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a b s t r a c t

This paper addresses the robust output consensus problem for multiple homogeneous negative
imaginary (NI) systems subject to L2 external disturbances and model uncertainties. The principal aim
of this paper is to extend and overcome limitations in previous studies which had required restrictive
assumptions to be imposed and thereby derive necessary and sufficient conditions for robust output
consensus of networked NI systems when such assumptions do not hold. In doing so, the recently
published robust NI stability results are utilised. An advantage of the derived conditions is that they
depend on the dc and infinite frequency gains of the systems as well as the network graph but not on
the precise dynamics of the systems. Furthermore, it is shown that the derived conditions specialise
to the earlier results in literature either by imposing the same assumptions or by imposing different
ones which had not been known previously. It is also shown that the derived conditions simplify in
the single-input single-output case and an intuition about these results is provided. Finally, examples
are given which demonstrate the effectiveness of the proposed results over earlier results when earlier
assumptions are not met.

© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In recent years, there has been an increased emphasis on the
study of negative imaginary (NI) systems. Much of the literature
on NI systems has emphasised on robust stability analysis such
as the early work in Lanzon and Petersen (2008) and Xiong,
Petersen, and Lanzon (2010), and more recent work in Lan-
zon and Chen (2017) and Mabrok, Kallapur, Petersen, and Lan-
zon (2014); controller synthesis by reformulating the problem
into a bounded real framework (Song, Lanzon, Patra, & Petersen,
2010), via state feedback (Mabrok, Kallapur, Petersen, & Lan-
zon, 2015; Song, Lanzon, Patra, & Petersen, 2012), via output
feedback (Xiong, Lam, & Petersen, 2016), and via a data driven
approach (Mabrok & Petersen, 2016); and applications to multi-
agent systems (MAS) (Chen, Lanzon, & Petersen, 2017; Skeik &
Lanzon, 2019; Wang, Lanzon, & Petersen, 2015a, 2015b). This
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paper contributes to the existing literature on cooperative control
of multiple NI systems. (Robust) cooperative control of multiple
NI systems is motivated by applications where an individual NI
system cannot achieve a desired collective behaviour on its own.
Consensus, where agents cooperate to reach an agreement, is
one of the most important and desirable collective behaviours
due to the potential real-world applications it may have Chen,
Lu, Yu, and Hill (2013). Consensus of MAS has been studied
widely by many researchers. In terms of agents dynamics both
homogeneous and heterogeneous dynamics have been consid-
ered and in terms of the shared information both state and output
information have been considered such as, for example, Knorn,
Chen, and Middleton (2016), Li, Soh, and Xie (2017), Olfati-Saber
and Murray (2004) and Wang et al. (2015a, 2015b). In this paper,
we address the robust output consensus problem for multiple
homogeneous NI systems. First, we focus here on homogeneous
NI dynamics since the null space property of the Laplacian matrix,
by which a collective behaviour is governed by, only exists for ho-
mogeneous dynamics. Furthermore, although Wang et al. (2015b)
overcome this issue and consider heterogeneous NI dynamics it
comes at the expense of providing some robust output consensus
conditions that are sufficient but not necessary. Therefore, by con-
sidering homogeneous NI dynamics, we are able here to obtain
necessary and sufficient conditions for robust output consensus.
Second, we use here relative output measurements as it is prac-
tically more significant since full state information is not always
available.
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In Li, Duan, Chen, and Huang (2010), Li, Liu, Lin, and Ren
(2011) and Li et al. (2017) consensus problems for homogeneous
MAS using relative output measurements were addressed. How-
ever, unlike Li et al. (2010, 2011) and Li et al. (2017) which use
state space techniques and observer-based consensus protocols
where protocol design involves the solution of Riccati equations
or/and linear matrix inequalities, the robust output consensus
conditions we propose here are much simpler since they depend
on the dc and infinite frequency gains of the systems as well as
the network graph but not on the precise dynamics of the sys-
tems. Meanwhile, most closely related to our work is Wang et al.
(2015a) and the motivations for this current study come from the
importance of consensus of MAS in real-world applications (Chen
et al., 2013), the many practical systems that can be modelled
as NI systems (Lanzon & Petersen, 2008; Mabrok et al., 2014),
and the establishment of the general internal stability results
in Lanzon and Chen (2017) by which it is possible to extend
the work of Wang et al. (2015a). While the work of Wang et al.
(2015a) has successfully considered the robust output consensus
problem for networked homogeneous NI systems, it has certain
limitations in terms of the imposed assumptions. A principal lim-
itation of Wang et al. (2015a) is that for NI systems with no poles
at the origin, two assumptions at infinite frequency need to hold
before the robust output consensus condition can be considered,
while for systems with poles at the origin, the NI systems are
limited to being strictly proper, matrix factorisation is required,
and null space conditions need to be satisfied before the robust
output consensus conditions can be considered. As a result, it
not possible to determine robust output consensus for networked
NI systems with the results of Wang et al. (2015a) when such
assumptions do not hold. In this paper, we build on and extend
the work of Wang et al. (2015a). Similar to Wang et al. (2015a)
we address the robust output consensus problem as an internal
stability problem for networked NI systems subject to external
disturbances and model uncertainties but different from Wang
et al. (2015a) we use the generalised internal stability results
in Lanzon and Chen (2017) to do so rather than those in Lanzon
and Petersen (2008), Mabrok et al. (2014) and Xiong et al. (2010)
thereby extending the results of Wang et al. (2015a). Therefore,
the advantages of this current work over (Wang et al., 2015a)
and the main contributions of this paper to existing knowledge
are summarised as follows: (i) we relax the assumptions imposed
in Wang et al. (2015a) thereby derive robust output consensus
conditions which are not restricted; (ii) one distinct advantage
that unfolds in our work is that not only do the derived condi-
tions specialise to those in Wang et al. (2015a) by imposing the
same two assumptions at infinite frequency but also specialise to
those in Wang et al. (2015a) by imposing different assumptions
which were unknown in Wang et al. (2015a); (iii) the derived
conditions simplify in the single-input single-output (SISO) case
providing several insights which are not easily captured in the
multi-input multi-output (MIMO) case (for SISO NI systems with
no poles at origin) and are less sensitive to the network graph that
models the interconnection of the systems (for SISO NI systems
with poles at origin); and (iv) we show that consensus for some
networked NI systems including a network of robotic arms cannot
be determined by the results in Wang et al. (2015a) but can easily
be concluded via the results of this paper.

Notation: Let Rm×n denote the set of m× n real matrices. Given a
matrix A, AT and A∗ are the transpose and the complex conjugate
transpose of A respectively. λ̄(A) denotes the largest eigenvalue of
A (when the matrix A has only real eigenvalues). ℜ[·] is the real
part of a complex number. IN is the identity matrix of dimension
N × N and 1N is an N × 1 vector with entries 1. A ⊗ B denotes
the Kronecker product of matrices A and B. diag(Ai) represents a
block-diagonal matrix with matrices Ai for all i ∈ {1, . . . ,N} on

the main diagonal. Ln
2[0, ∞) denotes the n-dimensional square

integrable function space. [P, K ] represents a positive feedback
interconnection between systems P and K .

2. Preliminaries

2.1. Negative imaginary systems

Negative imaginary systems are defined as follows.

Definition 1 (Mabrok et al., 2014). A square, real, rational, proper
transfer function matrix P(s) is said to be negative imaginary if

(1) P(s) has no poles in ℜ[s] > 0;
(2) j[P(jω) − P(jω)∗] ≥ 0 for all ω ∈ (0, ∞) except values of ω

where jω is a pole of P(s);
(3) if jω0 with ω0 ∈ (0, ∞) is a pole of P(s), then it is a simple

pole and the residue matrix K0 = lims→jω0 (s − jω0)jP(s) is
Hermitian and positive semidefinite;

(4) if s = 0 is a pole of P(s), then lims→0 skP(s) = 0 ∀k ≥ 3 and
lims→0 s2P(s) is Hermitian and positive semidefinite.

It is important to stress that the definition of NI systems
was extended to non-rational systems in Ferrante, Lanzon, and
Ntogramatzidis (2016) and Ferrante and Ntogramatzidis (2013).
However, we here restrict our work to NI systems with rational
transfer functions.

Strictly negative imaginary (SNI) systems are defined as fol-
lows.

Definition 2 (Lanzon & Petersen, 2008). A square, real, rational,
proper transfer function matrix K (s) is said to be strictly negative
imaginary if

(1) K (s) has no poles in ℜ[s] ≥ 0;
(2) j[K (jω) − K (jω)∗] > 0 for all ω ∈ (0, ∞).

2.2. Graph theory

An undirected graph G = (V, E) consists of a nonempty finite
vertex set V = {v1, v2, . . . , vN} and an edge set E ⊂ V × V of
unordered pairs of vertices, called edges. An edge in G is denoted
by (vi, vj). If (vi, vj) ∈ E , then vertices (i.e., agents) vi and vj are
adjacent (or neighbours) and can obtain information from each
other. The set of neighbours of vertex vi is defined as Ni = {vj ∈

V : (vj, vi) ∈ E}. Self edges are not allowed, that is, (vi, vi) /∈ E .
A path in a graph from vi to vj is a sequence of edges of the
form (vi, vi+1), (vi+1, vi+2), . . . , (vj−1, vj). An undirected graph is
connected if there is an undirected path between every pair of
distinct vertices. The adjacency matrix A = [aij] ∈ RN×N of G is
defined as aij = aji = 1 if (vi, vj) ∈ E , 0 otherwise. The Laplacian
matrix L = [lij] ∈ RN×N of G is defined as lij = −aij, for i ̸= j
and lii =

∑N
j=1 aij for all i ∈ {1, . . . ,N}. It is well known that L is

positive semidefinite when the graph is undirected. Furthermore,
for undirected graphs, zero is a simple eigenvalue of L and the
associated eigenvector is 1N if and only if the undirected graph
is connected (Olfati-Saber, Fax, & Murray, 2007; Ren, Beard, &
Atkins, 2007). Let µi be the ith eigenvalue of an L associated with
an undirected and connected graph. Then the eigenvalues of L
can be arranged as

0 = µ1 < µ2 ≤ µ3 ≤ . . . ≤ µN , (1)

and throughout this paper we will denote λ̄(L) as the largest
eigenvalue of L and λ2(L) as the second smallest eigenvalue of
L, that is λ̄(L) = µN , and λ2(L) = µ2.
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3. Problem description

Consider a network of N homogeneous NI systems with exter-
nal disturbances acting on each system. The dynamics of the ith
NI system are described as

yi = doi + P(s)
(
dini + ui

)
∀i ∈ {1, . . . ,N} (2)

where P(s) is an n×n transfer function matrix of the ith NI system,
ui, yi, dini and doi are all vector signals with ‘‘n’’ elements and dini
and doi are also energy-bounded in an H2 (or in the time domain
L2[0, ∞)) sense. The signals ui, yi, dini and doi denote control
input, output of the ith NI system, input and output disturbances
respectively. It is assumed that relative output measurements
with respect to neighbouring agents are available to each sys-
tem. The network graph which models the information exchange
among the systems is assumed fixed and satisfies the following
assumption:

Assumption 3. The network graph G is undirected and con-
nected.

Following Wang et al. (2015a), the distributed control protocol
for the ith NI system is given by

ui = K (s)zi,

zi =

N∑
j=1

aij(yi − yj),
∀i ∈ {1, . . . ,N} (3)

where K (s) is the transfer function matrix of an SNI feedback
controller, zi represents the signal of relative measurements of
neighbouring agents with respect to system i and aij denotes the
elements of the adjacency matrix associated with the network
graph G. The collective network dynamics can thus be written as

y = do + (IN ⊗ P(s)) (din + u) , (4)

and
u = (IN ⊗ K (s))z,
z = (L ⊗ In)y,

(5)

where z =
[
zT1 , . . . , zTN

]T , y =
[
yT1, . . . , y

T
N

]T , u =
[
uT
1, . . . , u

T
N

]T ,
din =

[
dTin1 , . . . , d

T
inN

]T
and do =

[
dTo1 , . . . , d

T
oN

]T are all vector
signals with ‘‘nN ’’ elements and din and do are also energy-
bounded in an H2 (or in the time domain L2[0, ∞)) sense. L ∈

RN×N is the Laplacian matrix associated with the network graph
G. A block diagram of the closed loop networked MAS is depicted
in Fig. 1. This figure represents the block diagram of the real
physical system with real disturbances. In this paper we address
the robust output consensus problem for networks of NI systems
as an internal stability problem. To this end, via block diagram
algebra, it is possible to move the block (L ⊗ In) in Fig. 1 right
past the summing junction which leads to (L ⊗ In)do being the
disturbance acting on signal z. Let wo = (L⊗ In)do. wo is a subset
of the disturbances acting on signal y in Fig. 1 due to L being
rank deficient. Let P̄(s) = (L ⊗ In)(IN ⊗ P(s)) denote the transfer
function matrix from up to z and let K̄ (s) = IN ⊗ K (s) denote the
transfer function matrix from z to u. According to Wang et al.
(2015a, Lemma 3), P̄(s) is NI if and only if P(s) is NI with G
satisfying Assumption 3. Similarly, K̄ (s) is SNI since K (s) is SNI.
Then, the internal stability framework we consider, for addressing
the output consensus problem, is given in Fig. 2. That is, we
address the output consensus problem as an internal stability
problem for the interconnection [P̄(s), K̄ (s)] where the plant P̄(s)
is black-boxed thus we are being silent about the signal yp.

Fig. 1. Real physical system with real disturbances.

Fig. 2. Internal stability framework.

Remark 4. Internal stability of the interconnection [P̄, K̄ ] guaran-
tees that for all bounded inputs (win, wo), the outputs (up, z) are
bounded. (see e.g. Zhou, Doyle, & Glover, 1996). Then, internal
stability on the signals up and z is equivalent to consensus on
signal y in Fig. 1 via properties of L and via rank deficiency
in the matrix L ⊗ In. On the other hand, internal stability of
the interconnection [P̄, K̄ ] does not imply asymptotic stability of
the state space description; since P̄(s) is unobservable. Thus, the
nature of the output signal y (or yp) is depended on the block
(IN ⊗ P(s)) and hence the final convergence trajectory of the
output will depend on the dynamics of P(s) as will be seen in the
examples provided in Section 5 (see also Skeik & Lanzon, 2018,
Sec.V for more details regarding convergence analysis).

The following remark discusses how model uncertainties are
captured in this framework.

Remark 5. Model uncertainties are captured in this framework
by noting that any additive NI perturbations to a nominal NI
system result in an NI perturbed system. Other forms of feed-
back uncertainties are also possible that preserve NI properties
(see e.g. Chen et al., 2017; Ferrante et al., 2016). Hence, P(s) is
regarded interchangeably as a nominal or perturbed plant as long
as it fulfils the robust output consensus conditions (see Skeik &
Lanzon, 2018, Remark. 1 for more details).

The robust output consensus problem we consider is defined
as follows.

Definition 6 (Wang et al., 2015a, 2015b). For a family of NI
plant dynamics and for all L2[0, ∞) disturbances acting on the
plant input and/or output, robust output consensus is said to be
achieved with distributed control protocol (3) for a network of
NI systems if there exists ϵi(t) ∈ L2[0, ∞) ∀i ∈ {1, . . . ,N} such
that yi(t) → yss(t) + ϵi(t) ∀i ∈ {1, . . . ,N}, where yss(t) is the
final convergence trajectory. Note that ϵi(t) = 0 ∀t and ∀i ∈

{1, . . . ,N} when there are no external disturbances.
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Our objective is to derive conditions for robust output consen-
sus of a network of homogeneous NI systems under L2 external
disturbances and model uncertainty by using the general internal
stability results in Lanzon and Chen (2017).

4. Robust output consensus

4.1. Networked homogeneous NI systems with no poles at the origin

The following theorem gives conditions under which robust
output consensus is achieved for networked NI systems with no
poles at the origin.

Theorem 7. Consider a network of homogeneous NI systems P(s)
without poles at the origin, a network graph G that satisfies
Assumption 3 and an SNI feedback controller K (s) for each NI agent.
Let µi for all i ∈ {1, . . . ,N} be the eigenvalues of the Laplacian
matrix L associated with G ordered as stated in (1). Then, the
following three statements are equivalent:

(a) robust output consensus is achieved via control protocol (5)
for networked system (4) as shown in Fig. 1 (or in a dis-
tributed manner (3) for each system (2)) under any external
disturbances din, do ∈ LnN

2 [0, ∞) and model uncertainty that
retains the NI property of the perturbed system P(s);

(b) the set of conditions In − µiP(∞)K (∞) is nonsingular ,
λ̄[[In − µiP(∞)K (∞)]−1

[µiP(∞)K (0) − In]] < 0, and
λ̄[[In − µiK (0)P(∞)]−1

[µiK (0)P(0) − In]] < 0,
are satisfied for all i ∈ {2, . . . ,N};

(c) the set of conditions In − µiP(∞)K (∞) is nonsingular,
λ̄[[µiP(0)K (∞) − In][In − µiP(∞)K (∞)]−1

] < 0, and
λ̄[[µiK (0)P(0) − In][In − µiK (∞)P(0)]−1

] < 0,
are satisfied for all i ∈ {2, . . . ,N}.

Proof. We begin by proving the equivalence of conditions (a)
and (b). Let P̄(s) = L ⊗ P(s) and K̄ (s) = IN ⊗ K (s). Now P̄(s) is NI
by Wang et al. (2015a, Lemma 3) and has no poles at the origin
since P(s) has no poles at origin. Also, K̄ (s) is SNI since K (s) is SNI.
Via Remark 4 and as in the proof of Wang et al. (2015a, Th. 1), the
internal stability of [P̄(s), K̄ (s)] in Fig. 2 implies output consensus
(Fig. 1) when din = do = 0, by noting that z → 0 ⇔ y → 1N ⊗yss
since Assumption 3 holds. According to Lanzon and Chen (2017,
Th. 9), [P̄(s), K̄ (s)] is internally stable if and only if

INn − P̄(∞)K̄ (∞) is nonsingular,

λ̄[[INn − P̄(∞)K̄ (∞)]−1
[P̄(∞)K̄ (0) − INn]] < 0, and

λ̄[[INn − K̄ (0)P̄(∞)]−1
[K̄ (0)P̄(0) − INn]] < 0.

Now L is a real symmetric matrix due to Assumption 3. Thus,
L can be written as L = UΛUT where U is an orthogonal matrix
and Λ is a diagonal matrix with eigenvalues of L on the diagonal.
Then,

INn − P̄(∞)K̄ (∞)
= INn − (L ⊗ P(∞))(IN ⊗ K (∞))
= INn − (L ⊗ P(∞)K (∞))

= INn − (UΛUT
⊗ P(∞)K (∞))

= (U ⊗ In)[INn − (Λ ⊗ P(∞)K (∞))](UT
⊗ In)

= (U ⊗ In)diag(In − µiP(∞)K (∞))(UT
⊗ In)

∀i ∈ {1, 2, . . . ,N}.

So,

INn − P̄(∞)K̄ (∞) is nonsingular
⇔ In − µiP(∞)K (∞) ∀i ∈ {2, . . . ,N} is nonsingular

(due to the fact that U and UT are nonsingular
matrices and for µ1 = 0, In is nonsingular),

Furthermore,

λ̄[[INn − P̄(∞)K̄ (∞)]−1
[P̄(∞)K̄ (0) − INn]] < 0

⇔ λ̄[[INn − (L ⊗ P(∞)K (∞))]−1

× [(L ⊗ P(∞)K (0)) − INn]] < 0

⇔ λ̄[[INn − (UΛUT
⊗ P(∞)K (∞))]−1

× [(UΛUT
⊗ P(∞)K (0)) − INn]] < 0

⇔ λ̄[(U ⊗ In)[INn − (Λ ⊗ P(∞)K (∞))]−1(UT
⊗ In)

× (U ⊗ In)[(Λ ⊗ P(∞)K (0)) − INn](UT
⊗ In)] < 0

⇔ λ̄[[INn − (Λ ⊗ P(∞)K (∞))]−1

× [(Λ ⊗ P(∞)K (0)) − INn]] < 0

⇔ max
i=1,...,N

λ̄[[In − µiP(∞)K (∞)]−1

× [µiP(∞)K (0) − In]] < 0
(since the matrix in the previous step is block diagonal)

⇔ λ̄[[In − µiP(∞)K (∞)]−1
[µiP(∞)K (0) − In]] < 0

∀i ∈ {2, . . . ,N}

(since for µ1 = 0, the condition is trivially fulfilled)

and

λ̄[[INn − K̄ (0)P̄(∞)]−1
[K̄ (0)P̄(0) − INn]] < 0

⇔ λ̄[[In − µiK (0)P(∞)]−1
[µiK (0)P(0) − In]] < 0

∀i ∈ {2, . . . ,N}

by following similar steps as the steps taken in the second condi-
tion (see also the steps of proof Skeik & Lanzon, 2018, Th.1). The
proof for robust output consensus under external disturbances
and model uncertainties then follows similarly to that in the
proof of Wang et al. (2015a, Th.1) (see also Remark 5 for model
uncertainties). The equivalence of conditions (a) and (c) can be
proved in a similar manner by applying Lanzon and Chen (2017,
Th. 14) instead of Lanzon and Chen (2017, Th. 9).

Remark 8. The first and second conditions within conditions (b)
of Theorem 7 guarantee that the matrix In − µiK (0)P(∞) in the
third condition is nonsingular ∀i ∈ {2, . . . ,N}.

Remark 9. Unlike Wang et al. (2015a), both sets of conditions
(b) and (c) of Theorem 7 include the nonzero eigenvalues of the
Laplacian matrix L. Thus, it can be concluded that the nonzero
eigenvalues of L play a central role in achieving output consensus
for networks of NI systems when the assumptions P(∞)K (∞) =

0 and K (∞) ≥ 0 of Wang et al. (2015a) are relaxed.

The following corollary shows that the conditions of
Theorem 7 not only specialise to that in Wang et al. (2015a) by
imposing the same two assumptions at infinite frequency but also
specialise to that in Wang et al. (2015a) by imposing different
assumptions which were not known previously in Wang et al.
(2015a).

Corollary 10. Let the hypotheses of Theorem 7 hold and furthermore
let either (i) P(∞)K (∞) = 0 and K (∞) ≥ 0 , or (ii) P(∞)K (∞) = 0
and P(0) > 0, or (iii) P(∞) = 0 hold. Then, robust output consensus
is achieved via control protocol (5) for networked system (4) as
shown in Fig. 1 (or in a distributed manner (3) for each system
(2)) under any external disturbances din, do ∈ LnN

2 [0, ∞) and model
uncertainty that retains the NI property of the perturbed system P(s)
if and only if

λ̄[P(0)K (0)] <
1

λ̄(L)
.
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Proof. For the case that (i) holds, the result is a direct conse-
quence of the equivalence of conditions (a) and (b) of Theorem 7
and the lines of the proof here follow those of Lanzon and Chen
(2017, Cor. 12) with the difference of having the eigenvalues of L
included here. Furthermore, λ̄[P(0)K (0)] < 1/µi ∀i ∈ {2, . . . ,N}

⇔ λ̄[P(0)K (0)] < 1/λ̄(L) since (1) holds by Assumption 3. Also,
λ̄[P(0)K (0)] < 1/λ̄(L) ⇔ µiP(0) < K (0)−1

∀i ⇒ µiP(∞) <

K (0)−1 (since P(∞) ≤ P(0) via Xiong et al., 2010, Cor. 3) and
µi > 0 ∀i ∈ {2, . . . ,N} and µ1 = 0 via Assumption 3. For
the case that (ii) holds, the result is a direct consequence of
the equivalence of conditions (a) and (c) of Theorem 7 and by
following similar steps as in case (i) but by following similar
steps as in Lanzon and Chen (2017, Cor. 15) instead. For the
case that (iii) holds, the result is a direct consequence of the
equivalence of conditions (a) and (b) of Theorem 7 with P(∞) = 0
and by (1).

4.1.1. SISO specialisation: no poles at the origin
The following theorem shows that when the NI systems are

SISO, the robust output consensus conditions of Theorem 7 can
be simplified as follows.

Theorem 11. Consider a network of homogeneous SISO NI systems
P(s) without poles at the origin, a network graph G that satisfies
Assumption 3 and an SNI feedback controller K (s) for each NI agent.
Let µi for all i ∈ {1, . . . ,N} be the eigenvalues of the Laplacian
matrix L associated with G ordered as stated in (1). Then, robust
output consensus is achieved via control protocol (5) for networked
system (4) as shown in Fig. 1 (or in a distributed manner (3) for each
system (2)) under any external disturbances din, do ∈ LnN

2 [0, ∞)
and model uncertainty that retains the NI property of the perturbed
system P(s) if and only if any of the following five conditions holds:

(1) P(0)K (0) < 1/λ̄(L) and P(∞)K (∞) < 1/λ̄(L) ;
(2) K (∞) > 0 and P(∞)K (∞) > 1/λ2(L);
(3) K (0) < 0 and P(0)K (0) > 1/λ2(L);
(4) K (∞) > 0 and there exists i ∈ {i ∈ {2, . . . ,N − 1}: µi ̸=

µi+1} such that P(0)K (0) < 1/µi and P(∞)K (∞) > 1/µi+1;
(5) K (0) < 0 and there exists i ∈ {i ∈ {2, . . . ,N−1}: µi ̸= µi+1}

such that P(0)K (0) > 1/µi+1 and P(∞)K (∞) < 1/µi.

Proof. Since n = 1, conditions (b) of Theorem 7 become
P(∞)K (∞) ̸= 1/µi,

µiP(∞)K (0)−1
1−µiP(∞)K (∞) < 0 and µiK (0)P(0)−1

1−µiK (0)P(∞) < 0 ∀i ∈

{2, . . . ,N}. Furthermore, since (1) holds, these three conditions
reduce to either conditions (i), (ii), or (iii).

(i) P(0)K (0) < 1/λ̄(L), P(∞)K (∞) < 1/λ̄(L) and P(∞)K (0) <

1/λ̄(L);
(ii) P(0)K (0) > 1/λ2(L), P(∞)K (∞) > 1/λ2(L) and P(∞)K (0)

> 1/λ2(L);
(iii) There exists i ∈ {i ∈ {2, . . . ,N − 1}: µi ̸= µi+1} such that

1/µi+1 < P(0)K (0) < 1/µi, 1/µi+1 < P(∞)K (∞) < 1/µi
and 1/µi+1 < P(∞)K (0) < 1/µi.

Likewise, conditions (c) of Theorem 7 with (1) lead to either
conditions (I), (II), or (III).

(I) P(0)K (0) < 1/λ̄(L), P(∞)K (∞) < 1/λ̄(L) and P(0)K (∞) <

1/λ̄(L);
(II) P(0)K (0) > 1/λ2(L), P(∞)K (∞) > 1/λ2(L) and P(0)K (∞)

> 1/λ2(L);
(III) There exists i ∈ {i ∈ {2, . . . ,N − 1}: µi ̸= µi+1} such that

1/µi+1 < P(0)K (0) < 1/µi, 1/µi+1 < P(∞)K (∞) < 1/µi
and 1/µi+1 < P(0)K (∞) < 1/µi.

(⇐) Condition (1) implies both conditions (i) and (I) via (Lanzon &
Chen, 2017, Lemma 5). Condition (2) together with using proper

Fig. 3. Network graph and associated Laplacian matrix.

ties of Xiong et al. (2010, Cor. 3) imply P(0) ≥ P(∞) > 0
and K (0) > K (∞) > 0 respectively. Then we get P(0)K (0) ≥

P(∞)K (0), P(0)K (∞) ≥ P(∞)K (∞) > 1/λ2(L), P(0)K (0) >
P(0)K (∞), and P(∞)K (0) > P(∞)K (∞) > 1/λ2(L) which
together imply conditions (ii) and (II). Likewise, condition (3)
together with using properties of Xiong et al. (2010, Cor. 3)
imply P(∞) ≤ P(0) < 0 and K (∞) < K (0) < 0 respectively.
Then we get 1/λ2(L) < P(0)K (0) < P(0)K (∞), P(∞)K (0) <
P(∞)K (∞), 1/λ2(L) < P(0)K (0) ≤ P(∞)K (0) and P(0)K (∞) ≤

P(∞)K (∞) which together imply conditions (ii) and (II). Con-
dition (4) together with using properties of Xiong et al. (2010,
Cor. 3) imply P(0) ≥ P(∞) > 0 and K (0) > K (∞) >
0 respectively. Then we get 1/µi > P(0)K (0) ≥ P(∞)K (0),
P(0)K (∞) ≥ P(∞)K (∞) > 1/µi+1, 1/µi > P(0)K (0) >
P(0)K (∞) and P(∞)K (0) > P(∞)K (∞) > 1/µi+1 which together
give conditions (iii) and (III). Likewise, condition (5) together with
using properties of Xiong et al. (2010, Cor. 3) imply P(∞) ≤

P(0) < 0 and K (∞) < K (0) < 0 respectively. Then we
get P(0)K (∞) > P(0)K (0) > 1/µi+1, 1/µi > P(∞)K (∞) >
P(∞)K (0), P(∞)K (0) > P(0)K (0) > 1/µi+1 and 1/µi >
P(∞)K (∞) > P(0)K (∞) which together imply conditions (iii)
and (III).

(⇒) Both conditions (i) and (I) reduce to condition (1). Now
consider the five cases as in the proof of Lanzon and Chen (2017,
Th. 17) which are 0 < K (∞) < K (0), 0 = K (∞) < K (0), K (∞) <
0 < K (0), K (∞) < K (0) = 0 and K (∞) < K (0) < 0. Only the first
and last cases are allowed by conditions (ii), (iii), (II) and (III) as
the three middle cases violate them. Consequently, it is easy to
see that condition (ii) [resp. (II)] implies either condition (2) or
(3) while condition (iii) [resp. (III)] implies either condition (4) or
(5).

The following example shows the effectiveness of Theorem 11.

Example 12. Given five homogeneous SISO NI systems each
with transfer function P(s) =

1
s2+5

+ 2. We consider the con-
nection of these NI systems over the network topology shown
in Fig. 3. The associated Laplacian matrix L is also shown in
Fig. 3. The nonzero eigenvalues of L arranged as in (1) are
{0.6972, 1.3820, 3.6180, 4.3028}. Consider distributed control
protocol (3) with the following SNI feedback controller K (s) =
1

s+5 + d where d is a tuning parameter and d ̸= 0. We use
Theorem 11 to study the effect of tuning parameter d on achiev-
ing robust output consensus. It is important to note that since
P(∞)K (∞) = 2d ̸= 0, the results in Wang et al. (2015a, Th. 1)
cannot be used to determine whether robust output consensus
of the networked NI systems can be achieved or not. The values
of d are chosen as 0.2, 0.4, 0.6, 4, and −4. It is easy to check
that for d = 0.2 and d = 0.6, conditions (1)–(5) of Theorem 11
fail to hold. Thus, we conclude that robust output consensus is
not achieved with these values. For d = 0.4, condition (4) is
satisfied; for d = 4, condition (2) is satisfied; and for d = −4,
condition (1) is satisfied. Thus, we conclude that robust output
consensus is achieved with these values. However, it is important
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to note that Condition (4) of Theorem 11 involves the knowledge
of all nonzero eigenvalues (hence more sensitive to the network
graph) whereas conditions (1) and (2) of Theorem 11 depend only
on the knowledge of the largest and second smallest eigenvalues
of L respectively (hence less sensitive to network graph).

Remark 13. Although SNI controller synthesis for performance is
not explicitly covered in this paper, Example 12 gives an indica-
tion how an SNI controller to each NI system in the SISO case can
be selected to reduce the effect of the network graph which is not
apparent in the MIMO case. It can be deduced from Theorem 11
and Example 12 that it is preferable to select the SNI controller
in protocol (3) to satisfy either one of the first three conditions
in Theorem 11 and avoid satisfying the last two conditions of
Theorem 11 in order to minimise the effect of the network graph
on robust output consensus since an estimate for the second
smallest and largest eigenvalues of L would only be needed.
Furthermore, unlike the MIMO case, a Nyquist plot interpretation
can be drawn for the SISO case in a similar manner as in Lanzon
and Chen (2017) but with the difference that the crucial point
here is no longer +1. Theorem 11 indicates that robust output
consensus is achieved via condition (1) when the Nyquist plot
of P(s)K (s) starts and ends to the left of 1/λ̄(L). Robust output
consensus is achieved via condition (4) when the Nyquist plot of
P(s)K (s) starts to the left of 1/µi and ends to the right of 1/µi+1
for an i ∈ {i ∈ {2, . . . ,N − 1}: µi ̸= µi+1} and additionally P(0),
P(∞), K (0) and K (∞) all have positive signs. The interpretation of
the remaining conditions can be easily drawn in a similar manner.

4.2. Networked homogeneous NI systems with poles at the origin

The following theorem gives conditions under which robust
output consensus is achieved for networked NI systems with
possible poles at the origin.

Theorem 14. Consider a network of homogeneous NI systems P(s),
a network graph G that satisfies Assumption 3, and an SNI feedback
controller K (s) for each NI agent. Let µi for all i ∈ {1, . . . ,N} be the
eigenvalues of the Laplacian matrix L associated with G ordered as
stated in (1). Let Ψ < 0 be such that λ̄[P(∞)Ψ ] < 1/λ̄(L). Then,
the following three conditions are equivalent:

(a) robust output consensus is achieved via control protocol (5)
for networked system (4) as shown in Fig. 1 (or in a dis-
tributed manner (3) for each system (2)) under any external
disturbances din, do ∈ L2[0, ∞) and model uncertainty that
retains the NI property of the perturbed system P(s);

(b) the set of conditions
In − µiP(∞)K (∞) is nonsingular,
λ̄[[In − µiP(∞)K (∞)]−1

[µiP(∞)K (0) − In]] < 0, and
λ̄[lims→0[[In − µiΨ P(∞)][In − µiK (s)P(∞)]−1

× [µiK (s)P(s) − In][In − µiΨ P(s)]−1
]] < 0,

are satisfied for all i ∈ {2, . . . ,N};

(c) the set of conditions
In − µiP(∞)K (∞) is nonsingular,
λ̄[lims→0[[In − µiP(s)Ψ ]

−1
[µiP(s)K (∞) − In]

× [In − µiP(∞)K (∞)]−1
[In − µiP(∞)Ψ ]]] < 0, and

λ̄[lims→0[[µiK (s)P(s) − In][In − µiK (∞)P(s)]−1
]] < 0,

are satisfied for all i ∈ {2, . . . ,N}.

Proof. We begin by proving the equivalence of conditions (a)
and (b). Recall that P̄(s) = L ⊗ P(s) in Fig. 2 is NI and now
has poles at the origin since P(s) has poles at the origin and
K̄ (s) = IN ⊗ K (s) in Fig. 2 is SNI since K (s) is SNI. Also, recall
that the internal stability of [P̄(s), K̄ (s)] implies output consensus
when din = do = 0. Thus, we shall prove the internal stability of

[P̄(s), K̄ (s)] and then the proof for robust output consensus runs
as before. Let Ψ̄ = (IN ⊗ Ψ ). We have Ψ̄ < 0 if and only if
Ψ < 0. Also, λ̄[P̄(∞)Ψ̄ ] = λ̄[L ⊗ P(∞)Ψ ] < 1 if and only if
λ̄[P(∞)Ψ ] < 1/λ̄(L). Hence by applying Lanzon and Chen (2017,
Th. 24), [P̄(s), K̄ (s)] is internally stable if and only if

INn − P̄(∞)K̄ (∞) is nonsingular,

λ̄[[INn − P̄(∞)K̄ (∞)]−1
[P̄(∞)K̄ (0) − INn]] < 0, and

λ̄[lim
s→0

[[INn − Ψ̄ P̄(∞)][INn − K̄ (s)P̄(∞)]−1

× [K̄ (s)P̄(s) − INn][INn − Ψ̄ P̄(s)]−1
]] < 0.

Recall that L is a real symmetric matrix due to Assumption 3.
Thus, by applying the same transformation as in Theorem 7 we
arrive at conditions (b) of this theorem. It is not difficult to verify
that the equivalence of conditions (a) and (c) can be proved in
a similar manner by applying Lanzon and Chen (2017, Th. 26)
rather than Lanzon and Chen (2017, Th. 24).

It is important to show that the limits in Theorem 14 are finite
∀i ∈ {2, . . . ,N}. To this end, we begin by stating a modified
version of Lanzon and Chen (2017, Lemma 28).

Lemma 15. Let the hypotheses of Theorem 14 hold and further-
more consider In − µiP(∞)K (∞) nonsingular and λ̄[lims→0[[In −

µiP(s)Ψ ]
−1

[µiP(s)K (∞)− In][In−µiP(∞)K (∞)]−1
[In−µiP(∞)Ψ ]

]] < 0 ∀i ∈ {2, . . . ,N}. Then, lims→0[[In − µiΨ P(s)][In −

µiK (∞)P(s)]−1
] ∀i ∈ {2, . . . ,N} is finite and nonsingular.

Proof. The proof is omitted since it follows similar arguments as
in the proof of Lanzon and Chen (2017, Lemma 28).

Remark 16. For the limit in conditions (b) of Theorem 14: Since
µiP(s) is NI ∀i ∈ {2, . . . ,N}, Ψ < 0 and λ̄[µiP(∞)Ψ ] < 1
∀i ∈ {2, . . . ,N}, then Lemma 20 of Lanzon and Chen (2017) can
be employed to show that both [In − µiΨ P(s)]−1 and µiP(s)[In −

µiΨ P(s)]−1 have no poles at the origin ∀i ∈ {2, . . . ,N}. Hence,
lims→0[[µiK (s)P(s)− In][In −µiΨ P(s)]−1

] is finite ∀i ∈ {2, . . . ,N}.
For the limits in conditions (c) of Theorem 14: The limit in the
second condition is finite ∀i ∈ {2, . . . ,N} since lims→0[[In −

µiP(s)Ψ ]
−1

[µiP(s)K (∞) − In]] is finite ∀i ∈ {2, . . . ,N} by Lan-
zon and Chen (2017, Lemma 20) while the limit in the third
condition is finite ∀i ∈ {2, . . . ,N} by Lanzon and Chen (2017,
Lemma 20) and Lemma 15 since lims→0[[µiK (s)P(s) − In][In −

µiK (∞)P(s)]−1
] = lims→0[[µiK (s)P(s) − In][In − µiΨ P(s)]−1

[In − µiΨ P(s)][In − µiK (∞)P(s)]−1
] ∀i ∈ {2, . . . ,N}.

When the networked NI systems have a single or double
pole at the origin in all directions, the robust output consensus
conditions will neither depend on the nonzero eigenvalues of L
nor on the matrix Ψ as follows.

Corollary 17. Consider a network of homogeneous strictly proper
NI systems P(s), a network graph G that satisfies Assumption 3, and
an SNI feedback controller K (s) for each NI agent. Assume one of the
following conditions holds:

(1) lims→0 s2P(s) is nonsingular;
(2) lims→0 s2P(s) = 0 and lims→0 sP(s) is nonsingular.

Then, robust output consensus is achieved via control protocol (5) for
networked system (4) as shown in Fig. 1 (or in a distributed manner
(3) for each system (2)) under any external disturbances din, do ∈

L2[0, ∞) and model uncertainty that retains the NI property of the
perturbed system P(s) if and only if K (0) < 0.

Proof. Since P(∞) = 0, conditions (b) in Theorem 14 reduce to

λ̄[lim
s→0

[[µiK (s)P(s) − In][In − µiΨ P(s)]−1
]] < 0 (6)
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while conditions (c) in Theorem 14 reduce to

λ̄[lim
s→0

[[In − µiP(s)Ψ ]
−1

[µiP(s)K (∞) − In]]] < 0, and

λ̄[lim
s→0

[[µiK (s)P(s) − In][In − µiK (∞)P(s)]−1
]] < 0

(7)

∀i ∈ {2, . . . ,N}. The proof is then similar to the proof of Lanzon
and Chen (2017, Cor. 32) but when applied either to condition (6)
or (7).

Remark 18. A procedure was provided in Lanzon and Chen
(2017) for selecting Ψ by first decomposing P(∞) as P(∞) =

QΛQ T , where Q is an orthogonal matrix and Λ is diagonal, then
selecting Λ1 as a diagonal matrix with negative elements such
that Λ − Λ1 > 0 so that Ψ = QΛ−1

1 Q T fulfils the required
condition λ̄[P(∞)Ψ ] < 1 as this is equivalent to P(∞)−Ψ −1 > 0.
Since the nonzero eigenvalues of L play an important role in the
robust output consensus conditions, we hence need to select Λ1
such that Λ −

1
λ̄(L)

Λ1 > 0 since the condition λ̄[P(∞)Ψ ] < 1 is

replaced here by λ̄[P(∞)Ψ ] < 1/λ̄(L).

4.2.1. SISO specialisation: must have pole(s) at the origin
The following corollary shows that when the NI systems are

SISO and must either have a single or double pole at the origin,
the robust output consensus conditions of Theorem 14 can be
simplified as follows.

Corollary 19. Consider a network of homogeneous SISO NI systems
P(s) with s = 0 being a single or double pole of P(s), a network
graph G that satisfies Assumption 3 and an SNI feedback controller
K (s) for each NI agent. Then, robust output consensus is achieved via
control protocol (5) for networked system (4) as shown in Fig. 1 (or
in a distributed manner (3) for each system (2)) under any external
disturbances din, do ∈ LnN

2 [0, ∞) and model uncertainty that retains
the NI property of the perturbed system P(s) if and only if either one
of the following conditions holds:

(1) P(∞)K (∞) < 1/λ̄(L) and K (0) < 0;
(2) P(∞)K (∞) > 1/λ2(L) and K (∞) > 0.

Proof. The two conditions in this corollary can be obtained either
via conditions (b) or conditions (c) of Theorem 14. We give the
proof via conditions (c) of Theorem 14. It is easy to verify that the
conditions can also be obtained via conditions (b) of Theorem 14
and thus omitted. Since n = 1, conditions (c) of Theorem 14
become P(∞)K (∞) ̸= 1/µi ∀i ∈ {2, . . . ,N}, K (∞)

1−µiK (∞)P(∞) < 0
∀i ∈ {2, . . . ,N}, and K (0)

K (∞) > 0 after writing P(s) in its Laurent
series form and taking the limit at s → 0. Consider the three
cases for the first condition: P(∞)K (∞) > 1/µi ∀i ∈ {2, . . . ,N},
P(∞)K (∞) < 1/µi ∀i ∈ {2, . . . ,N} and there exists i ∈ {i ∈

{2, . . . ,N − 1}: µi ̸= µi+1} such that 1/µi+1 < P(∞)K (∞) <

1/µi. The third case is violated by the second condition. Hence we
consider the first two cases. These two cases with (1) and the NI
property K (0) > K (∞) lead to the three conditions being reduced
to either condition (1) or (2) in this corollary.

5. Illustrative examples

In this section, we give two examples to demonstrate the
effectiveness of the robust output consensus results proposed
in this paper. In each example, four NI systems are considered.
The network topology that models the interaction among the NI
systems and its associated Laplacian matrix are given in Fig. 4.

Fig. 4. Network graph and associated Laplacian matrix.

Fig. 5. Robust output consensus for networked NI systems.

5.1. Without poles at the origin

The transfer function matrix of the four NI systems and the
SNI feedback controller for each NI agent are

P(s) =

[
2s2+2.2
s2+0.6

0

0 1
s+1

]
, K (s) =

[
1

s2+15s+20
0

0 −2s−9
s+5

]
,

respectively. Although P(∞)K (∞) = 0, K (∞) ̸≥ 0. Thus, the
results in Wang et al. (2015a, Th. 1) cannot be used to determine
robust output consensus of the networked NI systems. On the
other hand, since P(0) > 0 we conclude via Corollary 10 (case (ii))
that robust output consensus is achieved for the NI systems since
λ̄[P(0)K (0)] = 0.18 < (1/λ̄(L)) = 0.24 as shown in Fig. 5 with
external disturbances acting on the systems.

5.2. With poles at the origin

Here we consider four homogeneous flexible robotic arms.
Fig. 6 shows the model of the ith robotic arm. The arm is mod-
elled by slewing beam with co-located piezoelectric actuator and
sensor and is driven by a motor pinned to one of its ends (Pota &
Alberts, 1995). Thus, the ith robotic arm has two inputs (Vai, τi)
which represent voltage and torque applied to the piezoelec-
tric actuator and motor respectively, and two outputs (Vsi, θi)
which represent voltage sensed by the piezoelectric sensor and
the motor hub angle respectively ∀i ∈ {1, . . . , 4}. Whereas the
robotic arm has an infinite dimensional model, for purpose of
control design a finite dimensional model can be approximated.
A finite dimensional model Pi(s) = P(s) ∀i ∈ {1, . . . , 4} for the
flexible robotic arms, taking the first resonant mode into account
(see Mabrok et al., 2014 for more details), is obtained as

P(s) =

[
Pτ ,θ (s) PVa,θ (s)
Pτ ,Vs (s) PVa,Vs (s)

]
=

⎡⎣ 3.231s2+1.618
s2(s2+3.42)

3.5573×10−4

s2+3.42

3.5573×10−4

s2+3.42
2.35

s2+3.42

⎤⎦ . (8)

It can be verified by Definition 1 that (8) is NI with two poles at
the origin. Consider the SNI controller in Mabrok et al. (2014)

K (s) =

⎡⎣−4.29s2−231.5s−5.11.9
s2+62.13s+232.4

15s−247.5
s2+62.13s+232.4

15s−247.5
s2+62.13s+232.4

−2.22s2−117.9s−162
s2+62.13s+232.4

⎤⎦ .
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Fig. 6. Schematic diagram of a slewing beam equivalent to ith robotic
arm (Mabrok et al., 2014).

Fig. 7. Robust output consensus for networked robotic arms.

Although P(s) has poles at the origin and is strictly proper, the
results in Wang et al. (2015a) cannot be used to determine
robust output consensus for the robotic arms since N(P2) ̸⊆

N(P0) where N denotes the null space and P0, P2 are the co-
efficients in the Laurent series expansion of P(s) around the
zero. On the other hand, robust output consensus for the robotic
arms can be easily concluded via Theorem 14 of this paper.
In fact, we need only check condition (6) since P(∞) = 0.
Now since it is possible to select Ψ = K (0) < 0 (see Lanzon
& Chen, 2017), we check that (6) is satisfied ∀i ∈ {2, 3, 4},
i.e. λ̄[lims→0[[µiK (s)P(s) − In][In − µiΨ P(s)]−1

]] = −1 < 0
∀i ∈ {2, 3, 4}. Observe that with this choice of Ψ , we were
able to easily determine robust output consensus without knowl-
edge of the eigenvalues of L. Note that Wang et al. (2015b,
Th. 15), which captures robust output consensus for the het-
erogeneous case, is much more complicated to use since the
conditions are checked for the augmented networked plant and
controller which increase in dimension by increasing the number
of connected agents. Moreover, matrix factorisation is needed
and additional conditions need to be satisfied, such as non-
singularity and sign semidefiniteness, for specific matrices before
being able to determine whether output consensus is achieved
or not. Simulation results, using the finite dimensional model (8),
are shown in Fig. 7. The initial conditions have been arbitrar-
ily chosen as [1, 0.1, 2, 0.2, 3, 0.3]T , [−1, 0.1, −2, 0.2, −3, 0.3]T ,
[2.5, 0.5, −2.5, 0.6, −3.2, 0.1]T , [2, 0.3, −5.5, 0.4, −1, 0.2]T for
the four NI systems respectively, and [0, 0]T for all four SNI con-
trollers. It can be seen from Fig. 7 that robust output consensus
is achieved with external disturbances.

6. Conclusion

Necessary and sufficient conditions for robust output consen-
sus were proposed for multiple homogeneous NI systems which
are subject to L2 external disturbances and model uncertainties
by utilising the recently published robust NI stability results.
Advantages of the proposed results over existing results in liter-
ature were discussed. It was shown that the derived conditions
specialise to those in earlier literature by either imposing the
same assumptions at infinite frequency or by imposing different
ones which had not been known previously. It was also shown

that the derived conditions simplify in the SISO case. The results
were enhanced by several examples such that the effectiveness
of the proposed results over earlier results were apparent when
the assumptions of earlier results do not hold.
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