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Summary

This paper deals with the distributed robust stabilization problem for networked
multiagent systems with strict negative imaginary (SNI) uncertainties. Com-
munication among agents in the network is modelled by an undirected graph
with at least one self-loop. A protocol based on relative state measurements
of neighbouring agents and absolute state measurements of a subset of agents
is considered. This paper shows how to design the protocol parameters such
that the uncertain closed-loop networked multiagent system is robustly stable
against any SNI uncertainty within a certain set for various different network
topologies. Tools from negative imaginary (NI) theory are used as an aid to sim-
plify the problem and synthesise the protocol parameters. We show that a state,
input, and output transformation preserves the NI property of the network. Con-
sequently, a necessary and sufficient condition for the transfer function matrix
of the nominal closed-loop networked system to be NI and satisfy a DC gain con-
dition is that multiple reduced-order equivalent systems be NI and satisfy a DC
gain condition simultaneously. Based on the reduced-order systems, we derive
sufficient conditions in an LMI framework which ensure the existence of a pro-
tocol satisfying the desired objectives. A numerical example is given to confirm
the effectivenesses of the proposed results.

KEYWORDS

distributed control, multiagent systems, negative imaginary systems, robust control

1 INTRODUCTION

The past two decades have witnessed great research advances in the field of distributed control of networked multiagent
systems. Comprehensive surveys relating to these advances can be found in.2-5 In general, the theory of networked multi-
agent systems is primarily concerned with the design of distributed control laws (also known as protocols) to guarantee a
desired collective behaviour or a global control objective such as stability of a network, synchronization, consensus, etc.
It is well known that the dynamics of agents and the interaction among them are two essential factors in the analysis and

Early preliminary parts of this work have been presented at ECC18.1 The material here significantly expands and builds upon the earlier conference
paper.
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synthesis of control protocols for a desired behaviour or control objective. Moreover, synthesis of robust control protocols
is inevitably required.

In recent years, a considerable amount of literature has been published on negative imaginary (NI) systems.6-10 NI
systems theory, which involved characterisation of NI systems and a robust stability result, was first introduced in the work
of Lanzon and Petersen.11 NI systems have a NI frequency response. For single-input single-output NI systems, the Nyquist
plot of these systems lie on or below the real axis for all positive frequencies. Many physical systems can be modelled as NI
systems. For example, flexible structures with colocated force actuators and position sensors exhibit the NI property.11,12

Such systems are usually modelled as infinite dimensional distributed parameter systems.13 However, for control design
purpose, a finite-dimensional model is normally used which yields modelling errors due to these unmodelled dynamics.
Such unmodelled dynamics usually belong to the strictly NI (SNI) class.11 If the effect of these unmodelled dynamics is
not taken into account in control design, these unmodelled dynamics may lead to instability and performance degradation
of the controlled system.

In this paper, we aim to study the distributed robust stabilization problem for networked systems with SNI uncertainties.

1.1 Motivation and Contribution
In the networked multiagent systems literature, dynamic uncertainties due to modelling error has not been much of a
focus with only few researchers taking such uncertainties into account in the analysis and synthesis of distributed control
protocols. Furthermore, the focus was mainly on uncertainties bounded in H∞ norm. In this context, robust stability of
multiagent dynamical systems was studied in the work of Hara and Tanaka14 where three different types of multiplicative
perturbations were considered. Robust synchronization of uncertain multiagent networks was addressed in the works of
Trentelman et al15 and Jongsma et al16 with uncertainties in the form of additive perturbations in the work of Trentelman
et al15 and in the form of coprime factor perturbations in the work of Jongsma et al.16 Robust consensus control for
multiagent systems involving gap metric uncertainties was investigated in the work of Alvergue et al.17 It is known11 that
the dynamic uncertainties of NI systems are mainly characterised by phase bounds, where the phase lies between −𝜋 and
0. Using phase information in control design for lightly damped (ie, highly resonant) systems is much more effective than
using gain information.18,19 In other words, for such lightly damped systems gain stabilization, which is dependent on
the small-gain theorem, leads to conservative design results.11,18 On the other hand, phase stabilization, which ensures
stability by restricting the phase of the open-loop system and by which the NI robust stability results were established,
yields more powerful, less conservative, and robust control systems.19,20 Thus, it is of interest to investigate how distributed
control protocols can be designed to stabilize networked multiagent systems with SNI uncertainties via the NI systems
theory. Although the work of Wang et al,9 which studied robust cooperative control of multiple NI systems, took into
account SNI uncertainties, the nominal plants were assumed to be NI. However, due to physical considerations, in some
situations, what is only known about the system is that the uncertainty belongs to the SNI class. In such situations, the
results in8,18,20,21 showed that, if a controller is designed such that the closed-loop system is NI, then the robust feedback
stability results in6,11-13 can be applied to guarantee robustness to this class of uncertainties. However, the aforementioned
papers only consider individual systems and do not consider networked multiagent systems. This motivates us to study
the distributed robust stabilization problem of networked multiagent systems with SNI uncertainties.

The main contribution of this paper is thus to propose a solution to the distributed robust stabilization problem of net-
worked multiagent systems with SNI uncertainties. We derive sufficient conditions for the existence of control protocol
parameters such that the control protocol robustly stabilizes a networked multiagent system in presence of SNI uncertain-
ties of certain DC size. Transformation of the large scale networked systems into equivalent reduced-order subsystems
(also known as decomposition approach) is often used in multiagent systems literature to simplify the problem under
consideration. Inspired mainly by works15,16,22 and adopting such transformation techniques, we show that under certain
assumptions on the network graph, a state, input, and output transformation preserves the NI property. Thus, for the trans-
fer function matrix of the nominal closed-loop networked system to be NI and satisfy a DC gain condition, it is equivalent
for multiple reduced-order equivalent systems to be NI and satisfy a DC gain condition simultaneously. Consequently,
the aforementioned sufficient conditions are derived based on the reduced-order subsystems. The control protocol is also
shown to ensure robust stability when variations in the network topology occur by only appropriately adjusting a positive
scalar which is one of the control protocol parameters. An example is given to confirm the results of this paper.
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2 PRELIMINARIES

2.1 Notation
Let ℝm×n and m×n denote the set of m×n real matrices and real, rational, and proper transfer function matrices, respec-
tively. Given a matrix A, AT and A∗ denote the transpose and the complex conjugate transpose of A, respectively. 𝜆i(A)
and 𝜆max(A) denote the ith and the largest eigenvalue (when the matrix has only real eigenvalues) of A, respectively. ℜ[·]
is the real part of a complex number. IN denotes the identity matrix of dimension N×N. 1N is an N× 1 vector with entries
1. A ⊗ B denotes the Kronecker product of matrices A and B. diag(A1, … ,AN) represents a block-diagonal matrix with
matrices Ai for all i ∈ {1, … ,N} on the main diagonal. For a real symmetric matrix X, the notation X > 0 (X ≥ 0) means
that matrix X is positive definite (positive semidefinite).

2.2 Negative imaginary systems
In this paper, we restrict attention to NI systems without poles at the origin defined as follows.

Definition 1 (See the work of Xiong et al12). A square real, rational, and proper transfer function matrix R(s) is termed
NI if

1. R(s) has no poles at the origin and in ℜ[s] > 0;
2. j[R( j𝜔) − R( j𝜔)∗] ≥ 0 for all 𝜔 ∈ (0,∞) except values of 𝜔 where j𝜔 is a pole of R(s);
3. if j𝜔0 with 𝜔0 ∈ (0,∞) is a pole of R(s), then it is a simple pole and the residue matrix K0 = lims→𝑗𝜔0(s− 𝑗𝜔0)𝑗R(s)

is Hermitian and positive semidefinite.

Strictly NI systems are defined as follows.

Definition 2 (See the work of Lanzon and Petersen11). A square real, rational, and proper transfer function matrix
R(s) is termed SNI if

1. R(s) has no poles in ℜ[s] ≥ 0;
2. j[R( j𝜔) − R( j𝜔)∗] > 0 for 𝜔 ∈ (0,∞).

The following lemma is used to check whether a system belongs to the class of NI or not.

Lemma 1 (See the work of Song et al18). Let (A,B,C,D) be a state-space realization of R(s) ∈ m×m where A ∈ ℝn×n,
B ∈ ℝn×m, C ∈ ℝm×n, D ∈ ℝm×m with m ≤ n. If det(A) ≠ 0, D = DT and there exists a real matrix Y = YT > 0 such that

AY + YAT ≤ 0 and B + AYCT = 0, (1)

then R(s) is NI.

The following lemma characterises robust stability for NI systems. The result we use here is not the main theorem (see
theorem 5 in the work of Lanzon and Petersen11 or theorem 1 in the work of Xiong et al12 for the main feedback stability
theorem) as stated in the literature, but a corollary to the principal theorem stated in the same form as the small-gain
theorem to suit our purpose. This was first proposed in the work of Lanzon and Petersen11 for stable NI systems and later
shown to be also valid for marginally stable NI systems in the work of Xiong et al.12

Lemma 2 (See the works of Lanzon and Petersen11 and Xiong et al12). Given 𝛾 > 0 and a NI transfer function matrix
R(s), then the positive feedback interconnection [Δ(s),R(s)] is internally stable for all SNI transfer function matrices Δ(s)
satisfying Δ(∞)R(∞) = 0, Δ(∞) ≥ 0 and 𝜆max (Δ(0)) < (1∕𝛾) (respectively, ≤ (1∕𝛾)) if and only if 𝜆max (R(0)) ≤ 𝛾

(respectively, < 𝛾).

Remark 1. It is worth mentioning that Definition 1 for NI systems without poles at the origin was extended in the
work of Mabrok et al13 to include poles at the origin and associated stability results were established in the works of
Lanzon and Chen6 and Mabrok et al.13 Furthermore, the NI lemma given in the work of Lanzon and Petersen11 for
stable feedback systems, in the work of Xiong et al12 for marginally stable systems, and in the work of Mabrok et al21

for systems with possible poles at the origin contain necessary and sufficient conditions, but also imposes a minimality
assumption on the state-space realisation. We restrict our work to the definitions stated above (1) to use Lemma 1 to
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facilitate control design since no minimality assumption is required and (2) since we are interested in robust stability
of networked systems with SNI uncertainties of certain DC size via Lemma 2 (note that NI systems in Lemma 2 are
restricted to have no poles at the origin).

2.3 Graph theory
Graphs are used to model information exchange among agents in a network. The information flow is bidirectional in
an undirected graph whereas directional in a directed graph. Detailed material on graph theory can be found in the
works of Mesbahi and Egerstedt23 and Ren et al.24 We focus our attention here on undirected graphs. An undirected
graph  = ( , ) consists of a nonempty finite vertex set  = {v1, v2, … , vN} and an edge set  ⊂  ×  of unordered
pairs of vertices, called edges. An edge in  is denoted by (vi, vj). If (vi, v𝑗) ∈  , then vertices (ie, agents) vi and vj are
adjacent (or neighbours) and can obtain information from each other. The set of neighbours of vertex vi is defined as
i = {v𝑗 ∈  ∶ (v𝑗 , vi) ∈ }. An edge (vi, vi) is called a self-loop. A graph is said to be simple if it contains no self-loops and
no repeated edges. A loop around vertex vi means that agent vi has access to its own absolute measurements. A path in a
graph from vi to vj is a sequence of edges of the form (vi, vi+1), (vi+1, vi+2), … , (vj−1, vj). An undirected graph is connected if
there is an undirected path between every pair of distinct vertices. The adjacency matrix  = [ai𝑗] ∈ ℝN×N of  is defined
as aij = aji = 1 if (vi, v𝑗) ∈  , aii = 1 if vi has a self-loop, and 0 otherwise. Note that, for a simple graph, aii = 0 for all
i ∈ {1, … ,N}. The Laplacian matrix  = [li𝑗] ∈ ℝN×N of  is defined as lij = −aij, for i ≠ j and lii =

∑N
k=1 aik for all

i ∈ {1, … ,N}. Based on the adjacency matrix, this definition can fit for both simple graphs and for graphs with self-loops.
The notation ̂ will hereafter be used to indicate the Laplacian matrix associated with a graph with self-loops.

Lemma 3 (See the work of Li et al22). For a graph with at least one self-loop, the Laplacian matrix ̂ is positive definite,
if the graph is connected.

3 PROBLEM FORMULATION

Consider a group of N linear uncertain agents. The dynamics of the ith agent are described by

.xi(t) = Axi(t) + B1wi(t) + B2ui(t),
zi(t) = C1xi(t),

ŵi(s) = Δi(s)ẑi(s),
(2)

where xi(t) ∈ ℝn, wi(t) ∈ ℝm, ui(t) ∈ ℝp, and zi(t) ∈ ℝm are the state, disturbance, control input, and controlled output
of the ith agent, respectively, with m ≤ n. The matrices A ∈ ℝn×n, B1 ∈ ℝn×m, B2 ∈ ℝn×p, and C1 ∈ ℝm×n are known
constant matrices. The transfer function matrix Δi(s) represents the uncertainty in the dynamics of the ith agent, where
ŵi(s) and ẑi(s) are the Laplace transform of wi(t) and zi(t), respectively.

Suppose that the uncertainty in the dynamics of each agent satisfies the following property and conditions.

Assumption 1. For all i ∈ {1, … ,N}, the uncertainty Δi(s) is SNI and satisfies Δi(∞) ≥ 0 and 𝜆max(Δi(0)) ≤ (1∕𝛾),
where 𝛾 > 0 is a prespecified number.

The uncertainty thus gives rise to the heterogeneity of the multiagent system.
Following the work of Li et al,22 the control protocol for the ith agent is

ui(t) = cK

( N∑
𝑗=1

ai𝑗(xi(t) − x𝑗(t)) + aiixi(t)

)
, (3)

where c > 0 is the coupling strength to be selected, K ∈ ℝp×n is the control feedback gain matrix to be designed and aij are
the elements of the adjacency matrix with aii = 1 ∀i ∈ {1, … , q}, and aii = 0 ∀i ∈ {q + 1, … ,N}. This protocol structure
means that each agent receives the sum of relative state measurements with respect to its neighbours. In addition, a
subset of agents receive their own absolute state measurements. Without loss of generality, it is assumed that the first q
(q ≪ N) agents have access to their own absolute state measurements. Consequently, the network graph that models the
information exchange among the agents satisfies the following assumption.
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FIGURE 1 Networked multiagent system with strictly negative imaginary uncertainty

Assumption 2. The graph is connected, undirected and at least one vertex has a self-loop.

Dropping time dependency and Laplace variable dependency where it is clear from the context, it is clear that agent
dynamics (2) can be rewritten as

.x = (IN ⊗ A)x + (IN ⊗ B1)w + (IN ⊗ B2)u,
z = (IN ⊗ C1)x,

ŵ = Δ(s)ẑ,
(4)

and control law (3) can be rewritten as
u = (c̂⊗ K)x, (5)

where x = [ xT
1 , … , xT

N ]T ∈ ℝnN , w = [ wT
1 , … ,wT

N ]T ∈ ℝmN , u = [ uT
1 , … ,uT

N ]T ∈ ℝpN , z = [ zT
1 , … , zT

N ]T ∈ ℝmN ,
Δ(s) = diag(Δ1(s), … ,ΔN(s)), ŵ is the Laplace of w, ẑ is the Laplace of z, and ̂ ∈ ℝN×N is the Laplacian matrix associated
with . By applying protocol (5) (or equivalently (3) to each agent i in (2)) to the uncertain agents (4), the resulting
uncertain closed-loop networked multiagent system becomes

.x =
(
(IN ⊗ A) + (c̂⊗ B2K)

)
x + (IN ⊗ B1)w,

z = (IN ⊗ C1)x,
(6)

and
ŵ = Δ(s)ẑ. (7)

Note that Δ(s) is SNI since each Δi(s), i ∈ {1, … ,N} is SNI and satisfies Δ(∞) ≥ 0 and 𝜆max(Δ(0)) ≤ 1∕𝛾 by noting
that 𝜆max(Δ(0)) = maxi=1,… ,N𝜆max(Δi(0)) ≤ 1∕𝛾 . The transfer function matrix of the nominal closed-loop networked
multiagent system from w to z is strictly proper and given by

Gcl(s) = Ccl(sInN − Acl)−1Bcl, (8)

where Acl = (IN ⊗ A) + (c̂⊗ B2K), Bcl = (IN ⊗ B1), Ccl = (IN ⊗ C1) and has an associated DC gain of

𝜆max(Gcl(0)) = 𝜆max(Ccl(−Acl)−1Bcl). (9)

The uncertain networked multiagent system is depicted in Figure 1. According to Lemma 2, we can define the distributed
robust stabilization problem as follows.

Definition 3. Given 𝛾 > 0, control protocol (3) is said to robustly stabilize the networked system with agent dynam-
ics (2) against any SNI uncertainty satisfying Assumption 1 if it is designed such that the transfer function matrix (8)
is NI and satisfies the DC gain condition 𝜆max(Gcl(0)) < 𝛾 .

4 PROBLEM REDUCTION AND ROBUST PROTOCOL SYNTHESIS

In order to address the distributed robust stabilization problem, the following technical lemmas are required.
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Lemma 4. Let U ∈ ℝN×N be any orthogonal matrix, R(s) ∈ Nm×Nm and let R̃(s) = (UT ⊗ Im)R(s)(U ⊗ Im). Then, the
following holds.

1. R̃(s) is NI (respectively, SNI) if and only if R(s) is NI (respectively, SNI).
2. 𝜆max(R̃(0)) = 𝜆max(R(0)).

Proof. The proof is straightforward from the definition of NI (SNI) systems and properties of orthogonal matrices.

Lemma 5 (See the work of Wang et al10). diag(R1(s), … ,RN(s)) is NI if and only if Ri(s) are all NI for i ∈ {1, … ,N}.

The following lemma states that, under certain assumptions on the network graph, the NI property is preserved due to
transformation.

Lemma 6. Given 𝛾 > 0 and assume that the network topology  satisfies Assumption 2, let ̂ be the Laplacian matrix of
 and let 𝜆i for all i ∈ {1, … ,N} be the eigenvalues of ̂. Then, the transfer function matrix (8) of the networked system
(6) is NI and satisfies 𝜆max(Gcl(0)) < 𝛾 if and only if, for all i ∈ {1, … ,N}, the transfer functions G̃i(s) of the following
N isolated subsystems:

x̃i = (A + c𝜆iB2K)x̃i + B1w̃i,

z̃i = C1x̃i,
(10)

are all NI and satisfy 𝜆max(G̃i(0)) < 𝛾 simultaneously, where G̃i(s) = C1(sI − A − c𝜆iB2K)−1B1.

Proof. The idea of the proof is to transform the networked system (6) into a set of block-diagonal systems

.
x̃ = ((IN ⊗ A) + (cΛ⊗ B2K)) x̃ + (IN ⊗ B1)w̃,

z̃ = (IN ⊗ C1)x̃
(11)

in a similar manner to the decomposition approach used in15,16,22,25 by letting x̃ = (UT ⊗ In)x, w̃ = (UT ⊗ Im)w,
z̃ = (UT ⊗ Im)z and decomposing ̂ as UT̂U = Λ = diag(𝜆1, 𝜆2, … , 𝜆N), where U ∈ ℝN×N is an orthogonal matrix.
Consequently, the transfer function matrix of the transformed system (11) from w̃ to z̃, which we denote G̃cl(s), can
be expressed as

G̃cl(s) = diag
(

G̃1(s), … , G̃N(s)
)
= (UT ⊗ Im)Gcl(s)(U ⊗ Im). (12)

The desired conclusion then follows from Lemmas 4 and 5.

Remark 2. According to Definition 3, the distributed robust stabilization problem is solved by designing a control
protocol such that the transfer function matrix Gcl(s) of the large scale nominal closed-loop networked system is NI
and satisfies the DC gain condition. Lemma 6 states that a necessary and sufficient condition for Gcl(s) to be NI and
satisfy the DC gain condition is that N reduced-order subsystems, where each subsystem has the order of a single
agent, satisfy the NI property and DC gain condition simultaneously. Consequently, the previous lemma plays a role
in facilitating and simplifying the design procedure where the protocol parameters can be designed based on the
reduced-order systems.

Remark 3. Reduction of the problem as stated in the previous remark is applicable since the uncertainty resulting
from transformation remains SNI. If we denote the uncertainty of the transformed system as shown in Figure 2 by
Δ̃(s), we have Δ̃(s) = (UT ⊗ Im)Δ(s)(U ⊗ Im). Since Δ(s) is SNI and satisfies Δ(∞) ≥ 0, 𝜆max(Δ(0)) ≤ 1∕𝛾 , then
according to Lemma 4, so will Δ̃(s) be SNI and satisfy the corresponding conditions. As a result, under Assumption 2
of the network topology, internal stability of the system in Figure 1 is equivalent to the internal stability of the system
in Figure 2.

Remark 4. We now give a justification for using graphs with at least one self-loop in this paper instead of simple
graphs as used in for example.15,16 Although the work of15,16 assumed simple graphs in their approach to robust
synchronization, the results therein are suitable only for the case were the dynamics of the nominal plants have no
poles in the open-right half plane. That is, the work therein restricts the matrix A from containing eigenvalues with
positive real parts. In this paper, we impose no such restrictions on the eigenvalues of matrix A. Thus, the graph
which models the network topology cannot be simple but instead must contain at least one self-loop, as assumed in
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FIGURE 2 Transformed system

Assumption 2, because a simple connected graph will have one zero eigenvalue (see, eg, the work of Ren and Beard26)
and, thus, the subsystem in (10) corresponding to 𝜆1 = 0 cannot be controlled to satisfy the NI property.

Lemma 6 reveals that, for networked dynamical system (6) to satisfy the NI property, it suffices to find a positive scalar
c and a gain matrix K such that systems (10) satisfy the NI property simultaneously.

The following Theorem 1 gives sufficient conditions under which a c > 0 and a feedback gain matrix K exists such that
the networked multiagent system is robustly stabilized by control protocol (3).

Theorem 1. Given 𝛾 > 0, a network topology that satisfies Assumption 2 and an uncertain multiagent system (2) with
C1B2 = 0, m ≤ n, and (A,B2) controllable, if there exists a matrix Y = YT > 0 and a scalar 𝜏 > 0 such that

[
AY + YAT − 𝜏B2BT

2 B1 + AYCT
1

BT
1 + C1YAT 0

]
≤ 0, (13)

C1YCT
1 < 𝛾I, (14)

det
(

AY − 1
2
𝜏B2BT

2

)
≠ 0, (15)

then there exists a feedback gain matrix K and a scalar c ≥
𝜏

mini∈{1,… ,N}𝜆i
such that control protocol (3) robustly stabilizes

the networked multiagent system in the presence of any SNI uncertainty satisfying Assumption 1. Moreover, a suitable
feedback gain matrix K is given by K = −0.5BT

2 Y−1.

Proof. Since the LMI condition (13) holds for some matrix Y > 0 and some scalar 𝜏 > 0 and since c ≥
𝜏

𝜆i
for all i ∈

{1, … ,N}, it follows that, for all i ∈ {1, … ,N},
[

AY + YAT − c𝜆iB2BT
2 B1 + AYCT

1
BT

1 + C1YAT 0

]
≤

[
AY + YAT − 𝜏B2BT

2 B1 + AYCT
1

BT
1 + C1YAT 0

]
≤ 0 (16)

as 𝜆i > 0 for all i ∈ {1, … ,N}. This implies that

AY + YAT − c𝜆iB2BT
2 ≤ 0, (17a)

B1 + AYCT
1 = 0. (17b)

Furthermore, since C1B2 = 0 by assumption, then (17b) can be written as

B1 + AYCT
1 − 0.5c𝜆iB2BT

2 CT
1 = 0. (18)

Now, let K = −0.5BT
2 Y−1. Via simple algebraic manipulation, (17a) and (18) become

(A + c𝜆iB2K)Y + Y (A + c𝜆iB2K)T ≤ 0, (19a)

B1 + (A + c𝜆iB2K)YCT
1 = 0, (19b)

for all i ∈ {1, … ,N}. Furthermore, (15) implies

det
(

A − 0.5𝜏B2BT
2 Y−1) ≠ 0,
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which is equivalent to
det(A + 𝜏B2K) ≠ 0. (20)

Now, since c𝜆i ≥ 𝜏 for all i ∈ {1, … ,N}, it can be written as c𝜆i = 𝜏 + 𝛼i, where 𝛼i ≥ 0. Then,

det(A + c𝜆iB2K) = det(A + 𝜏B2K + 𝛼iB2K)
= det(A + 𝜏B2K) det(I + (A + 𝜏B2K)−1𝛼iB2K). (21)

We need to show that det(A + c𝜆iB2K) ≠ 0 for all i ∈ {1, … ,N}. Toward this end,

det(A + c𝜆iB2K) ≠ 0 ⇔ det
(

I + (A + 𝜏B2K)−1𝛼iB2K
)
≠ 0 (22)

for all i ∈ {1, … ,N}. It is easily seen that det(A + c𝜆iB2K) ≠ 0 for 𝛼i = 0, i ∈ {1, … ,N}. For 𝛼i > 0, i ∈ {1, … ,N}, we
have

det
(

I + (A + 𝜏B2K)−1𝛼iB2K
)
= 𝛼n

i det
(

1
𝛼i

I + (A + 𝜏B2K)−1B2K
)

(23)

and is nonzero if and only if 1
𝛼i

I+(A + 𝜏B2K)−1B2K is nonsingular, which is satisfied when ℜ{𝜆j[(A+𝜏B2K)−1B2K]} ≥

0 ∀j since 1∕𝛼i for i ∈ {1, … ,N} is a positive scalar. Therefore, what is left is to show that ℜ{𝜆j[(A + 𝜏B2K)−1B2K]}
≥ 0 ∀j

AY + YAT − 𝜏B2BT
2 ≤ 0 ⇔

(
AY − 1

2
𝜏B2BT

2

)
+
(

AY − 1
2
𝜏B2BT

2

)T
≤ 0

⇔
(

AY − 1
2
𝜏B2BT

2

)−T
+
(

AY − 1
2
𝜏B2BT

2

)−1
≤ 0

⇔
(

AY − 1
2
𝜏B2BT

2

)−1
+
(

AY − 1
2
𝜏B2BT

2

)−T
≤ 0

⇒ BT
2

(
AY − 1

2
𝜏B2BT

2

)−1
B2 + BT

2

(
AY − 1

2
𝜏B2BT

2

)−T
B2 ≤ 0

⇔

[
BT

2

(
AY − 1

2
𝜏B2BT

2

)−1
B2

]
I + I

[
BT

2

(
AY − 1

2
𝜏B2BT

2

)−T
B2

]
≤ 0

⇒ ℜ
{
𝜆𝑗

[
BT

2

(
AY − 1

2
𝜏B2BT

2

)−1
B2

]}
≤ 0 ∀𝑗

⇔ ℜ
{
𝜆𝑗

[(
AY − 1

2
𝜏B2BT

2

)−1
B2BT

2

]}
≤ 0 ∀𝑗

⇔ ℜ
{
𝜆𝑗

[
Y−1

(
A − 1

2
𝜏B2BT

2 Y−1
)−1

B2BT
2

]}
≤ 0 ∀𝑗

⇔ ℜ
{
𝜆𝑗

[(
A − 1

2
𝜏B2BT

2 Y−1
)−1

B2BT
2 Y−1

]}
≤ 0 ∀𝑗

⇔ ℜ
{
𝜆𝑗

[
(A + 𝜏B2K)−1B2K

]}
≥ 0 ∀𝑗. (24)

It follows that
det(A + c𝜆iB2K) ≠ 0 for all i ∈ {1, … ,N}. (25)

Consequently, G̃i(s) is NI for all i ∈ {1, … ,N} by Lemma 1.
It remains to show that the DC gain of each subsystem is less than 𝛾 . Since the LMI condition (14) holds, via (25)

and (19b), it follows that

𝛾I > C1YCT
1 = C1(A + c𝜆iB2K)−1(A + c𝜆iB2K)YCT

1

= C1(−A − c𝜆iB2K)−1B1 = G̃i(0) (26)

for all i ∈ {1, … ,N}. Consequently, 𝜆max(G̃i(0)) < 𝛾 for all i ∈ {1, … ,N}.
From Lemma 6, we conclude that Gcl(s) is NI and 𝜆max(Gcl(0)) < 𝛾 .
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Now, since Gcl(s) is strictly proper, we have Δ(∞)Gcl(∞) = 0, and since the uncertainty satisfies Assumption 1, it
follows from Lemma 2 that control protocol (3) robustly stabilizes the networked multiagent system.

Remark 5. C1B2 = 0 means that the transfer function from ui to zi ∀i ∈ {1, … ,N} has a relative degree strictly greater
than unity. This is hence often fulfilled in practice due to strictly proper actuator dynamics and strictly proper plant
dynamics.

Remark 6. By imposing the assumption C1B2 = 0 in Theorem 1, we get simpler solvable conditions (13) to (15), which
do not involve the network topology.

Remark 7. The determinant condition appears because the NI property excludes poles at the origin. This nonconvex
condition is not troublesome as a feasible solution for Y and 𝜏 can always be obtained first by solving the LMI condi-
tions and then checking whether the computed values satisfy the determinant condition or not. If they do not, then a
small increase in 𝜏 often resolves the problem.

Thus, the steps required to design the protocol can be summarized in the following algorithm.

1. Solve the LMI conditions (13) and (14) for Y > 0 and 𝜏 > 0. Then, check whether the determinant condition (15) is
satisfied or not. If not, perturb 𝜏 and/or Y to satisfy all of (13) to (15).

2. Let the feedback gain matrix be K = −0.5BT
2 Y−1.

3. Select the coupling strength c to satisfy c ≥
𝜏

min
i∈{1,… ,N}

𝜆i
, where 𝜆i ∀i ∈ {1, … ,N} are the eigenvalues of ̂ (note that the

minimum value of c that can be selected is when the equal sign holds).

Remark 8. The benefit of the aforementioned design procedure is that the feedback gain matrix K is first designed
without any knowledge of the network graph. Then, the coupling strength c is adjusted to handle the effect of the
network topology. Thus, once a feedback gain matrix K is designed, robust stability against SNI uncertainties with
certain DC size is achieved via control protocol (3) for various different network graphs that satisfy the condition
𝜆i ≥ 𝜏∕c for all i ∈ {1, … ,N}. Clearly, this inequality is satisfied for a rich class of Laplacian matrices and associated
network topologies. Consequently, by selecting a large enough value for the coupling strength c, both robust stability
to agents dynamics and robustness to variations in the network topology can be guaranteed.

Remark 9. Although we build on the work of Li et al,22 it is important to observe that the results here are not a spe-
cialisation of the results in the work of the aforementioned authors22 because we consider a distinct problem from the
aforementioned work.22 It is assumed in the work of Li et al22 that the agents are subject to external disturbances in
𝔏2[0,∞) and the problem consider therein is to evaluate the performance of a networked multiagent system subject
to these external disturbances. In this paper, we consider the situation where agents are subject to dynamical uncer-
tainties (modelling errors), which belong to the SNI class and the problem here is to maintain stability of the network
in the presence of SNI uncertainties with a certain DC size. Li et al22 studied a suboptimal H∞ control problem, where
distributed controllers need to be found such that the H∞ norm of a transfer function is less than a desired tolerance.
Thus, it is essential that the gain be small over all frequency ranges. On the contrary, the distributed robust stabiliza-
tion problem we consider here requires to find distributed controllers such that a transfer function matrix satisfies
the NI property and only the DC gain value be restricted on one side, which is less conservative. While the work of Li
et al22 derive conditions for the existence of controllers to have unbounded H∞ performance region to ensure a level
of robustness with respect to the communication topology, the results we present in this paper derive conditions for
the existence of controllers that robustly stabilize networked systems in the presence of dynamical uncertainties that
belong to the SNI class and achieving robustness to variations in the network topology.

Remark 10. It is worth mentioning that the robust stabilization problem we address in this paper is somehow different
and not comparable to the consensus problem addressed for example in the works of Ren et al.24,26 Modelling errors in
the agents dynamics were not considered in the works of Ren et al.24,26 Furthermore, the consensus problem addressed
therein requires convergence of the states to an unspecified common value depending on the initial state information.
This can only be satisfied with simple network graphs where zero is a simple eigenvalue of the Laplacian matrix  and
hence span{1N} is contained in the null space of ; consequently, consensus is guaranteed.24 The robust stabilization
problem we address here is mainly concerned with guaranteeing robust stability of the networked system in presence
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of modelling errors, which belong to the SNI class. As stated in Remark 4, it is essential the network graph contains
at least one self-loop as for simple graphs where zero is a simple eigenvalue of  the subsystem in (10) corresponding
to this zero eigenvalue of  cannot be controlled to satisfy the NI property, consequently robust stabilization cannot
be guaranteed. Nevertheless, it may be of interest to investigate consensus to a desired reference/trajectory as a next
step provided robust stability against SNI uncertainties is satisfied first for the networked system. However, this may
be challenging and not straightforward and is beyond the scope of this paper.

5 NUMERICAL EXAMPLE

The example in the work of Song et al18 is modified to design distributed controllers for systems with heterogeneous SNI
uncertainties. Consider a group of N = 6 uncertain systems connected over a network topology. The block diagram of
the ith uncertain systems is depicted in Figure 3 and the network topology that models the communication among the
systems and the associated Laplacian matrix are shown in Figure 4. Each of the six systems contains an uncertain flexible
structure with colocated force actuation and position sensing and, thus, the transfer function of the ith flexible structure
Mi(s) ∀i ∈ {1, … , 6} is SNI. For control design purpose, Mi(s) has been replaced by unity gain and the resulting modelling
error Δi(s) = Mi(s) − 1 is an SNI uncertainty as shown in Figure 3. It is assumed that Δi(s) satisfies Assumption 1 with
𝛾 = 1. Via results of this paper, parameters K and c of distributed control protocol (3) can be designed to ensure robust
stability of the closed-loop networked system against SNI uncertainties and also ensure robustness to variations in the
network topology.

To this end, the dynamics of the ith system can be obtained from Figure 3 in the form of (2) with xi = [xT
i1, xT

i2, xT
i3]

T and
matrices

A =

[−2 1 0
1 −5 1
0 0 −4

]
, B1 =

[ 1
0
0

]
, B2 =

[ 0
0
1

]
,

C1 =
[

0 1 0
]
.

It is easy to see that C1B2 = 0, m ≤ n, and (A,B2) are controllable. It can also be seen from Figure 3 that the transfer
function from ui to zi has a relative degree strictly greater than unity, which emphasises the statement in Remark 5.

FIGURE 3 Block diagram of the ith uncertain system to be controlled

FIGURE 4 Network topology and associated Laplacian matrix
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Using the YALMIP27 and SeDuMi28 toolboxes to solve the LMI conditions as according to step 1 in the algorithm, we
obtain the feasible solutions

Y =

[ 3.7674 0.4547 −0.4949
0.4545 0.0909 0
−0.4946 0 0.4946

]
> 0,

and 𝜏 = 2.7377. We check that det(AY − 1
2
𝜏B2BT

2 ) = −3.3474 ≠ 0. No perturbations to Y and 𝜏 are necessary. From step 2
in the algorithm, the feedback gain matrix is given by

K = −1
2

BT
2 Y−1 = [ −0.5 2.5 −1.5 ].

The minimum eigenvalue of ̂ in Figure 4 is 0.1266. We hence select the coupling strength c according to step 3 in the
algorithm to be c = 43 (twice the minimum value). Thus, Theorem 1 states that the control protocol with the values of
K and c as computed above robustly stabilizes the networked system against any SNI uncertainty having a DC gain less
than or equal to unity.

To illustrate this and to avoid construction of the 18th-order (N = 6 and n = 3) overall plant dynamics in (6), we
simply demonstrate that each of the N subsystems G̃i(s) given by (10) within the transformed overall plant dynamics (11)
are all individually NI and satisfy the DC gain conditions. Figure 5 gives the Nyquist plots of the six subsystems; that
is, G̃i(s), ∀i ∈ {1, … , 6}. It is clear from the plots that the systems have a NI frequency response. Furthermore, Table 1
gives the explicit transfer functions for G̃i(s) from which it is easy to verify that each G̃i(s) is stable. Table 1 also shows
that the nonsingular determinant condition (25) is satisfied for each of the six subsystems and that the DC gains of G̃i(s),
i ∈ {1, … , 6} are all equal to 0.1 since they have been all set to be equal to C1YCT

1 , which are less than unity.
Moreover, control protocol (3) with the same values of K and c as designed above also guarantees a level of robustness to

variations in the network topology. To see this, consider the four different network topologies in Figure 6 constructed by
adding or/and removing links from the original network topology in Figure 4. Control protocol (3) with the same values
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FIGURE 5 Nyquist plots of G̃i(s),∀i ∈ {1, … , 6}, c = 43 [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Verifying the negative imaginary property for G̃i(s), i ∈ {1, … , 6}

i 𝝀i G̃i(s) G̃i(𝟎) = C𝟏YCT
𝟏 det(A + c𝜆iB2K)

1 0.1266 s+9.504
s3+19.23 s2+82.98 s+104.5

0.1 −104.5
2 1.2205 s+57.05

s3+90.29 s2+462.9 s+627.6
0.1 −627.6

3 2.3293 s+105.2
s3+162.3 s2+847.9 s+1158

0.1 −1157.7
4 3.0647 s+137.2

s3+210.1 s2+1103 s+1509
0.1 −1509.4

5 4.9643 s+219.8
s3+333.5 s2+1763 s+2418

0.1 −2417.6
6 5.2945 s+234.1

s3+355 s2+1875 s+2575
0.1 −2575.5

http://wileyonlinelibrary.com
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(A) (B) (C) (D)

FIGURE 6 Four different network topologies
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FIGURE 7 Poles and zeros of Gcl(I − ΔGcl)−1 corresponding to original network topology; poles are marked by x, and zeros are marked by
o [Colour figure can be viewed at wileyonlinelibrary.com]

of K and c as designed above is guaranteed to achieve robust stability for all four various different networked systems (ie,
agents may be connected over any of the four network topologies) in the presence of SNI uncertainties with DC gains less
than or equal to unity since c = 43 is greater than the minimum value of c corresponding to each of these network graphs.
The minimum values of c, which correspond to the network graphs of Figure 6A to 6D, are 18.764, 25.1627, 40.8283, and
34.3070, respectively.

We can also easily demonstrate that, for some specific uncertainties, the conclusion holds. For instance, choose Δ1(s) =
0.5∕(s+1),Δ2(s) = (1−s)∕(1+s),Δ3(s) = 1∕(s+3),Δ4(s) = 1∕(s2+3s+2),Δ5(s) = 1∕(s+1)2, andΔ6(s) = (0.5s+1)∕(s2+s+1),
which are SNI. Δ(s) in Figure 1 has 𝜆max(Δ(0)) = 1 ≤ 1∕𝛾 . A pole-zero map of Gcl(I − ΔGcl)−1 is shown in Figure 7
for the original network topology in Figure 4. Since all closed-loop poles are in the left half plane, we conclude that the
heterogeneous perturbed closed-loop system of Figure 1 is internally stable.

6 CONCLUSIONS

This paper has studied the distributed robust stabilization problem for networked multiagent systems with SNI uncer-
tainties. It was shown that a state, input, and output transformation preserves the NI property of the network when the
network topology is modelled by an undirected graph with self-loops. This result was shown to be useful in control proto-
col design as the problem simplified to finding parameters which ensured that each of the multiple reduced-order systems
satisfy the NI property. The synthesis procedure involved the design of two separate parameters, ie, one which is a scalar
that handles the effect of the network topology and the other one was a state feedback gain matrix. The advantage of this
design procedure lies in the ability of the control protocol to maintain robust stability in the face of SNI uncertainties for

http://wileyonlinelibrary.com
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different network topologies by simply appropriately adjusting this coupling scalar while leaving the state feedback gain
matrix unchanged. A numerical example was given to show the usefulness of the results.
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