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Abstract

This paper presents a novel unmanned aerial vehicle platform based on a three rotor configuration, which can achieve the highest
level of manoeuvrability in all 6 dimensions (i.e. 3D position and 3D attitude). The three propellers can be tilted independently to
obtain full force and torque vectoring authority, such that this new aerial robotic platform can overcome the limitations of a classic
quadrotor UAV that can not change its attitude while hovering at a stationary position. A robust feedback linearization controller
is developed to deal with this highly coupled and nonlinear dynamics of the proposed tri-rotor UAV, which linearises the dynamics
globally using geometric transformations to produce a linear model that matches the Jacobi linearization of the nonlinear dynamics
at the operating point of interest. A distributed formation control tracking protocol is then proposed to control a swarm of tri-rotor
UAVs. The 3D position and 3D attitude of each vehicle can be controlled independently to follow a desired time-varying formation.
The effectiveness of the designed control strategy is illustrated in a realistic virtual reality simulation environment based on real
hardware parameters from a physical construction.
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1. Introduction

In recent years, cooperative control of multi-rotor Unmanned
Aerial Vehicles (UAVs) have received significant attention from
both the practical engineering and academic communities due
to their broad prospect in applications [1]. When working to-
gether, they are able to perform complex tasks with excellent
efficiency and reliability, such as search and rescue [2], crop
and weed management in agriculture [3], oil pipeline surveil-
lance [4], etc. Aiming at more efficient configurations in terms
of size, autonomy, flight range, payload capacity and other fac-
tors, some innovative vehicle platforms are developed by re-
searchers [5]. One of such aerial robotic platforms that holds
new and significant properties is the tri-rotor UAV, which is cost
effective with more flexibility and agility [6],[7].

The proposed tri-rotor UAV has three rotors arranged in an
equilateral triangular configuation and each rotor is attached to
a servo motor that can independently change the rotating direc-
tion of the propeller. Thus, complete 3D thrust and 3D torque
vectoring authority is achieved, which means that the vehicle
does not have a nominally upright flying orientation: it can fly
in any orientation chosen by the user. Any time-dependent 3D
position trajectory can be tracked at the same time as tracking
any time-dependent 3D attitude trajectory. This configuration
guarantees the UAV a high level of flexibility and maneuver-
ability for attitude control and position movement. Compared
to the quadrotor, this innovative configuration also requires less
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hover power and hence provides longer flight time [8], which
makes it ideal for deployment in various missions.

To the best of the authors’ knowledge, no prior literature has
studied a tri-rotor UAV configuration with completely indepen-
dent tilted-rotor capability on all three rotors. The tri-rotor UAV
introduced in [9] only has one servo motor that is installed on
the arm, which can not hold different attitudes while hovering.
A triangular quadrotor is proposed in [8], which contains a sin-
gle large rotor fixed on the main body. This configuration re-
quires more power to hover and causes uncompensated gyro-
scopic drift.

In contrast to a quadrotor UAV, which has zero angular mo-
mentum in hover, a tri-rotor UAV has persistent angular mo-
ment, and hence also gyroscopic dynamics due to the asym-
metric configuration of the system which poses significant con-
trol systems complexities. Furthermore, independent attitude
and trajectory tracking can and should be considered simulta-
neously. However, the control algorithm in [10] only considers
attitude stabilization (as opposed to simultaneous independent
attitude and trajectory tracking) and the control design proposed
in [11] only focus on the static hovering. In this paper, both
these two objectives (i.e. simultaneous independent 3D attitude
and 3D trajectory tracking) are considered for the tri-rotor UAV
in order to overcome the limitation of quadrotors and thus cre-
ate more possibilities when performing special tasks through
aerial robotic platforms.

Furthermore, swarm robotics is a field of multi-robotics
where a group of robots are controlled in a distributed way
to perform complex tasks in a more efficient way than us-
ing a single robot [12]. As a key control technique in swarm
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robotics, distributed cooperative control of multi-agent systems
has also experienced a rapid growth in the research efforts from
the international robotics community, which includes consen-
sus control [13],[14], rendezvous control [15], obstacle avoid-
ance [16], formation control [17],[18], etc. Formation control
of multi-agent systems is hence a key active area of research
which shows broad applications [19]. In applications where the
goal cannot be accomplished by a single robot or a single aerial
robotic vehicle due to physical limitations in its capability, for-
mation control has been flagged as an important underpinning
methodology. It can be applied to a variety of areas, such as
cooperative surveillance [20], target enclosing [21], load trans-
port [22], etc. Based on a consensus strategy, [23] proved that
leader-follower, virtual structure and behavior-based formation
control approaches can be unified in the framework of consen-
sus problems. [24] discussed the formation stability problems
for general high-order swarm systems, but the question how to
achieve desired formation was not considered. Static formation
experiments on quadrotor swarm systems based on consensus
approaches is achieved in [25], while time-varying formation
control of aerial swarm systems is still a vigorously active re-
search topic with much progress still needed.

Motivated by the challenges stated above, the combination
of time-varying formation control and the proposed innova-
tive tri-rotor drone is developed and investigated in this paper.
The formation control protocol for the designed aerial swarm is
fully distributed. The communication topology of the network
is modelled using graph theory. Robust feedback linearization
[26] is used to handle the tri-rotor drone’s highly coupled and
nonlinear dynamics. It provides a systematic multi-input/multi-
output (MIMO) method which linearises nonlinear dynamics
geometrically to match the Jacobi linearization of the nonlinear
system at the operating point of interest. In contrast to classic
feedback linearization which does full nonlinear dynamic in-
version to produce a linear system which is simply a chain of
integrators, robust feedback linearization preserves the system
information at the operating point of interest. It has been suc-
cessfully demonstrated [27] to provide significant robustness to
both model uncertainty and external dynamics. An output feed-
back formation control protocol is also applied to the networked
tri-rotor UAV swarm, which consists of an optimal state ob-
server and an optimal (Linear Quadratic Regulator-LQR) dis-
tributed state feedback formation protocol. It is shown that
LQR based optimal design provides a straightforward way to
construct fully distributed controllers and observers that ensure
stabilization and synchronization of the swarm [28].

The paper is organized as follows. Notation and preliminar-
ies on algebraic graph theory are presented in Section 2. The
nonlinear dynamical model of the tri-rotor drone is described
in Section 3. Robust feedback linearization of a single tri-rotor
drone is first given in Section 4 and then an optimal distributed
formation controller is designed at the end of Section 4 to con-
trol a swarm of tri-rotor drones. Section 5 is devoted to the
presentation of simulation results when the proposed control
architecture is applied to the aerial swarm of tri-rotor drones.
Conclusions are given in Section 6.

2. Preliminaries

In this section, notation, definitions and basic concepts on
graph theory are introduced.

2.1. Notation and Definitions

Let In ∈ Rn×n denote the identity matrix of demension n and
1N ∈ Rn be the vector with all entries equal to one. diag{ai}

represents a diagonal matrix with diagonal entries ai. The Kro-
necker product is denoted by ⊗. We use the superscript T and
∗ to denote the transpose and complex conjugate transpose of a
matrix respectively. For λ ∈ C, Re(λ) is the real part of λ.

2.2. Graph Theory

Consider a weighted and directed graph G = (V,E,A) with
a nonempty set of N nodes V = {1, 2, . . . ,N}, a set of edges
E ⊂ V×V, and associated adjacency matrixA =

[
ai j

]
∈ RN×N .

An edge rooted at node i and ended at node j is denoted by (i, j),
which means information can flow from node i to node j. ai j is
the weight of edge (i, j) and ai j > 0 if (i, j) ∈ E. Assume that
there are no repeated edges and no self loops. Node j is called a
neighbour of node i if (i, j) ∈ E. Define the in-degree matrix as
D = diag{di} ∈ RN×N with di =

∑N
j=1 ai j. The Laplacian matrix

L ∈ RN×N of G is defined as L = D − A. A directed graph has
or contains a directed spanning tree if there exists a node, called
the root, such that there exists a directed path from this node to
every other nodes.

Lemma 1 ([29]). If G contains a spanning tree, then zero is
a simple eigenvalue of L with associated right eigenvector 1N ,
and all the other N−1 eigenvalues have nonnegative real parts.

The following assumption of graph topology holds through-
out this paper.

Assumption 1. The directed graph G contains a spanning tree
and the root node i can obtain information from the leader node.

3. Mathematical Modeling

In this section, we dynamically modeling the proposed tri-
rotor UAV.

3.1. System Description

The configuration of the tri-rotor UAV is illustrated in Fig. 1,
which was first proposed in our earlier work [6]. The UAV has
a triangular structure with three arms and a force generating
unit plus a revolute joint at the end of each arm. All three arms
have identical length l. Each force generating unit includes a
fixed pitch propeller driven by a brushless DC motor to provide
thrust. The motors can be powered by a single battery pack
located at the centre of mass or by three separate battery packs
located at an equal distance from the centre of mass and each
other. The propeller-motor assembly is attached to the body
arm via a servo motor that can rotate in a vertical plane to tilt
the propeller-motor assembly with an angle αsi (the subscript
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Fig. 1. Design of the tri-rotor UAV. (a) Top view. (b) 3D view
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Fig. 2. Front view of one arm

’s’ denotes servo) in order to produce a horizontal component
of the generated force, which is shown in Fig. 2.

All three propellers can be tilted independently to give full
thrust vectoring authority. Then the UAV becomes a full six-
degrees-of-freedom (6-DOF) vehicle in which all motions can
be achieved independently by changing speed of the propellers
and tilting angles of the servo motor directly. This configura-
tion enables vehicle attitude (i.e. 3D orientation) and vehicle
translation (i.e. 3D movement) to be independently controlled.

In order to develop the dynamic model of the proposed tri-
rotor UAV, the following right hand coordinate systems shown
in Fig. 3 are considered: (Xe,Ye,Ze) represents the earth co-
ordinate system, which is assumed to be inertial (i.e. fixed).
(Xb,Yb,Zb) denotes the body coordinate system, where the ori-
gin Ob is fixed to the center of mass of the vehicle. This
coordinate system moves with the vehicle. (Xli,Yli,Zli) with
i ∈ {1, 2, 3} is the local coordinate system of each propeller-
motor assembly. The location of the origin of each local coor-
dinate system coincides with the intersection of the UAV arm
and the propeller-motor assembly, where Xli is extended out-
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Fig. 3. Coordinate systems of the tri-rotor UAV

side the ith arm of UAV along the same line as the arm and Zli is
along the direction of the motor shaft axis when the servo angle
is zero.

In this section, the superscript b, e and li are used to denote
the corresponding coordinate system in which vectors are ex-
pressed. The subscript i refers to the ith propeller, servo motor
or brushless DC motor with i ∈ {1, 2, 3}. The nominal mathe-
matical model is based on the following assumptions:

1) Fast actuators are assumed, so the dynamics of actuators are
neglected.

2) Propellers are considered to be rigid, thus blade flapping is
not considered in the model.

3) The body structure is rigid and the mass is fixed.

It should be noted that although we do not consider these fac-
tors in model design, they can still be included as perturbations
and uncertainties when carrying out simulation or experiment
to test the robustness of the proposed control system in the next
section.

In order to obtain the dynamical equations of motion of the
vehicle, both forces and torques acting on the UAV need to be
analyzed.

3.2. Forces Analysis

There are two main forces acting on the tri-rotor, which are
the propulsive force and the gravitational force respectively.

The total propulsive force Fb
p is equal to the algebraic sum

of the three individual propulsive forces produced by each pro-
peller. The individual propulsive forces Fli

pi
at the local coordi-

nate systems are given by:

Fli
pi

=

 0
k fω

2
mi sin (αsi )

k fω
2
mi cos (αsi )

 , i ∈ {1, 2, 3} , (1)

where k f is the thrust coefficient of the propeller that can be
easily determined from static thrust tests [30], ωmi is the rota-
tional speed of the ith brushless DC motor and αsi is the tilting
angle of the ith servo motor.

To obtain the propulsive forces in the body coordinate sys-
tem, consider the following rotation matrices from propeller
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local coordinate systems l1, l2 and l3 to the body coordinate
system b as

Rb
l1 =

1 0 0
0 1 0
0 0 1

 , Rb
l2 =


− 1

2 −
√

3
2 0

√
3

2 − 1
2 0

0 0 1

 ,
Rb

l3 =


− 1

2

√
3

2 0
−
√

3
2 − 1

2 0
0 0 1

 .
(2)

The total propulsive force is then given by

Fb
p = Rb

l1 Fl1
p1

+ Rb
l2 Fl2

p2
+ Rb

l3 Fl3
p3

= k f H fρ (3)

where

H f =

0 −
√

3
2

√
3

2 0 0 0
1 − 1

2 − 1
2 0 0 0

0 0 0 1 1 1

 and ρ =



ω2
m1 sin (αs1 )

ω2
m2 sin (αs2

)
ω2

m3 sin (αs3
)

ω2
m1 cos (αs1

)
ω2

m2 cos (αs2
)

ω2
m3 cos (αs3 )


.

The gravitational force in the earth coordinate system can be
written as

Fe
g =

 0
0
−mg

 , (4)

where g is the gravity acceleration and m is the total mass of the
tri-rotor UAV.

In the body coordinate system, we have

Fb
g = Rb

e Fe
g, (5)

where Rb
e is the rotation matrix from frame e to frame b.

The notation of attitude angles for the UAV is roll angle φ,
pitch angle θ and yaw angle ψ, which represents counterclock-
wise rotation of angles about the Xb-axis, Yb-axis and Zb-axis
respectively. The rotation matrices are given by

Rx(φ) =

1 0 0
0 cos (φ) − sin (φ)
0 sin (φ) cos (φ)

 ,
Ry(θ) =

 cos (θ) 0 sin (θ)
0 1 0

− sin (θ) 0 cos (θ)

 ,
Rz(ψ) =

 cos (ψ) − sin (ψ) 0
− sin (ψ) cos (ψ) 0

0 0 1

 .
(6)

According to the properties of the rotation matrix we have
Rb

e = (Re
b)−1, where Re

b is the rotation matrix from body coor-
dinate system to the earth coordinate system given by

Re
b = RzRyRx

=

CθCψ CψS θS φ −CφS ψ CφCψS θ + S φS ψ

CθS ψ S θS φS ψ + CφCψ CφS θS ψ −CψS φ

−S θ CθS φ CφCθ

 , (7)

where S (.) and C(.) represent sin(.) and cos(.) respectively.
Then the gravitational force in the body coordinate system

can be expressed by
Fb

g = mgΘ, (8)

where

Θ =

 sin (θ)
− sin (φ) cos (θ)
− cos (φ) cos (θ)

 .
Thus, the total force acting on the tri-rotor in the body coor-

dinate system can be written as

Fb = Fb
p + Fb

g = k f H fρ + mgΘ. (9)

3.3. Torques Analysis
There are two main torques acting on the tri-rotor, which are

the propulsive torque and drag torque.
The propulsive torque is the torque caused by the thrust gen-

erated from the propellers near the centre of mass of the UAV.
Since there are three identical arms with length l, the propulsive
torque for each actuator is given by

τb
pi = lb

i × Fb
pi
, i ∈ {1, 2, 3} , (10)

where

lb
1 = l

100
 , lb

2 = l


√

3
2
− 1

2
0

 , lb
3 = l


− 1

2

−
√

3
2

0


and Fb

pi
= Rb

li F
li
pi

.
Then the total propulsive torque with respect to the body co-

ordinate system can be written as:

τb
p = τb

p1 + τb
p2 + τb

p3 = k f Htρ, (11)

where

Ht = l

0 0 0 0
√

3
2 −

√
3

2
0 0 0 −1 1

2
1
2

1 1 1 0 0 0

 .
The drag torque is expressed as the torque caused by the aero-

dynamic drag forces, which is in the opposite direction to the
rotation direction of propeller. Thus, the resulting drag torque
on the ith propeller is given by kdω

2
mi, where kd is the drag torque

to speed coefficient resulting from the rotation of the propeller.
The drag torque on the propellers causes an equal reaction

torque on the vehicle which can be expressed in the local coor-
dinate systems as

τli
di

=

 0
−kdω

2
mi sin (αsi )

−kdω
2
mi cos (αsi )

 , i ∈ {1, 2, 3} . (12)

The total drag (or reaction) torque in the body coordinate
system can be written as

τb
d = τb

d1
+ τb

d2
+ τb

d3
= Rb

l1τ
l1
d1

+ Rb
l2τ

l2
d2

+ Rb
l3τ

l3
d3

= −kd H fρ.
(13)
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Finally, the total torque acting on the tri-rotor UAV in the
body coordinate system can be written as

τb = τb
p + τb

d = (k f Ht − kd H f )ρ. (14)

3.4. Dynamic Model
Under the assumption stated earlier that the tri-rotor UAV

is a rigid body of fixed mass, the vehicle’s translational and
rotational dynamics can be calculated by the Newton-Euler’s
second law of motion [31] in the body coordinate frame as

Fb = m(v̇b
v + S(ωb

v)vb
v), (15)

τb = Ib
vω̇

b
v + S(ωb

v)Ib
vω

b
v , (16)

where vb
v is the vehicle’s translational velocity measured in the

body coordinate frame and ωb
v is the vehicle’s angular velocity.

The vehicle’s inertia matrix expressed in the body coordinate
frame and the skew matrix constructed from the vector ωb

v =[
p q r

]T are given by

Ib
v =

Ixx 0 0
0 Iyy −Iyz

0 −Iyz Izz

 (17)

and

S(ωb
v) =

 0 −r q
r 0 −p
−q p 0

 . (18)

Now, substituting Fb and τb from (9) and (14) gives

k f H fρ + mgΘ = m(v̇b
v + S(ωb

v)vb
v), (19)

(k f Ht − kd H f )ρ = Ib
vω̇

b
v + S(ωb

v)Ib
vω

b
v . (20)

Let ηv =
[
φ θ ψ

]T and λe
v =

[
xv yv zv

]T denote respectively
the attitude vector and the position vector with respect to the
earth coordinate system. Then

η̇v = Ψωb
v , (21)

λ̇
e
v = Re

bvb
v , (22)

describe the relations between velocities and positions [32],
where Ψ relates the instantaneous angular velocities around the
Xb-axis, Yb-axis and Zb-axis to the rate of change of the roll,
pitch and yaw angles. It is given in [33] as

Ψ =

1 sin (φ) tan (θ) cos (θ) tan (θ)
0 cos (θ) − sin (φ)
0 sin (φ) sec (θ) cos (φ) sec (θ)

 ,−π2 < θ <
π

2
. (23)

Therefore, the dynamic model of the tri-rotor can be de-
scribed in a compact form as

v̇b
v = gΘ − S(ωb

v)vb
v +

k f

m
H fρ, (24)

ω̇b
v = −(Ib

v)
−1S(ωb

v)Ib
vω

b
v + (Ib

v)
−1

(k f Ht − kd H f )ρ, (25)

η̇v = Ψωb
v , (26)

λ̇
e
v = Re

bvb
v , (27)

where

vb
v =

ub

vb

wb

 , ωb
v =

p
q
r

 , ηv =

φθ
ψ

 and λe
v =

xv

yv

zv

 .
Choosing the state vector as

x = [x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12]T

=
[
ub vb wb p q r φ θ ψ xv yv zv

]T , (28)

and the input vector as

u = ρ =



u1
u2
u3
u4
u5
u6


=



ω2
m1 sin (αs1)

ω2
m2 sin (αs2)

ω2
m3 sin (αs3)

ω2
m1 cos (αs1)

ω2
m2 cos (αs2)

ω2
m3 cos (αs3)


, (29)

then the set of (24)-(27) can be written in the state-space form
as

ẋ1 = x2x6 − x3x5 + g sin (x8) −

√
3k f

2m
u2 +

√
3k f

2m
u3, (30)

ẋ2 = x3x4 − x1x6 − g sin (x7) cos (x8)

+
k f

m
u1 −

k f

2m
u2 −

k f

2m
u3, (31)

ẋ3 = x1x5 − x2x4 − g cos (x7) cos (x8)

+
k f

m
u4 +

k f

m
u5 +

k f

m
u6, (32)

ẋ4 =
x5x6(Iyy − Izz) + Iyz(x2

5 − x2
6)

Ixx
+

√
3kd

2Ixx
u2

−

√
3kd

2Ixx
u3 +

√
3lk f

2Ixx
u5 −

√
3lk f

2Ixx
u6, (33)

ẋ5 =
x4x5(IxxIyz − IyyIyz − IzzIyz)

IyyIzz − I2
yz

+
x4x6(I2

yz + I2
zz − IxxIzz)

IyyIzz − I2
yz

+
Iyzk f l − Izzkd

IyyIzz − I2
yz

u1

+
2Iyzk f l + Izzkd

2(IyyIzz − I2
yz)

u2 +
2Iyzk f l + Izzkd

2(IyyIzz − I2
yz)

u3

−
Izzk f l + Iyzkd

IyyIzz − I2
yz

u4 +
Izzk f l − 2Iyzkd

2(IyyIzz − I2
yz)

u5

+
Izzk f l − 2Iyzkd

2(IyyIzz − I2
yz)

u6, (34)
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ẋ6 =
x4x6(IyyIyz + IzzIyz−IxxIyz)

IyyIzz − I2
yz

+
x4x5(IxxIyy − I2

yz − I2
yy)

IyyIzz − I2
yz

+
Iyyk f l − Iyzkd

IyyIzz − I2
yz

u1

+
2Iyyk f l + Iyzkd

2(IyyIzz − I2
yz)

u2 +
2Iyyk f l + Iyzkd

2(IyyIzz − I2
yz)

u3

−
Iyzk f l + Iyykd

IyyIzz − I2
yz

u4 +
Iyzk f l − 2Iyykd

2(IyyIzz − I2
yz)

u5

+
Iyzk f l − 2Iyykd

2(IyyIzz − I2
yz)

u6, (35)

ẋ7 = x4 + x5 sin (x7) tan (x8) + x6 cos (x7) tan (x8), (36)
ẋ8 = x5 cos (x7) − x6 sin (x7), (37)
ẋ9 = x5 sin (x7) sec (x8) + x6 cos (x7) sec (x8), (38)

ẋ10 = x1 cos (x8) cos (x9) + x2(sin (x7) sin (x8) cos (x9)
− cos (x7) sin (x9)) + x3(cos(x7) sin (x8) cos (x9)
+ sin (x7) sin (x9)), (39)

ẋ11 = x1 cos (x8) sin (x9) + x2(sin (x7) sin (x8) sin (x9)
+ cos (x7) cos (x9)) + x3(cos (x7) sin (x8) sin (x9)
− sin (x7) cos (x9)), (40)

ẋ12 = −x1 sin (x8) + x2 sin (x7) cos (x8)
+ x3 cos (x7) cos (x8). (41)

The output vector is chosen as

y =



φ
θ
ψ
xv

yv

zv


=



x7
x8
x9
x10
x11
x12


. (42)

Remark 1. Note that the real inputs (ωmi and αsi) are mapped
into the control inputs ui via the nonlinear mapping (29). It can
be shown that this nonlinear mapping is invertible thus giving
actuator signals ωmi and αsi for use in real application. The
physical actuator inputsωmi and αsi can be calculated back from
the control inputs ui via

αsi = arctan
(

ui

ui+3

)
and ωmi = 4

√
u2

i + u2
i+3 ∀i ∈ {1, 2, 3}.

4. Control System Design

The objective of this section is to design a robust distributed
formation control protocol for swarms of the proposed tri-rotor
UAV. Since the dynamical model of a single tri-rotor UAV is
highly coupled and nonlinear, a robust feedback linearization
technique is first applied to each tri-rotor to obtain simpler
closed-loop dynamics. Then the swarm of identical tri-rotor
UAVs is controlled through an optimal distributed formation
control protocol which solves the time-varying formation track-
ing problem for tri-rotor robotic swarms.

4.1. Robust Feedback Linearization
Consider a single nonlinear system with n states, m inputs,

and m outputs described by

ẋ = F (x) + G (x) u = F (x) +

m∑
i=1

Gi (x) ui, (43)

y = [H1 (x) , . . . ,Hm (x)]T , (44)

where x(t) ∈ Rn denotes the state vector, u(t) ∈ Rm is the con-
trol input, y(t) ∈ Rm is the output vector, and F (x), G1 (x), . . . ,
Gm (x), y are smooth vector fields defined on an open subset of
Rn.

Suppose that this system satisfies the well-known conditions
for feedback linearization [34]: The relative degree of Hi is
equal to ri for i ∈ {1, . . . ,m} such that r1 + · · · + rm = n, and
the decoupling matrix

M(x) =


LG1 Lr1−1

f H1 (x) . . . LGm Lr1−1
f H1 (x)

...
. . .

...

LG1 Lrm−1
f Hm (x) . . . LGm Lrm−1

f Hm (x)

 (45)

is invertible, where L(.) (.) denotes the Lie derivative operator
[34]. It is then possible to find a feedback linearizing control
law of the form

u (x,w) = αc (x) + βc (x) w, (46)

where w(t) is a new control input, and αc(x) =

−M−1(x)
[
Lr1

f H1(x) . . . Lrm
f Hm(x)

]T
, βc(x) = M−1(x),

such that on application of the control law in (46), the nonlin-
ear state-equation (43) reduces into the linear state-equation

ẋc = Acxc + Bcw, (47)

where Ac and Bc are matrices of the Brunovsky canon-
ical form [34], and a change of coordinates xc =

φc (x) with φT
c (x) =

[
φT

c1(x) . . . φT
cm(x)

]
and φT

ci(x) =

[Hi(x) L f Hi(x) . . . Lri−1
f Hi(x)] .

The robust feedback linearization technique [26], on the
other hand, exactly transforms the nonlinear state-equation into
a linear state-equation that is equal to the Jacobi linear approx-
imation of the original nonlinear state-equation around the ori-
gin. This can then be controlled using linear techniques [27].
In the robust feedback linearization case, the linearized state-
equation becomes

ẋr = Ar xr + Brv, (48)

where Ar = ∂xF (0) and Br = G (0). The nonlinear state-
equation (43) is geometrically transformed into the linear state-
equation of any operating point, not only in a small neighbor-
hood of the origin point. [26] argues that classical feedback
linearization may be non robust in the presence of uncertain-
ties as any system is transformed into a chain of integrators
(i.e. Brunovsky form) whereas robust feedback linearization
preserves some system information.
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The robust feedback linearization control law is

u (x, v) = α (x) + β (x) v, (49)

where
α (x) = αc (x) + βc (x) LU−1φc (x) , (50)

β (x) = βc (x) R−1, (51)

φr (x) = U−1φc (x) , (52)

L = −M (0) ∂xαc (0) , (53)

R = M−1 (0) , (54)

U = ∂xφc (0) , (55)

xr = φr (x) . (56)

Now we apply the robust feedback linearization to the dy-
namics of tri-rotor UAV system. The relative degrees are r1 = 2,
r2 = 2, r3 = 2, r4 = 2, r5 = 2 and r6 = 2, resulting in a vector
relative degree r = 12, which is equal to the number of states.
The decoupling matrix M(x) can also be written in a compact
form as given in [6]:

M(x) =

Ψ(Ib
v)−1(k f Ht − kd H f )

k f

m Re
bH f

 . (57)

It can be verified that det[M(x)] , 0 as the pitch angle is as-
sumed to be in the range of −π/2 < θ < π/2, such that M(x)
is always invertible in this case. As a result, the conditions for
feedback linearization are satisfied.

After calculating the classic Brunowski form linearizing in-
put (46) and applying the formulas for the robust feeedback lin-
earization (49)-(56), the system can then be robust feedback
linearized into

ẋr = Ar xr + Brv, (58)

y = Cr xr. (59)

The state space matrix Ar, Br and Cr are shown at the bottom
of the page.

Furthermore, L, R and U are calculated by

L =


0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 g 0 0 0 0
0 0 0 0 0 0 −g 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

 , (63)

R =



0 −
Iyz

3k f l
Izz

3k f l 0 2m
3k f

kd m

3k2
f l

0 −
Iyz

3k f l
Izz

3k f l −
√

3m
3k f

− m
3k f

kd m

3k2
f l

0 −
Iyz

3k f l
Izz

3k f l

√
3m

3k f
− m

3k f

kd m

3k2
f l

0 −
2Iyy
3k f l

2Iyz
3k f l 0 −

2kd m

3k2
f l

m
3k f

√
3Ixx

3k f l
Iyy

3k f l −
Iyz

3k f l

√
3kd m

3k2
f l

kd m

3k2
f l

m
3k f

−

√
3Ixx

3k f l
Iyy

3k f l −
Iyz

3k f l −

√
3kd m

3k2
f l

kd m

3k2
f l

m
3k f


, (64)

U =



0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0


, (65)

and φc and φr are given by

φc = [x7 x8 x9 x10 x11 x12 ẋ7 ẋ8 ẋ9 ẋ10 ẋ11 ẋ12]T , (66)

φr = [ẋ10 ẋ11 ẋ12 ẋ7 ẋ8 ẋ9 x7 x8 x9 x10 x11 x12]T . (67)

From (56) we know xr = φr (x). Finally, α (x) and β (x) can
then be computed from (50) and (51) directly.

4.2. Distributed Optimal Formation Protocol Design
In practical applications, some states do not need to be mea-

sured by sensors for controller design. For example, the vehi-
cle’s translational velocity in the body coordinate frame vb

v is
not used in the robust feedback linearization controller. It can
hence be obtained by using an observer on input and output
information of the feedback linearized system. In this section,
we propose a distributed optimal formation protocol which uses
the neighbourhood state estimation information for controller
design and the local output estimation error information for the
observer design. The scheme for controlling the dynamics of at-
titude and position of each tri-rotor UAV, based on robust feed-
back linearization and distributed optimal output feedback for-
mation protocol, is illustrated in Fig. 4.

Consider a set of N tri-rotor UAVs. Suppose that each tri-
rotor UAV has the identical linearized dynamics described by

ẋri = Ar xri + Brvi, (68)

yi = Cr xri. (69)

It can be easily verified that (Ar, Br,Cr) is stabilizable and
detectable.

The dynamics of the leader node, labeled 0, is given by

ẋ0 = Ar x0, (70)

y0 = Cr x0. (71)

where x0 ∈ Rn is the state, y0 ∈ Rp is the output. It can be con-
sidered as a command generator, which generates the desired
target trajectory. The leader can be observed from a subset of
agents in a graph. If node i observes the leader, an edge (0, i) is
said to exist with weighting gain gi > 0 as a pinned node. We
denote the pinning matrix as G = diag {gi} ∈ RN×N .

The desired formation is specified by the vector h =[
hT

1 , h
T
2 , . . . , h

T
N

]T
with hi ∈ Rn being a preset vector known

by the corresponding ith agent. It should be noted that the for-
mation problem reduces to a consensus problem when hi = 0 ∀
i ∈ {1, . . . ,N}.
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Fig. 4. Control system scheme: Distributed optimal formation control law and robust feedback linearization combining linear and nonlinear parts

Denote the estimate of the state xri by x̂ri ∈ Rn and let the
state estimation error be x̃ri = xri − x̂ri. Then the consequent
estimate of the output yi is given by ŷi = Cr x̂ri and the output
estimation error for node i is given by ỹi = yi−ŷi. Consider the
following distributed optimal formation protocol

vi =cK
∑
j∈Ni

ai j

((
x̂r j − h j

)
− (x̂ri − hi)

)
+ cKgi (x0 − (x̂ri − hi)) + γi,

(72)

˙̂xri = Ar x̂ri + Brvi − cFỹi, (73)

where c > 0 is the scalar coupling gain, K ∈ Rm×n is the feed-
back control gain matrix, F ∈ Rn×m is the observer gain, and
γi ∈ Rm represents the formation compensation signal to be
designed.

Let x =
[
xT

r1, x
T
r2, . . . , x

T
rN

]T
, x̂ =

[
x̂T

r1, x̂
T
r2, . . . , x̂

T
rN

]T
, x̃ =[

x̃T
r1, x̃

T
r2, . . . , x̃

T
rN

]T
, x0 = 1N ⊗ x0, and γ =

[
γT

1 ,γ
T
2 , . . . ,γ

T
N
]T .

Under a control protocol with directed topology, the tri-rotor
UAV swarm can be written in a compact form as

ẋ =(IN ⊗ Ar)x − c[(L + G) ⊗ BrK](x̂ − x0)
+ c[(L + G) ⊗ Br K]h + (IN ⊗ Br)γ,

(74)

˙̂x =(IN ⊗ Ar)x̂ − (IN ⊗ cFCr)(x − x̂)
− c[(L + G) ⊗ Br K](x̂ − x0)
+ c[(L + G) ⊗ Br K]h + (IN ⊗ Br)γ.

(75)

It follows the fact that matrix Br given in (61) is of full rank,

there always exists a nonsingular matrix [B̃T
, B̄T ]

T
with B̃ ∈

Ar =



0 0 0 0 0 0 0 g 0 0 0 0
0 0 0 0 0 0 −g 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0


, (60)

Br =



0 −

√
3k f
2m

√
3k f
2m 0 0 0

k f
m −

k f
2m −

k f
2m 0 0 0

0 0 0
k f
m

k f
m

k f
m

0
√

3kd
2Ixx

−

√
3kd

2Ixx
0

√
3lk f

2Ixx
−

√
3lk f

2Ixx
Iyzk f l−Izzkd

Iyy Izz−I2
yz

2Iyzk f l+Izzkd
2(Iyy Izz−I2

yz )

2Iyzk f l+Izzkd
2(Iyy Izz−I2

yz)
−

Izzk f l+Iyzkd
Iyy Izz−I2

yz

Izzk f l−2Iyzkd
2(Iyy Izz−I2

yz )

Izzk f l−2Iyzkd
2(Iyy Izz−I2

yz )
Iyyk f l−Iyzkd

Iyy Izz−I2
yz

2Iyyk f l+Iyzkd
2(Iyy Izz−I2

yz )

2Iyyk f l+Iyzkd
2(Iyy Izz−I2

yz)
−

Iyzk f l+Iyykd
Iyy Izz−I2

yz

Iyzk f l−2Iyykd
2(Iyy Izz−I2

yz )

Iyzk f l−2Iyykd
2(Iyy Izz−I2

yz )

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



, (61)

Cr =


0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

 . (62)
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Rm×n and B̄ ∈ R(n−m)×n such that B̃Br = Im and B̄Br = 0.
The following theorem which is motivated by [35], has been
improved to deal with output feedback tracking of multi-agent
systems.

Theorem 1. Let λi (i ∈ {1, . . . ,N}) be the eigenvalues of
(L + G). Then the tri-rotor UAV swarm with directed interac-
tion topology asymptotically converges to the formation speci-
fied by (x0 + hi) ∈ Rn ∀i ∈ {1, . . . ,N} if the following conditions
hold for all i ∈ {1, . . . ,N}

B̄Ar hi − B̄ḣi = 0, (76)

Ar − cλiBr K and Ar + cFCr are Hurwitz, (77)

and γi = B̃ḣi − B̃Ar hi for all i ∈ {1, . . . ,N} . (78)

Proof. Let formation tracking error for each UAV be Φi =

xri − hi − x0 andΦ = [ΦT
1 ,Φ

T
2 , . . . ,Φ

T
N]T . Then the global for-

mation error dynamics with directed interaction topology can
be written as

Φ̇ =[IN ⊗ Ar − c (L + G) ⊗ Br K]Φ
+ c[(L + G) ⊗ Br K]x̃

+ (IN ⊗ Ar) h − (IN ⊗ IN)ḣ
+ (IN ⊗ Br)γ.

(79)

The global observer error dynamics is

˙̃x = IN ⊗ (Ar + cFCr)x̃. (80)

In view of Assumption 1, all the eigenvalues of matrix (L +

G) have positive real parts [36]. It is well known that there
exists a nonsingular T such that T−1 (L + G) T is in the Jordan
canonical form J. Let ϑ =

(
T−1 ⊗ In

)
Φ =

[
ϑT

1 ,ϑ
T
2 , . . . ,ϑ

T
N

]T
.

Then multi-agent system can be represented in terms of ϑ as

ϑ̇ = (IN ⊗ Ar − cJ ⊗ Br K)ϑ

+ c[T−1 (L + G) ⊗ Br K]x̃

+
(
T−1 ⊗ Ar

)
h − (T−1 ⊗ IN)ḣ

+
(
T−1 ⊗ Br

)
γ.

(81)

If condition (76) holds, then for all i ∈ {1, . . . ,N}

B̄Ar hi − B̄ḣi + B̄Brγi = 0. (82)

By letting γi = B̃ḣi − B̃Ar hi, it follows that

B̃Ar hi − B̃ḣi + B̃Brγi = 0. (83)

From (82) and (83) and the fact that
[
B̃T
, B̄T ]T

is nonsingular,
one gets

Ar hi − ḣi + Brγi = 0. (84)

which means that

(IN ⊗ Ar) h − (IN ⊗ IN)ḣ + (IN ⊗ Br)γ = 0. (85)

Pre-multiplying the both sides of (85) by T−1 ⊗ IN yields(
T−1 ⊗ Ar

)
h − (T−1 ⊗ IN)ḣ +

(
T−1 ⊗ Br

)
γ = 0. (86)

Then (81) reduces to the following dynamics

ϑ̇ = (IN ⊗ Ar − cJ ⊗ Br K)ϑ + c[T−1 (L + G) ⊗ Br K]x̃. (87)

From (87) and (80), it can be obtained that[
ϑ̇
˙̃x

]
=

[
Ae Be

0 IN ⊗ (Ar + cFCr)

] [
ϑ
x̃

]
, (88)

where
Ae = IN ⊗ Ar − cJ ⊗ Br K,

Be = cT−1 (L + G) ⊗ Br K.

Therefore, the global error system in (88) is asymptotically sta-
ble if and only if both Ae and IN⊗(Ar +cFCr) are Hurwitz, and
the latter can be satisfied due to the detectability of (Cr, Ar).
Note that the the state matrix Ae is either block diagonal or
block upper-triangular. Hence the stability of (88) is equivalent
to the stability of the N subsystems defined with the diagonal
blocks. Therefore, Ar − cλiBr K is Hurwitz ∀ i ∈ {1, . . . ,N}
if and only if IN ⊗ Ar − cJ ⊗ Br K is Hurwitz. Therefore,
ϑ converges asymptotically to the origin which is equivalent
to stating that xri converges asymptotically to x0 + hi for all
i ∈ {1, . . . ,N}.

Next we will show how to select state variable feedback con-
trol gain K to guarantee stability on arbitrary directed graphs
containing a spanning tree by using LQR based optimal design
and proper choice of the coupling gain c. The following theo-
rem is an extension of a result in [28], which only considers the
consensus problem. In the case where h = 0, the optimal for-
mation tracking protocol (72) becomes the optimal consensus
tracking protocol of [28], so it can be viewed as a special case
of the result in the current paper.

Theorem 2. Let Q = QT
∈ Rn×n and R = RT ∈ Rm×m be

positive definite matrices. Let P be the unique positive definite
solution of the algebraic Riccati equation

AT
r P + PAr + Q − PBr R−1BT

r P = 0. (89)

Then, under Assumption 1 and condition (76), the distributed
formation tracking control protocol (72) with

K = R−1BT
r P (90)

and γi set as in (78) ensures that the tri-rotor UAV swarm with
directed interaction topology asymptotically converges to the
formation specified by (x0 + hi) ∈ Rn ∀i ∈ {1, . . . ,N} if the
coupling gain

c ≥
1

2λR
(91)

with λR = mini∈{1,...,N}Re (λi), where λi are the eigenvalues of
(L + G).
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Proof. Consider the stability of the following subsystem

δ̇i = (Ar − cλiBr K) δi, (92)

where δ denotes the formation tracking closed-loop error. Con-
struct the following Lyapunov candidate function

Vi = δ∗i Pδi. (93)

Taking the derivative of Vi along the trajectory of subsystem
gives

V̇i = δ∗i
(
PAr + AT

r P − cλ∗i (Br K)T P − cλi PBr K
)
δi. (94)

Substituting K = R−1BT
r P and AT

r P+PAr = −Q+PBr R−1BT
r P

into (92) one has

V̇i =
[
1 − 2cRe (λi)

]
δ∗i

(
PBr R−1BT

r P
)
δi − δ

∗
i Qδi. (95)

It can be seen that if condition (91) holds, then V̇i < 0. There-
fore, Ar − cλiBr K is Hurwitz for all i ∈ {1, . . . ,N} by Lyapunov
theory [37]. This completes the proof.

The ARE in (89) is extracted by minimizing the following
performance index for each tri-rotor UAV

Ji =
1
2

∫ ∞

0
(δT

i Qδi + vT
i Rvi)dt. (96)

The design Riccati matrices Q and R can be selected to adjust
the relative cost of formation tracking error and control effort.
This allows the cooperative control system to be tuned to trade-
off between the speed of formation tracking and the speed of
DC motors to achieve it.

Remark 2. In order to enhance the robustness of our tri-rotor
UAV, suppose external white noises ε1 and ε2 are added to (68)
and (69) respectively, which satisfy that

E[ε1ε1
T ] = Q̄, E[ε2ε2

T ] = R̄, E[ε1ε2
T ] = 0, (97)

where E donates the expected value, and Q̄ and R̄ are positive
definite matrices. Then a local optimal observer gain F can be
calculated by a similar approach (see [38] for further details) as

F = P̄CT
r R̄−1

, (98)

where P̄ is the unique positive definite solution of ARE

Ar P̄ + P̄AT
r − P̄CT

r R̄−1Cr P̄ + Q̄ = 0. (99)

This optimal observer is also known as Kalman-Bucy filter [39],
which has been widely used in system state estimation. It has
been demonstrated [40] to have many advantages, including op-
timality of state estimation in the presence of white noise and
external disturbance [41].

With the above analysis, the procedure to construct the con-
trol law ui is given in Algorithm 1.

Validation of internal stability using closed-loop data from
experiments can be performed using technique described in
[42]. This is useful as one would also expect unmodelled dy-
namics.

Algorithm 1 Procedure for construction of the control law of a
tri-rotor UAV robotic swarm

1: initialize state variables for a tri-rotor UAV robotic swarm;
2: for each vehicle i ∈ {1, . . . ,N} do
3: select the desired formation reference hi ∈ Rn;
4: if formation feasibility condition (76) is satisfied then
5: compute distributed feedback gain K using (90) and

(89);
6: select coupling gain c according to condition (91);
7: compute local optimal observer gain F using (98)

and (99);
8: set γi ∈ Rn according to (78);
9: set the distributed optimal formation control proto-

col vi as in (72) and (73);
10: set the robust feedback control law ui as in (49).
11: else
12: back to Step 3;
13: end if
14: end for

 

servo motor 

propeller 

microcontroller 

battery packs 

sensors 

electric motor 

Fig. 5. The hardware of the designed tri-rotor UAV

5. Simulation Results

The numerical simulation carried out in this section is based
on real hardware as shown in Fig. 5. The electric propulsion
unit of the tri-rotor UAV includes energy storage units (battery
packs), electronic speed control units (ESC), electric motors
(brushless DC motors), and propellers. Also, an embedded sys-
tem is installed on the main body, which includes an on-board
microcontroller (OBM), a data acquisition module (DAQ) and
a sensor module (IMU). The measured model parameters of the
tri-rotor UAV are given in Table 1.

The simulation environment has been designed and imple-
mented in Simscape Multibody

TM
and Simulink R© for more re-

alistic results as this provides a 3D graphical display of physical
devices. Simscape Multibody

TM
is used to develop the dynamic

model of the tri-rotor UAV based on physical components such
as joints, constraints, force elements, and sensors. The designed
control system is implemented in Simulink R©. Furthermore, a
time delay of 0.01s in servo motor responses and a maximum
speed saturation constraint of 12000 RPM on the electric mo-
tors are considered in the simulation model to mimic real phys-
ical considerations.
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Table 1
Tri-rotor UAV and controller parameters

Value Unit Description

m 0.5 kg Tri-rotor mass
g 9.81 m/s2 Gravity acceleration
l 0.23 m Arm length

Ixx 6.8 × 10−3 kg ·m2 Moment of inertia along Xb

Iyy 5.3 × 10−3 kg ·m2 Moment of inertia along Yb

Izz 1.7 × 10−3 kg ·m2 Moment of inertia along Zb

Iyz 3.1 × 10−4 kg ·m2 Product of inertia about Yb and Zb

k f 1.97 × 10−5 kg ·m/rad2 Thrust to speed coefficient
kd 2.88 × 10−7 kg ·m2/rad2 Drag to speed coefficient
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Fig. 6. Directed interaction topologies

For this case study, consider a set of six tri-rotor UAVs per-
forming a target surveillance task, whose goal is to track a pre-
defined time-varying formation while maintaining different at-
titudes individually for monitoring the full range of target activ-
ity. The directed interaction topology among the six vehicles is
shown in Fig. 6, where the leader agent 0 provides the formation
reference signal and the directed topology is switched every 5
seconds in sequence. Recall that hi ∈ Rn is the formation offset
vector with respect to the formation reference x0 ∈ Rn. The 3D
attitude and 3D position of each UAV are chosen independently.

The matrix B̄ can be chosen as

B̄ =


0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

 ,
and B̃ can be calculated as a left generalized inverse of Br,
which is given by

B̃ =


0 406.09 29.68 0 −0.05 0.28 0 0 0 0 0 0

−351.68 −203.04 29.68 0 −0.05 0.28 0 0 0 0 0 0
351.68 −203.04 29.68 0 −0.05 0.28 0 0 0 0 0 0

0 −59.36 203.04 0 −1.79 0.10 0 0 0 0 0 0
51.41 29.68 203.04 1.99 0.89 −0.05 0 0 0 0 0 0
−51.41 29.68 203.04 −1.99 0.89 −0.05 0 0 0 0 0 0

 .
In this case, the states of the leader node are given by

x0 = [0 0 0 0 0 0 0 0 0 5 − 5 0]T ,

which indicates that the reference position will be located at a
static position (5,−5, 0) with roll, pitch and yaw angles being
zero, and all the reference velocities and reference angular ve-
locities are kept zero to maintain the static target position. It
should however be pointed out that the individual attitudes and
positions of each UAV are also effected by the choice of hi,
which will not be set to zero. The proposed control strategy is
valid regardless of the target is static or time-varying. In this
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Fig. 7. 3D trajectories of the tri-rotor swarm

case, hi is selected as

hi =



10 cos (t+ (i−1)π
3 )

−10 sin (t+ (i−1)π
3 )

0
0
0
0

−0.5×(−1)i

−0.5×(−1)i

0.5×(−1)i

10 sin (t+ (i−1)π
3 )

10 cos (t+ (i−1)π
3 )

20


(for i ∈ {1, 2, . . . , 6}),

where the desired offsets of 3D attitude and 3D position with
respect to the reference signal for each agent are represented by
last six rows, and the first six rows are the derivatives of them
according to the change of coordinates given in (67).

It can be verified that the formation tracking feasibility con-
dition (76) in Theorem 1 is satisfied. Then the optimal state-
feedback gain K and coupling gain c can be obtained using the
approach in Theorem 2. The local optimal observer gain F for
each UAV can also be selected easily by solving the correspond-
ing ARE based on the estimation of noise. These design gains
are hence given by

c = 5,

K =


−2.1 0.3 12 −0.1 −2.3 3.2 −0.9 −9.4 18 −2.2 0.5 2.6
2.1 −2.9 12 2.6 1.2 3.1 11 7.6 17 2.8 −3.5 2.6
2.6 2.5 12 −2.4 1.3 3.1 −11 8.9 17 3.7 2.9 2.6
−20 0 85 0 −17 0.3 0.1 −81 −0.5 −25 0 18
10 −18 85 17 8.4 −0.8 77 40 −3.6 12 −22 18
10 18 85 −17 8.4 −0.8 −77 40 −3.6 12 22 18

 ,

F =



−0.12 10.08 −0.01 9.83 0 0
−10.14 −0.12 0 0 9.83 0

0 0 −0.18 0 0 1.25
160.26 0 0 −0.12 5.57 0

0 208.61 50.72 −6.01 −0.12 0
0 50.72 916.32 −0.13 0 −0.18

17.90 0 0 −0.01 −0.20 0
0 20.36 1.60 0.16 −0.01 0
0 1.60 42.77 0 0 0
−0.01 0.16 0 4.43 0 0
−0.20 −0.01 0 0 4.43 0

0 0 0 0 0 1.5864


.

On using robust control law (49) with optimal distributed for-
mation control protocol (72) and (73), the trajectory of each
tri-rotor UAV is given by Fig. 7. The 3D visualisation of dis-
tributed formation of the tri-rotor UAV swarm are illustrated in
Fig. 8. The attitude tracking performance with respect to roll,
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(f)

Fig. 8. 3D shots of the tri-rotor swarm. (a) t = 0 s. (b) t = 5 s. (c) t = 10 s. (d) t = 15 s. (e) t = 25 s. (f) t = 50 s.

pitch and yaw angles is shown in Fig. 9. The position tracking
of hovering is shown in Fig. 10. From all these figures, it can be
seen that the tri-rotor swarm forms a regular hexagonal forma-
tion with circular time-variation in the x-y plane after 25s and
the surveilled target lies in the middle of the circular rotation
at ground level. The attitude of each tri-rotor UAV varies with
time along the circular trajectory so that each tri-rotor points
(e.g. its onboard camera) to the target located at the centre of
the circle. It is concluded that the desired formation and atti-
tude tracking of the UAV swarm is achieved independently, and
the designed control system preserves good robustness proper-
ties when subjected to simulated aerodynamic disturbances and
model uncertainties.

6. Conclusion

In this paper, we have proposed a new tri-rotor unmanned
aerial vehicle which is more efficient and flexible than a quadro-
tor UAV. A formation tracking problem of a networked tri-rotor
UAV swarm has also been solved using a distributed formation
control protocol.

To achieve this, the dynamical model was first derived based
on force and torque kinematic analysis and subsequent transla-
tional and rotational dynamic modelling. A robust feedback lin-
earization controller was then developed to deal with this highly
coupled and nonlinear tri-rotor UAV to achieve a feedback lin-
earized system through geometric transformation that is valid
at any operating point but matches the Jacobi linearization of
the system at the operating point of interest. The technique pre-
serves robustness as it does not invert all nonlinear dynamics,
unlike classic feedback linearization. An distributed optimal
formation tracking control protocol was then developed for the

tri-rotor robotic swarm, which guarantees that the target time-
varying position and time-varying attitude of each UAV can be
achieved independently. Finally, simulation results were given
in a realistic environment based on 3D graphical display and
physical visualisations. It has been shown that the proposed
tri-rotor UAV swarm is able to track a desired time-varying for-
mation whilst independently tracking different time-varying at-
titudes. A target surveillance task was performed effectively by
these tri-rotor UAVs, which lays the foundation for some more
complex collaborative tasks to be explored.

Future work will take obstacle avoidance and power man-
agement as shown in [43] into consideration, the proposed dis-
tributed controller will be applied to real hardware, and robust
methods such as [44], [45] will be exploited in the design of the
distributed control protocol.
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