma for descriptor systems.

Theorem 3: Consider a state-space realization
(E,A,B,C,D) of the transfer function R(s) ∈ Rm×m.
Suppose Assumption 1 is satisfied. Then R(s) is lossless
negative imaginary if and only if

1) det(A) ̸= 0, R(∞) = RT (∞);
2) there exist matrices X ∈ Rn×n, Y ∈ Rn×m such that

ATX +XTA = 0 and (5)–(7) hold.

Proof: Similar to the proof of Theorem 1, Assumption 1
and R(s) ∈ Rm×m imply that N = 0. Hence, equation (8)
holds. Then in view of Theorem 1 of [4], one has that R(s)
is lossless negative imaginary if and only if the following
conditions hold:

1) det(A1) ̸= 0, D − C2B2 = (D − C2B2)
T ;

2) there exists a matrix X1 ∈ Rn1×n1 , X1 = XT
1 > 0 such

that AT
1 X1 +X1A1 = 0 and CT

1 +X1A
−1
1 B1 = 0.

The above two conditions can be proved to be equivalent to the
two conditions in this theorem by following similar lines as in
the proof for Theorem 1. The only differences between the two
proofs are that the inequality signs “≤” in “ATX+XTA ≤ 0”
and “AT

1 X1 +X1A1 ≤ 0” need to be replaced with equality
signs “=”.

Remark 6: Sufficiency in Theorem 1–3 also holds when
weakening Assumption 1 to either (N,C2) being observable
or NB2 = 0, which allows the system to have impulse modes.

IV. ILLUSTRATIVE EXAMPLE

In this section, a multiple-input and multiple-output RLC
network as shown in Fig. 1 is used to illustrate the negative
imaginary lemma for descriptor systems.

C1

Q1(t)

V1(t)

−

+

R1 L1

C2

Q2(t)

V2(t)

−

+

R2 L2

C3

Q3(t)

V3(t)

−

+

R3 L3

Fig. 1. Multiple-input multiple-output RLC circuit.

Consider the circuit in Fig. 1. The inputs are the outputs
of the controlled voltage sources Vi(t), and the outputs are
the charges on the capacitances Qi(t), i = 1, 2, 3. A system
of ordinary differential equations can be constructed, and a
standard state-space model can be used for the negative imag-
inary lemmas. However, a descriptor state-space system model
is much more easily obtained by modified nodal analysis [13],
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[14]. The following matrices are constructed from the topology
structure of the circuit network by modified nodal analysis:

AR =



1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1
0 0 0
0 0 0
0 0 0


, AL =



0 0 0
1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 0
0 0 0
0 0 0


,

AC =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
−1 0 0
0 −1 0
0 0 −1


, AV =



−1 0 0
0 0 0
0 −1 0
0 0 0
0 0 −1
0 0 0
1 0 0
0 1 0
0 0 1


.

After defining the resistance, inductance and capacitance ma-
trices as follows, respectively,

R =

R1 0 0
0 R2 0
0 0 R3

 , L =

L1 0 0
0 L2 0
0 0 L3

 ,

C =

C1 0 0
0 C2 0
0 0 C3

 ,

a descriptor state-space system model (1) can be constructed,
and the system matrices are given by

E =

ACCA
T
C 0 0

0 L 0
0 0 0

 , A =

−ARR
−1AT

R −AL −AV

AT
L 0 0

AT
V 0 0

 ,

B =
[
0 0 −I

]T
, C =

[
−CAT

C 0 0
]
, D = 0.

In this model, the system state, the system input and the system
output are, respectively,

x(t) =

 v(t)
iL(t)
iV(t)

 , u(t) =

V1(t)
V2(t)
V3(t)

 , y(t) =

Q1(t)
Q2(t)
Q3(t)

 .

Here v(t) ∈ R9 is a vector of node potentials, iL(t) ∈ R3

and iV(t) ∈ R3 are vectors of currents through inductors and
voltage sources, respectively. It can be verified that rank(A) =
15, R(∞) = 0, E = ET ≥ 0, A + AT ≤ 0 and EA−1B =
−CT . Hence a feasible solution to the inequalities in (4)–(7) is
given by X = I ∈ R15×15 and Y = 0 ∈ R15×3. Note that the
solution is usually not unique. Using Theorem 1, it follows that
the descriptor system is negative imaginary for any Ri > 0,
Li > 0 and Ci > 0, i = 1, 2, 3; that is, the corresponding
transfer function satisfies the conditions in Definition 1.

V. CONCLUSIONS

In this paper, negative imaginary properties have been
studied for descriptor linear systems. Under the assumption

of a minimal realization, necessary and sufficient conditions
have been obtained in each of the negative imaginary lemma,
the strict negative imaginary lemma and the lossless negative
imaginary lemma. Finally, an example from RLC circuits was
presented to illustrate the negative imaginary lemma developed
in this paper.

A limitation of this study is that the transfer functions have
to be proper. How to develop negative imaginary lemmas for
descriptor systems with non-proper transfer functions demands
for a careful revision of the definitions about negative imagi-
nary transfer functions, and will be considered in future study.
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