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Abstract

We derive necessary and sufficient conditions for stability analysis of a pos-
itive feedback interconnection of a discrete-time negative imaginary system
and a discrete-time strictly negative imaginary system. General stability
analysis results for continuous-time negative imaginary systems connected
in positive feedback have recently been proposed. Those recent results ex-
tend previous theorems by removing restrictive assumptions on the infinite
frequency gains imposed in the earlier literature and by extending the class
of negative imaginary systems for which the results are applicable to include
systems with free body dynamics (i.e., poles at the origin). Here, we present
the discrete-time counterparts of the aforementioned recently developed re-
sults which specialise to simple and easy-to-check conditions under specific
assumptions. Last, we illustrate some of the results by several examples.

Keywords: Discrete-time; negative imaginary systems; feedback stability;
robust control.

1. Introduction

Negative imaginary systems theory is emerging as a powerful comple-
ment to positive real theory and passivity theory. The negative imaginary
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systems class was first studied in [1]. Negative imaginary systems arise in a
wide variety of applications, including nano-positioning systems [2, 3, 4, 5],
multi-agent systems [6, 7], lightly damped structure [8, 9, 10], vehicle pla-
toons [11], etc. A rich sequence of results have also appeared in the theory of
negative imaginary systems in recent years, including extensions to Hamilto-
nian systems [12], non-rational systems [13, 14, 15, 16], non-proper systems
[13, 17], infinite-dimensional systems [18], descriptor systems [19], strongly
strict negative-imaginary systems [20] and controller synthesis for negative
imaginary systems [21, 22, 23, 24]. According to [25, 26], some possible future
work for filtering problems could be further developed.

Stability analysis results of positive feedback interconnections of negative
imaginary systems play a central role in negative imaginary systems theory.
[1] proposed that, under assumptions on the gains of systems at infinite fre-
quency, a necessary and sufficient condition for the internal stability of a
positive feedback interconnection of negative imaginary systems can be ex-
pressed as a one-sided restriction on the dc loop gain. This stability result
was shown to hold true even for negative imaginary systems with poles on
the imaginary axis [27]. These key results have subsequently been devel-
oped further to allow negative imaginary systems to have possible poles at
the origin [28]. [29] then sought to remove the assumptions on the infinite
frequency gains, i.e., Mp8qNp8q � 0 and Np8q ¥ 0, by using integral
quadratic constraint theory and derived sufficient conditions (which are not
necessary) for stability analysis. Necessary and sufficient conditions that re-
move the assumptions on the infinity frequency gains were recently derived
in [30]. In contrast with complicated matrix factorisations used in [28] which
loose intuition and restrict the applicability of the results and in contrast
with sufficiently only conditions developed in [29], a linear shift transforma-
tion technique is used in [30] to establish general necessary and sufficient
stability analysis results applicable for the full class of negative imaginary
systems including those with free body dynamics (i.e., poles at the origin).

The above theory has all been developed in continuous-time. The notion
of a discrete-time negative imaginary systems was proposed in [14, 31] to fill
the gap in the literature. By using a bilinear transformation, a discrete-time
negative imaginary lemma was derived, in terms of a discrete-time state-space
representation, to characterise discrete-time negative imaginary systems [14,
31]. Furthermore, it was shown in [14] that the stability of discrete-time
negative imaginary systems only depends on gains at z � �1 under specific
assumptions analogous to the early assumptions in continuous-time. Here,
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we extend the stability theorem proposed in [14] for the full class of real,
rational, proper discrete-time negative imaginary systems available in the
literature without imposing the restrictive assumptions, i.e., P p�1qQp�1q �
0 and Qp�1q ¥ 0. The results in this paper can be considered as, not only
generalisations of previous work [14, 31] but also, discrete-time counterparts
of the general continuous-time results in [30].

In this paper, we first state the definitions of discrete-time negative imag-
inary systems. We then remove two restrictive assumptions in the existing
literature, i.e., P p�1qQp�1q � 0 and Qp�1q ¥ 0, imposed in [14] and sub-
sequently derive necessary and sufficient conditions for internal stability of
a discrete-time negative imaginary system without poles at z � �1 and
z � �1 connected in positive feedback with a discrete-time strictly nega-
tive imaginary system. Then, these results are extended to the case where
a discrete-time negative imaginary system with possible poles at z � �1 is
connected in positive feedback with a discrete-time strictly negative imagi-
nary system. Furthermore, we specialise these general stability theorems in
the single-input single-output (SISO) setting to reveal simple and intuitive
tests. Additional multiple-input multiple-output (MIMO) specialisations are
also given as corollaries to give simple and elegant tests for checking feedback
stability. Stability conditions with or without a loop-shifting matrix Ψ are
also presented for determining the internal stability of discrete-time negative
imaginary systems connected in positive feedback. Lastly, two examples are
given to illustrate the importance of some of the results.

Notation: Rpaq represents the real part of a complex number a. λ̄pAq
[respectively, λpAq] denote the largest [respectively, smallest] eigenvalue of
a square complex matrix A that has only real eigenvalues. A� and AT de-
note the complex conjugate transpose and transpose of a complex matrix A
respectively. rP pzq, Qpzqs denotes the positive feedback interconnection of
P pzq and Qpzq. Im denotes an identity matrix with dimensions m by m.

2. Preliminaries

We first recall the notion of a discrete-time negative imaginary system
with possible poles at z � �1.

Definition 1. ([14, 31]). Let Rpzq be a discrete-time, real, rational, proper
transfer function. Then, Rpzq is said to be Discrete-time Negative Imaginary
(D-NI) if
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1) Rpzq has no poles in tz P C : |z| ¡ 1u;

2) jrRpejθq � Rpejθq�s ¥ 0 for all θ P p0, πq except the values of θ where
z � ejθ is a pole of Rpzq;

3) if z0 � ejθ0 with θ0 P p0, πq is a pole of Rpzq, then it is a simple pole
and the residue matrix K0 � z0

�1 lim
zÑz0

pz � z0qjRpzq is Hermitian and

positive semidefinite;

4) if z � 1 is a pole of Rpzq, then lim
zÑ1

pz � 1qkRpzq � 0 for all integer

k ¥ 3 and lim
zÑ1

pz � 1q2Rpzq is Hermitian and positive semidefinite;

5) if z � �1 is a pole of Rpzq, then lim
zÑ�1

pz � 1qkRpzq � 0 for all integer

k ¥ 3 and lim
zÑ�1

pz � 1q2Rpzq is Hermitian and negative semidefinite.

[14] considers non-rational systems. To handle possibly non-rational systems,
[14] impose a symmetric assumption. As stated in Remark 3.2 of [14], when
one restricts attention to rational systems (as we do in this paper), the sym-
metric assumption is no longer needed. The five conditions in Lemma 3.2 of
[14] with the condition corresponding to symmetry removed, are hence used
to directly define rational discrete-time systems as in Definition 1 above.
This definition is also identical to that used in [31].
The following definition describes discrete-time strictly negative imaginary
systems.

Definition 2. ([14]). Let Rpzq be a discrete-time, real, rational, proper
transfer function. Then, Rpzq is said to be Discrete-time Strictly Negative
Imaginary (D-SNI) if

1) Rpzq has no poles in tz P C : |z| ¥ 1u;

2) jrRpejθq �Rpejθq�s ¡ 0 for all θ P p0, πq.

3. Main results, part 1: No poles at �1 and �1

In [30], necessary and sufficient conditions for checking the internal sta-
bility of a positive feedback interconnection of a continuous-time, proper,
negative imaginary system without poles at the origin and a continuous-time
strictly negative imaginary system were derived. The necessary and sufficient
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Figure 1: Positive feedback interconnection of P pzq and Qpzq.

conditions in [30] generalised the original result in [1] by removing restric-
tive assumptions on the infinite frequency gains of the two systems. In this
section, we consider the case where a discrete-time negative imaginary sys-
tem and a discrete-time strictly negative imaginary system are interconnected
via positive feedback as shown in Figure 1. We hence introduce discrete-time
feedback stability theorems that remove restrictive assumptions imposed in
earlier literature (e.g., [14]). These results are applicable for negative imag-
inary systems without poles at z � �1 and z � �1 and they are hence
discrete-time counterparts of the work in Section 3 of [30].

Theorem 3. Let P pzq be a discrete-time, real, rational, proper, negative
imaginary system without poles at z � �1 and z � �1, and let Qpzq be
a discrete-time, real, rational, proper, strictly negative imaginary system.
Then, rP pzq, Qpzqs is internally stable if and only if

I � P p�1qQp�1q is nonsingular,

λ̄rrI � P p�1qQp�1qs�1pP p�1qQp1q � Iqs   0, and

λ̄rrI �Qp1qP p�1qs�1pQp1qP p1q � Iqs   0.

Proof. Let Mpsq � P pp1 � sq{p1 � sqq and Npsq � Qpp1 � sq{p1 � sqq via
the bilinear transformation z � p1� sq{p1� sq. Then, the result follows from
[30, Theorem 9]. l

Note that the inequality conditions in Theorem 3 (and indeed in all nega-
tive imaginary results) are one-sided restrictions because the maximum eigen-
value, of matrices that have only real eigenvalues, can be either positive or
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negative.

Also, note that no poles at z � �1 in discrete-time corresponds to no
poles at the origin in continuous-time, whereas no poles at z � �1 in discrete-
time corresponds to no poles at infinite frequency (i.e., a proper system) in
continuous-time.

Theorem 3 removes the assumptions imposed in [14, Theorem 4.1], i.e.,
Qp�1q ¥ 0 and P p�1qQp�1q � 0, and as a consequence generalises that
result.
The following example is used to demonstrate the usefulness of the result
stated in Theorem 3.

Example 1. Consider a positive feedback interconnection of P pzq and Qpzq

as shown in Figure 1 where P pzq �

�
�z�1
6z�4

�5z�5
6z�4

�9z2�10z�1
12z2�8z

15z2�32z�13
12z2�8z

�
and Qpzq ��

5z�5
6z�4

�17z�13
6z�4

�33z2�26z�1
12z2�8z

15z2�32z�13
12z2�8z

�
. Both P pzq and Qpzq are discrete-time, strictly

negative imaginary systems. Since I � P p�1qQp�1q �

�
1 �2

�2 0

�
is non-

singular, the feedback system is well-posed. The internal stability of the
closed-loop system cannot be determined via [14, Theorem 4.1] because

P p�1qQp�1q �

�
0 2

2 1

�
� 0 and Qp�1q �

�
0 �2

�2 �1

�
§ 0. Using the stabil-

ity conditions in Theorem 3, we obtain λ̄rrI � P p�1qQp�1qs�1pP p�1qQp1q�
Iqs � �0.1340   0 and λ̄rrI�Qp1qP p�1qs�1pQp1qP p1q�Iqs � 8 ¢ 0. Hence,
the positive feedback interconnection of P pzq and Qpzq is not internally sta-
ble. Note that the fact that the closed-loop system is not internally stable
can be confirmed by checking the poles of pI�PQq�1. Since two of the poles
of pI � PQq�1 are at z � 6.3702 and z � �1.4981, which are not inside the
unit circle, the feedback system is not internally stable.

When we impose identical assumptions as in [14, Theorem 4.1], i.e., P p�1qQp�1q �
0 and Qp�1q ¥ 0, the stability conditions in Theorem 3 reduce to the same
result as that in [14, Theorem 4.1].

Corollary 4. Let P pzq be a discrete-time, real, rational, proper, negative
imaginary system without poles at z � �1 and z � �1, and let Qpzq be a
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discrete-time, real, rational, proper, strictly negative imaginary system. Let
P p�1qQp�1q � 0 and Qp�1q ¥ 0. Then, rP pzq, Qpzqs is internally stable if
and only if λ̄rP p1qQp1qs   1.

Proof. This is a direct consequence of Theorem 3 because

1) P p�1qQp�1q � 0 ñ I � P p�1qQp�1q is nonsingular;

2) λ̄rrI � P p�1qQp�1qs�1pP p�1qQp1q � Iqs   0

ô λ̄rP p�1qQp1qs   1

ô Qp1q1{2P p�1qQp1q1{2   I

(since Qp1q ¡ Qp�1q ¥ 0 via [14, Lemma 3.9])

ô P p�1q   Qp1q�1;

3) λ̄rrI �Qp1qP p�1qs�1pQp1qP p1q � Iqs   0

ô λ̄rrQp1q�1 � P p�1qs�1pP p1q �Qp1q�1qs   0

(since Qp1q ¡ Qp�1q ¥ 0 via [14, Lemma 3.9])

ô rQp1q�1 � P p�1qs�1{2pP p1q �Qp1q�1qrQp1q�1 � P p�1qs�1{2   0

(since Qp1q�1 ¡ P p�1q via above)

ô P p1q �Qp1q�1   0

ô λ̄rP p1qQp1qs   1.

But λ̄rP p1qQp1qs   1 ô P p1q   Qp1q�1 ñ P p�1q   Qp1q�1 (since P p�1q ¤
P p1q via [14, Lemma 3.9]). This concludes the proof. l

The following corollary applies to a negative imaginary system P pzq with a
blocking zero at z � �1. The stability condition is the same as in Corollary 4
which is a very simple necessary and sufficient condition for internal stability.

Corollary 5. Let P pzq be a discrete-time, real, rational, proper, negative
imaginary system without poles at z � �1 and z � �1, and let Qpzq
be a discrete-time, real, rational, proper, strictly negative imaginary sys-
tem. Let P p�1q � 0. Then, rP pzq, Qpzqs is internally stable if and only if
λ̄rP p1qQp1qs   1.

Proof. Direct simplification of Theorem 3 on using P p�1q � 0. l
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As shown in [30, Theorem 14], other equivalent feedback stability conditions
can also be obtained. The following result is a discrete-time counterpart of
[30, Theorem 14].

Theorem 6. Let P pzq be a discrete-time, real, rational, proper, negative
imaginary system without poles at z � �1 and z � �1, and let Qpzq be
a discrete-time, real, rational, proper, strictly negative imaginary system.
Then, rP pzq, Qpzqs is internally stable if and only if

I � P p�1qQp�1q is nonsingular,

λ̄rpP p1qQp�1q � IqrI � P p�1qQp�1qs�1s   0, and

λ̄rpQp1qP p1q � IqrI �Qp�1qP p1qs�1s   0.

Proof. Let Mpsq � P pp1 � sq{p1 � sqq and Npsq � Qpp1 � sq{p1 � sqq via
the bilinear transformation z � p1� sq{p1� sq. Then, the result follows from
[30, Theorem 14]. l

We can, of course, use Theorem 6 instead of Theorem 3 to show the internal
stability of a feedback system. Although the following example is taken di-
rectly from Example 1 to show that the conditions in Theorem 6 can be used
equivalently instead of the conditions in Theorem 3, this example also illus-
trates that each of the individual inequalities in the conditions of Theorem 6
are not separately equivalent to either individual inequality in the conditions
of Theorem 3.

Example 2. Consider a positive feedback interconnection of P pzq and Qpzq

as shown in Figure 1 where P pzq �

�
�z�1
6z�4

�5z�5
6z�4

�9z2�10z�1
12z2�8z

15z2�32z�13
12z2�8z

�
and Qpzq ��

5z�5
6z�4

�17z�13
6z�4

�33z2�26z�1
12z2�8z

15z2�32z�13
12z2�8z

�
. Both P pzq and Qpzq are discrete-time strictly

negative imaginary systems. The closed-loop system is well-posed as shown
in Example 1. Instead of applying the conditions in Theorem 3, via Theo-
rem 6 we have λ̄rpP p1qQp�1q � IqrI � P p�1qQp�1qs�1s � 3.3028 ¢ 0 and
λ̄rpQp1qP p1q � IqrI � Qp�1qP p1qs�1s � 1.5447 ¢ 0. Hence, the positive
feedback interconnection between P pzq and Qpzq is not internally stable also
via Theorem 6. Note that both inequalities are violated in the conditions
of Theorem 6 whereas only one inequality was violated in the conditions of
Theorem 3 in this specific example illustrating the fact that each inequality
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in the conditions of Theorem 6 is not a simple re-write of each inequality in
the conditions in Theorem 3.

Different assumptions can be imposed to simplify the stability result in The-
orem 6. Under the assumption P p1q ¡ 0, the loop gain condition at z � �1
can again be used to determine the internal stability of the closed-loop sys-
tem, but unlike Corollary 4, there is no sign restriction on Qp�1q.

Corollary 7. Let P pzq be a discrete-time, real, rational, proper, negative
imaginary system without poles at z � �1 and z � �1, and let Qpzq be a
discrete-time, real, rational, proper, strictly negative imaginary system. Let
P p�1qQp�1q � 0 and P p1q ¡ 0. Then, rP pzq, Qpzqs is internally stable if
and only if λ̄rP p1qQp1qs   1.

Proof. This is a direct consequence of Theorem 6 because

1) P p�1qQp�1q � 0 implies I � P p�1qQp�1q is nonsingular;

2) λ̄rpP p1qQp�1q � IqrI � P p�1qQp�1qs�1s   0

ô λ̄rP p1qQp�1qs   1

ô P p1q1{2Qp�1qP p1q1{2   I

ô Qp�1q   P p1q�1;

3) λ̄rpQp1qP p1q � IqrI �Qp�1qP p1qs�1s   0

ô λ̄rpQp1q � P p1q�1qrP p1q�1 �Qp�1qs�1s   0

ô λ̄rrP p1q�1 �Qp�1qs�1{2pQp1q � P p1q�1qrP p1q�1 �Qp�1qs�1{2s   0

(since P p1q�1 ¡ Qp�1q via above)

ô Qp1q � P p1q�1   0

ô λ̄rP p1qQp1qs   1.

But λ̄rP p1qQp1qs   1 ô Qp1q   P p1q�1 ñ Qp�1q   P p1q�1 (since Qp�1q  
Qp1q via [14, Lemma 3.9]). This concludes the proof. l
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4. SISO specialisation

We have presented feedback stability results for interconnected discrete-
time, negative imaginary systems without poles at z � �1 and z � �1 in
Theorem 3 and Theorem 6. In the SISO case, these results can be further
specialised, as shown in the following theorem, which is the discrete-time
counterpart of [30, Theorem 17]. This specialisation is useful because it sheds
some light as to why the stability conditions in Theorems 3 and 6 require a
mixture of frequencies at z � �1 and z � �1. The SISO specialisation also
allows a pictorial Nyquist interpretation of the results.

Lemma 8. Let P pzq be a discrete-time, real, rational, proper, scalar nega-
tive imaginary system without poles at z � �1 and z � �1, and let Qpzq
be a discrete-time, real, rational, proper, scalar strictly negative imaginary
system. Then, the following three statements are equivalent:

1) rP pzq, Qpzqs is internally stable;

2) either condition a) or condition b) holds:

a) P p1qQp1q   1, P p�1qQp�1q   1 and P p�1qQp1q   1;

b) P p1qQp1q ¡ 1, P p�1qQp�1q ¡ 1 and P p�1qQp1q ¡ 1;

3) either condition a) or condition b) holds:

a) P p1qQp1q   1, P p�1qQp�1q   1 and P p1qQp�1q   1;

b) P p1qQp1q ¡ 1, P p�1qQp�1q ¡ 1 and P p1qQp�1q ¡ 1.

Proof. Via Theorem 3, rP pzq, Qpzqs is internally stable if and only if P p�1qQp�1q �
1, p1�P p�1qQp1qq{pP p�1qQp�1q�1q   0, and pP p1qQp1q�1q{p1�P p�1qQp1qq  
0. These three conditions yield condition 2a) or condition 2b).
Theorem 6 gives condition 3a) or condition 3b). l

The internal stability conditions in Lemma 8 can be further simplified as
shown in Theorem 9.

Theorem 9. Let P pzq be a discrete-time, real, rational, proper, scalar neg-
ative imaginary system without poles at z � �1 and z � �1, and let Qpzq be
a discrete-time, real, rational, proper, scalar strictly negative imaginary sys-
tem. Then, rP pzq, Qpzqs is internally stable if and only if one of the following
three mutually exclusive conditions holds:
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i) P p1qQp1q   1 and P p�1qQp�1q   1;

ii) Qp�1q ¡ 0 and P p�1qQp�1q ¡ 1;

iii) Qp1q   0 and P p1qQp1q ¡ 1.

Proof. Both conditions 2a) and 3a) in Lemma 8 reduce to condition i) in
this theorem statement. This then implies that conditions 2b) and 3b) in
Lemma 8 are equivalent.

Next recall that Qp1q ¡ Qp�1q and P p1q ¥ P p�1q via [14, Lemma 3.9].
Condition ii) and these two negative imaginary properties imply Qp1q ¡
Qp�1q ¡ 0 and P p1q ¥ P p�1q ¡ 0. Then P p1qQp1q ¡ P p1qQp�1q, P p1qQp1q ¥
P p�1qQp1q, P p�1qQp1q ¡ P p�1qQp�1q ¡ 1 and P p1qQp�1q ¥ P p�1qQp�1q ¡
1. These inequalities then imply conditions 2b) and 3b) in Lemma 8. Sim-
ilarly, condition iii) and the same two negative imaginary properties im-
ply 0 ¡ Qp1q ¡ Qp�1q and 0 ¡ P p1q ¥ P p�1q. Then 1   P p1qQp1q  
P p1qQp�1q, 1   P p1qQp1q ¤ P p�1qQp1q, P p�1qQp1q   P p�1qQp�1q and
P p1qQp�1q ¤ P p�1qQp�1q. These inequalities then imply conditions 2b)
and 3b) in Lemma 8.

To show the converse, consider the following five complimentary cases:
0   Qp�1q   Qp1q, 0 � Qp�1q   Qp1q, Qp�1q   0   Qp1q, Qp�1q  
Qp1q � 0, and Qp�1q   Qp1q   0. The three middle cases violate conditions
2b) and 3b) in Lemma 8. Hence only two valid complimentary cases are
permitted by conditions 2b) and 3b) in Lemma 8: 0   Qp�1q and Qp1q   0.
Hence, condition 2b) (respectively, condition 3b) ) in Lemma 8 implies either
condition ii) or condition iii) of this theorem statement. l

The following example illustrates use of Theorem 9.

Example 3. Consider a positive feedback interconnection of P pzq and Qpzq
as shown in Figure 1 where P pzq � pz � 2q{z and Qpzq � p3� zq{p2zq. Both
P pzq and Qpzq are strictly negative imaginary systems. Using Theorem 9 we
conclude that the feedback interconnection of P pzq and Qpzq is not internally
stable since P p1qQp1q � p3qp1q ¡ 1 and P p�1qQp�1q � p�1qp�2q ¡ 1, but
Qp1q � 1 ¢ 0 and Qp�1q � �2 £ 0. The fact that the closed-loop system is
not internally stable can be confirmed by checking the poles of pI � PQq�1.
Since these poles are at z � 1.5907 and z � �1.2573, which are not inside
the unit circle, the feedback system is not internally stable.
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5. Main results, part 2: Allowing poles at �1

In the previous section, we assumed that each of the discrete-time negative
imaginary system did not have poles at z � �1 and z � �1 to obtain elegant
and simple results which specialise to earlier results in the literature when
identical assumptions as in the literature are additionally imposed. Here, we
build on the results of Section 3 to give general stability theorems that allow
discrete-time negative imaginary systems to have possible poles at z � �1.
Note that while the restriction of no poles at z � �1 is natural in a discrete-
time setting because it corresponds to proper continuous-time systems via
the bilinear transformation z � p1� sq{p1� sq, the restriction of no poles at
z � �1 was unnatural and hence it will be removed here. Additionally, we
show that the rather complex results stated in this section can be specialised
to the simpler results of Section 3 under the same assumptions.

5.1. Generalised Internal Stability Results for Discrete-Time Negative Imag-
inary Systems with Possible Poles at z � �1

In Section 3, we proposed feedback stability results which are only suitable
for discrete-time, negative imaginary systems without poles at z � �1 and
z � �1. In this subsection, we generalise those earlier results and propose
general feedback stability theorems for real, rational, proper, discrete-time,
negative imaginary systems with possible poles at z � �1.

Theorem 10. Let P pzq be a discrete-time, real, rational, proper, negative
imaginary system without poles at z � �1, and let Qpzq be a discrete-time,
real, rational, proper, strictly negative imaginary system. Let Ψ   0 be such
that λ̄rP p�1qΨs   1. Then, rP pzq, Qpzqs is internally stable if and only if

I � P p�1qQp�1q is nonsingular,

λ̄rrI � P p�1qQp�1qs�1rP p�1qQp1q � Iss   0, and

λ̄rlim
zÑ1

rrI�ΨP p�1qsrI�Qp1qP p�1qs�1rQp1qP pzq�IsrI�ΨP pzqs�1ss  

0.

Proof. Let Mpsq � P pp1 � sq{p1 � sqq and Npsq � Qpp1 � sq{p1 � sqq via
the bilinear transformation z � p1� sq{p1� sq. Then, the result follows from
[30, Theorem 24]. l

We can also build on Theorem 6, instead of building on Theorem 3, and
give another equivalent general stability theorem.
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Theorem 11. Let P pzq be a discrete-time, real, rational, proper, negative
imaginary system without poles at z � �1, and let Qpzq be a discrete-time,
real, rational, proper, strictly negative imaginary system. Let Ψ   0 be such
that λ̄rP p�1qΨs   1. Then, rP pzq, Qpzqs is internally stable if and only if

I � P p�1qQp�1q is nonsingular,

λ̄rlim
zÑ1

rrI�P pzqΨs�1rP pzqQp�1q�IsrI�P p�1qQp�1qs�1rI�P p�1qΨsss  

0, and

λ̄rlim
zÑ1

rrQp1qP pzq � IsrI �Qp�1qP pzqs�1ss   0.

Proof. Let Mpsq � P pp1 � sq{p1 � sqq and Npsq � Qpp1 � sq{p1 � sqq via
the bilinear transformation z � p1� sq{p1� sq. Then, the result follows from
[30, Theorem 26]. l

Remark 12. It can be easily shown that all the limits in the stability con-
ditions are finite by [30, Lemma 20], [30, Remark 25], and [30, Remark 29]
together with the bilinear transformation z � p1 � sq{p1 � sq. Additionally,
the general stability conditions obtained in Theorem 10 and Theorem 11
depend on a matrix Ψ fulfilling the properties Ψ   0 and λ̄rP p�1qΨs   1.
Note that P p�1q is symmetric because of condition 2) in Definition 1 to-
gether with a continuity and a limiting argument at θ � π. Here P p�1q has
only real eigenvalues. Then, to construct Ψ   0 satisfying λ̄rP p�1qΨs   1,
it suffices to choose Ψ � εI, where ε is any strictly negative real number
if λpP p�1qq ¥ 0 and ε is any real number in the interval p1{λpP p�1qq, 0q
if λpP p�1qq   0. Finally, note that although there are many matrices
Ψ   0 satisfying λ̄rP p�1qΨs   1, only one arbitrary Ψ   0 satisfying
λ̄rP p�1qΨs   1 needs to be tested in Theorem 10 and Theorem 11 to con-
clude the internal stability of the feedback interconnection. This observation
can be proven by using the bilinear transformation z � p1 � sq{p1 � sq on
[30, Theorem 35] (or [30, Theorem 36]).

5.2. Specialisations of the Discrete-Time Generalised Internal Stability Con-
ditions

In the SISO case, if we assume that P pzq has one or two poles at z � �1
but no poles at z � �1, the general stability results obtained in the previous
subsection can be simplified to conditions that are easy to check. Note that
the stability conditions in Corollary 13 do not involve the matrix Ψ.
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Corollary 13. Let P pzq be a discrete-time, real, rational, proper, scalar,
negative imaginary system without poles at z � �1 and Qpzq be a discrete-
time, real, rational, proper, scalar, strictly negative imaginary system. Let
z � �1 be a (single or double) pole of P pzq. Then, rP pzq, Qpzqs is internally
stable if and only if one of the following two mutually exclusive conditions
holds:

i) P p�1qQp�1q   1 and Qp1q   0;

ii) P p�1qQp�1q ¡ 1 and Qp�1q ¡ 0.

Proof. Writing P pzq as a Laurent series, the three conditions in Theorem 11
simplify, in the scalar case, to P p�1qQp�1q � 1, Qp�1q{p1 � P p�1qQp�1qq
and Qp1q{Qp�1q ¡ 0 after taking the limit as z Ñ 1. It is easy to see that
these three conditions are equivalent to either condition i) or condition ii) in
this corollary statement using the negative imaginary propertyQp1q ¡ Qp�1q
via [14, Lemma 3.9]. l

In the MIMO case, under the assumption that P pzq has a blocking zero at
z � �1, the results obtained previously specialise to the following corollary.

Corollary 14. Let P pzq be a discrete-time, real, rational, proper, negative
imaginary system without poles at z � �1 but with P p�1q � 0. Let Qpzq
be a discrete-time, real, rational, proper, strictly negative imaginary system.
Let Ψ   0. Then, the following three conditions are equivalent:

1) rP pzq, Qpzqs is internally stable;

2) λ̄rlim
zÑ1

rrQp1qP pzq � IsrI �ΨP pzqs�1ss   0;

3) λ̄rlim
zÑ1

rrI � P pzqΨs�1rP pzqQp�1q � Isss   0 and

λ̄rlim
zÑ1

rrQp1qP pzq � IsrI �Qp�1qP pzqs�1ss   0.

Proof. Direct consequence from Theorem 10 and Theorem 11 on using
P p�1q � 0. l

The next result, which is again valid in the MIMO case, is independent of
the matrix Ψ under the assumptions that P pzq has a single or double poles
at z � �1 and a blocking zero at z � �1.
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Corollary 15. Let P pzq be a discrete-time, real, rational, proper, negative
imaginary system without poles at z � �1 but with P p�1q � 0. Let Qpzq
be a discrete-time, real, rational, proper, strictly negative imaginary system.
Assume one of the following conditions holds:

i) lim
zÑ1

pz � 1q2P pzq is nonsingular;

ii) lim
zÑ1

pz � 1q2P pzq � 0 and lim
zÑ1

pz � 1qP pzq is nonsingular.

Then, rP pzq, Qpzqs is internally stable if and only if Qp1q   0.

Proof. Consider each of the two cases of this corollary separately. Writing
P pzq as a Laurent series into either condition 2) or condition 3) of Corol-
lary 14 gives the required result after evaluating the limit and simplifying.
l

In Subsection 5.1, general stability theorems for discrete-time, real, ratio-
nal, proper negative imaginary systems including possible poles at z � �1
were introduced. We here demonstrate that under the assumption that P pzq
has no poles at z � �1 and z � �1, the general stability results obtained in
Theorem 10 and Theorem 11 specialise to the previous stability conditions
in Theorem 3 and Theorem 6. Since it is easy to see that two of the con-
ditions in Theorem 10 (resp. Theorem 11) are trivially equivalent to two of
the conditions in Theorem 3 (resp. Theorem 6) by inspection, we only need
to show that the remaining inequality in Theorem 10 (resp. Theorem 11) is
equivalent to the remaining inequality in Theorem 3 (resp. Theorem 6).

Lemma 16. Let all the assumptions of Theorem 10 hold and furthermore
suppose P pzq has no poles at z � �1. Then,

λ̄rlim
zÑ1

rrI�ΨP p�1qsrI�Qp1qP p�1qs�1rQp1qP pzq�IsrI�ΨP pzqs�1ss   0

ô λ̄rrI �Qp1qP p�1qs�1pQp1qP p1q � Iqs   0.

Proof. Let Mpsq � P pp1 � sq{p1 � sqq and Npsq � Qpp1 � sq{p1 � sqq via
the bilinear transformation z � p1� sq{p1� sq. Then, the result follows from
[30, Lemma 33]. l

Similarly, if we additionally assume that P pzq has no poles at z � �1, the
equivalence between the stability conditions in Theorem 11 and Theorem 6
can also be established.
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Lemma 17. Let all the assumptions of Theorem 11 hold and furthermore
suppose P pzq has no poles at z � �1. Then,

λ̄rlim
zÑ1

rrI�P pzqΨs�1rP pzqQp�1q�IsrI�P p�1qQp�1qs�1rI�P p�1qΨsss  

0

ô λ̄rpP p1qQp�1q � IqrI � P p�1qQp�1qs�1s   0.

Proof. Let Mpsq � P pp1 � sq{p1 � sqq and Npsq � Qpp1 � sq{p1 � sqq via
the bilinear transformation z � p1� sq{p1� sq. Then, the result follows from
[30, Lemma 34]. l

6. Numerical examples

Two examples are given to illustrate some of the results of this paper.

6.1. Negative Imaginary without Poles at z � �1 and z � �1

The following example is directly taken from [27]. A spring-mass sys-
tem is given in Figure 2 where two springs k1 and k2 are used to connect
the mass to the wall and masses m1 and m2 are coupled with a spring k.
Assume both masses m1 and m2 are only allowed to move horizontally on
a frictionless ground. The forces applied to m1 and m2 are denoted as f1
and f2 respectively and the displacements corresponding to these masses are
x1 and x2 respectively. If we set the parameters k � k1 � k2 � 1 N/m
and m1 � m2 � 1 kg and we discretise the continuous-time signals with a
sampling time of T � 2 s, the system with input forces f1 and f2 and output
displacements x1 and x2 can be modelled (via Newton’s second law of motion
and a discretisation process) as multi-input multi-output transfer function

given by P pzq �

�
3z4�8z3�10z2�8z�3
8z4�8z3�16z2�8z�8

z4�4z3�6z2�4z�1
8z4�8z3�16z2�8z�8

z4�4z3�6z2�4z�1
8z4�8z3�16z2�8z�8

3z4�8z3�10z2�8z�3
8z4�8z3�16z2�8z�8

�
. We then apply a

simple controller Qpzq �

�
�2z
3z�1

0

0 �2z
3z�1

�
. The plant P pzq is a discrete-time,

real, rational, proper negative imaginary system without poles at z � �1
and z � �1 according to Definition 1 and the controller Qpzq is a discrete-
time, real, rational, proper, strictly negative imaginary system according to
Definition 2. [14, Theorem 4.1] is not applicable since P p�1qQp�1q � 0
but Qp�1q � �I2 § 0. However, by using Corollary 5 (since P p�1q � 0
and λ̄rP p1qQp1qs � �1{6   1), the closed-loop system is guaranteed to
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Figure 2: Spring-mass system.

be internally stable with the proposed controller. The closed-loop stability
can be confirmed by checking all the poles of the closed-loop transfer func-
tion pI � P pzqQpzqq�1P pzq. Since all the poles of the closed-loop transfer
function pI � P pzqQpzqq�1P pzq are �0.2308 � 0.9020j, �0.2308 � 0.9020j,
�0.5632�0.7925j, �0.5632�0.7925j, �0.3023 and �0.2884, which are inside
the unit circle, the feedback system is internally stable.

6.2. Negative Imaginary with Poles at z � �1

Let us now consider a positive feedback interconnection as shown in Fig-
ure 1 which consists of a discrete-time, real, rational, proper, negative imag-
inary system P pzq � p3z4 � 4z3 � 2z2 � 4z � 3q{p2z4 � 4z3 � 4z2 � 4z � 2q
and a discrete-time, real, rational, proper, strictly negative imaginary sys-
tem Qpzq � p�3z � 1q{2z. [14, Theorem 4.1] is suitable only for the case
where negative imaginary system without poles at z � �1 and z � �1.
In this case, since P pzq is negative imaginary with poles at z � �1 ac-
cording to Definition 1, we cannot apply [14, Theorem 4.1] for stability
analysis. Since P pzq is a negative imaginary system with P p�1q � 0, us-
ing condition 2) in Corollary 14, we conclude that the positive feedback
interconnection of P pzq and Qpzq is internally stable because we can set
Ψ � Qp1q � �1   0 to give λ̄rlim

zÑ1
rrQp1qP pzq � IsrI � ΨP pzqs�1ss �

λ̄rlim
zÑ1

rrQp1qP pzq � IsrI � Qp1qP pzqs�1ss � �1   0. Closed-loop stability

can also be confirmed by checking all the poles of the closed-loop transfer
function P pzqpI � QpzqP pzqq�1. Since these poles are �0.5803 � 0.7235j,
�0.5803� 0.7235j, 0.3990� 0.8830j, 0.3990� 0.8830j and 0.2858, which are
inside the unit circle, the feedback system is internally stable.
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7. Conclusion

We proposed feedback stability analysis results for discrete-time negative
imaginary systems which are counterparts to the continuous-time results in
[30]. These general results can be used to conclude discrete-time closed-
loop stability for positive feedback interconnections of discrete-time, negative
imaginary systems. Examples were also given to illustrate the usefulness of
the proposed work.
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