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Abstract

This paper is concerned with the study of strictly negative imaginary (SNI) systems and the problem of synthesizing a controller
rendering a linear fractional system SNI. First, a set of necessary and sufficient conditions are developed for an SNI lemma
without imposing minimality assumptions. The proposed lemma supports both the analysis and synthesis of SNI systems.
Then, a set of sufficient conditions, based on the solution of algebraic Riccati equations, is provided for the solution of the SNI
synthesis problem. Finally, an illustrative example demonstrates the usefulness of the results given herein.
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1 Introduction

Over the past decade, negative imaginary (NI) theory
has attracted increasing interest first in robust stability
analysis [10,30,21,18,9] and then towards control system
synthesis [23,26,20,28,14,13]. Analysis results are now
also available for discrete-time systems [6,16,3,17]. Mo-
tivated by the stability analysis results of NI systems
and the wide range of engineering applications for which
NI results are suitable (see [22] for examples), the aim
when synthesizing a controller for uncertain systems is
to achieve a closed-loop transfer function with an NI or
a strictly NI (SNI) property when it is known that the
uncertainty is SNI or NI, respectively. Such a problem is
called the “NI synthesis problem” [28].
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A fundamental limitation of the controller synthesis
methods in [23,26,20,28] is that the closed-loop transfer
function is forced to be NI which is not necessarily sta-
ble as it can include poles on the jω-axis [18]. Recently,
[13,14] proposed a solution for the Positive Real (PR)
synthesis problem which includes both robust stabil-
ity and performance. [13,14] mention that simple loop
transformations transform the NI synthesis problem
into their PR framework. However, the transformation
in [14] yields a non-proper controller (which must be
low-pass filtered) and a non-proper nominal NI feedback
loop which looses internal stability when the transfor-
mation is reversed from the synthesized PR feedback
loop. Also, the transformation in [13] does not yield PR
uncertainty for all NI uncertainty, meaning the result
would only be applicable to a subclass.

Consequently, an aim of the current article is to provide
a controller synthesis method to make a linear fractional
closed-loop system both internally stable and SNI. Per-
formance is not considered in this paper. There are two
principal difficulties in achieving our aim. As pointed
out in [10,26], the first challenge is that an SNI system
can only be transformed into a non-strict PR system.
This has been a long-standing acute problem specific to
NI systems and makes any method for strictly PR syn-
thesis not directly applicable. The second challenge is
that there are no (necessary and) sufficient conditions
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in the literature based on non-necessarily minimal state-
space realizations to check whether a system is SNI or
not. Such a result, referred herein as an SNI lemma, is
essential for controller synthesis since minimality of the
closed-loop cannot be guaranteed ‘a priori’. Therefore,
we start by developing an SNI lemma which only requires
the assumption of no modes at the origin. This builds on
and extends previous results [30,11,20,29]. Moreover, the
SNI lemma proposed here is based on an algebraic Ric-
cati equation (ARE) with a unique positive semi-definite
solution, even though the associated Hamiltonian is sin-
gular. The controller synthesis approach presented in
this article then requires solution of two AREs. Finally,
an illustrative example is given to show the usefulness
of the proposed results.

In summary, the main contributions of this paper are as
follows: i) fundamental connections are derived between
NI systems, spectral factorization, Hamiltonian matri-
ces and AREs; ii) necessary and sufficient conditions are
derived for the state-space characterization of SNI sys-
tems with non-minimal state-space realizations; iii) suf-
ficient conditions are derived for the solution of the SNI
synthesis problem via dynamic output feedback. Along
the way, we also capture NI synthesis and static state
feedback which have been studied in the literature.

Notation: Let R and C denote fields of real and complex
numbers, respectively; while (·)m×n denotes a matrix of
dimension m×n. <(s) stands for the real part of s ∈ C.
Let C<0 = {s ∈ C : <(s) < 0}, C≤0 = {s ∈ C : <(s) ≤
0}, R>0 = {a ∈ R : a > 0} and R≥0 = {a ∈ R : a ≥ 0}.
Given A ∈ Cm×n, AT , A∗ and A† denote its trans-
pose, complex conjugate transpose and pseudo-inverse,
respectively. Also, rank(A) denotes the rank of A, while
dim(kerA) denotes the dimension of the null space of A.
If A is square, the spectrum of A is denoted by σ(A),
while ρ(A) denotes the spectral radius of A and A−T is

a shorthand notation for
(
A−1

)T
. Moreover, A is said to

be Hurwitz if σ(A) ∈ C<0. In and 0n denote the n × n
identity matrix and the n× n zero matrix, respectively.
We will simply use I and 0 when no confusion about the
dimensions can arise. Fl(G,K) stands for lower linear
fractional transformation of transfer function matrices
G and K. R denotes the set of all real, rational, proper
transfer function matrices andRH∞ denotes a subset of
R containing all asymptotically stable transfer function

matrices. Given G ∈ R, G =

A B

C D

 is a shorthand

for state-space realization G(s) = C (sI −A)
−1
B +D.

Moreover, G∼(s) = G(−s)T .

2 Preliminaries

NI systems have been defined to include non-rational and
non-proper systems [5,15], but we hereinafter restrict

attention to NI transfer functions that are real, rational
and proper.

Definition 2.1. [18] A real, rational, proper transfer
function matrix G : C → Cm×m is negative imaginary
(NI) if the following conditions are satisfied:

(i) G(s) has no poles in {s ∈ C : < (s) > 0};
(ii) j [G(jω)−G(jω)∗] ≥ 0 for all ω ∈ (0,∞) except

for the values of ω where jω is a pole of G(s);
(iii) if s = jω0 with ω0 ∈ (0,∞) is a pole of G(s), then

it is a simple pole and lims→jω0
(s − jω0)jG(s) is

Hermitian and positive semidefinite;
(iv) if s = 0 is a pole of G(s), then it is at most a double

pole and lims→0 s
2G(s) is Hermitian and positive

semidefinite.

When the inequality in (ii) is strict and the system is
asymptotically stable, we refer to such systems as SNI.

Definition 2.2. [10] A real, rational and proper transfer
function G : C → Cm×m is strictly negative imaginary
(SNI) if

(i) G(s) has no poles in {s ∈ C : < (s) ≥ 0};
(ii) j [G(jω)−G(jω)∗] > 0 for all ω > 0.

A subclass of SNI systems is defined below. This sub-
class is the same as that considered in [11, Theorem 3.3,
Theorem 3.4].

Definition 2.3. A real, rational and proper transfer
function G : C→ Cm×m is strongly strict negative imag-
inary (SSNI) if

(i) G(s) is SNI;
(ii) limω→∞ jω[G(jω)−G(jω)∗] > 0;

(iii) limω→0+ jω
−1[G(jω)−G(jω)∗] > 0.

This definition differs from [5, Theorem 3] since G is not
restricted to be symmetric, and the limit in condition
(ii) is different from condition (iii) in [5, Theorem 3].

The following technical lemma characterizes the rela-
tions among a class of parahermitian rational matrices,
AREs and Hamiltonian matrices. This lemma hence al-
lows us to connect SNI systems with important control
theory tools developed in the past several decades [1,7,8].
The parahermitian matrix considered here is allowed to
be singular only at zero frequency to capture essential
and peculiar requirements of SNI systems. Note that [31,
Theorem 13.19] is not applicable here as the parahermi-
tian is either strictly positive definite at all frequencies
or positive semidefinite at all frequencies. That is, it does
not allow strict sign for all ω > 0 and singular at ω = 0.

Lemma 2.4. LetA,B,P , S,R be matrices of compatible
dimensions such that P = PT , R = RT > 0 with (A,B)
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stabilizable. SupposeA has no eigenvalues on the jω-axis.
Then, the following statements are equivalent:

(i) The parahermitian rational matrix

Φ(s) =

[
(−sI −A)−1B

I

]T [
P S

ST R

][
(sI −A)−1B

I

]

satisfies Φ(jω) > 0 for all ω ∈ R>0 ∪ {∞} and
det(Φ(0)) = 0.

(ii) There exists a unique real X = XT such that

ATX +XA− (S +XB)R−1(S +XB)T + P = 0

and σ(A−BR−1(ST +BTX)) ⊂ C<0 ∪ {0}.
(iii) The Hamiltonian matrix

H =

[
A−BR−1ST −BR−1BT

−(P − SR−1ST ) −(A−BR−1ST )T

]

has no jω-axis eigenvalues except at the origin.

PROOF. (i) ⇒ (iii) Since Φ(jω) is singular at ω = 0
but nonsingular for all ω > 0, it follows via [31, Lemma
13.15] that H is singular and has no eigenvalues at jω
for ω > 0.

(iii)⇒ (i) Φ(jω) is nonsingular for all ω > 0 and singular
at ω = 0 by [31, Lemma 13.15]. Now, since Φ(j∞) =
R > 0 and Φ(jω) is a continuous function of ω, it follows
that Φ(jω) > 0 for all ω > 0.

(i)⇔(ii) Let F = −R−1(ST + BTX). Condition (i) im-
plies that there exists a unique real X = XT satisfying
the ARE in (ii) and σ(A+BF ) ⊂ C≤0 (via part II of [31,
Theorem 13.19]). On the other hand, condition (ii) im-
plies that Φ(jω) ≥ 0 for all ω ∈ R≥0 ∪ {∞} (via part II
of [31, Theorem 13.19]). Then, it only remains to prove
that “Φ(jω) is nonsingular on a punctured imaginary
axis excluding the origin and det(Φ(0)) = 0 if and only
if A + BF has no eigenvalues on the jω-axis except at
the origin.” Towards this end, observe that there exists
a transfer function M(s) such that Φ = M∼RM , where
M(s) = I − F (sI − A)−1B [31, Corollary 13.20]. Let
ω0 ∈ R. Because Φ(s) has full normal rank and A has no
eigenvalues on the jω-axis by assumption, the following
statements are equivalent:

• det(Φ(jω0)) = 0.
• jω0 is a transmission zero of M(s).

• M−1(s) =

A+BF B

F I

 has an observable mode

jω0. [The equivalence follows by [31, Lemma 3.38]]

• jω0 is an eigenvalue of A+BF . [Necessity is obvi-
ous. For sufficiency, suppose jω0 is an eigenvalue of
A + BF but is a non-observable mode of M−1(s).
Then, there exists an 0 6= x ∈ Cn such that (A +
BF )x = jω0x and Fx = 0. This implies that A has
eigenvalues on the jω axis, which is a contradiction.]

This concludes the proof. �

3 SNI lemma with non-minimal state-space re-
alizations

A set of conditions used to check if a system is SNI or
not is known as the SNI lemma. The earliest versions of
the SNI lemma considered minimal state-space realiza-
tions based on linear matrix inequalities (LMIs) [30] or
an ARE [20]. Yet, an SNI lemma without the assump-
tion of minimal state-space realization is essential for
controller synthesis. While [11,29] have relaxed the min-
imality assumption, [11] imposes conditions at infinity
and at zero frequency which restrict the SNI class to the
subclass known as SSNI. Since we are interested in pro-
viding a solution to the complete SNI synthesis problem,
the SSNI Lemma [11] cannot be used here. On the other
hand, in [29, Corollary 4] the system matrix is required
to be Hurwitz as an assumption instead of being implied
by the conditions, therefore it is not useful, on its own, to
guarantee the internal stability of the resulting closed-
loop. Also, [26] provides an NI Lemma without minimal
assumptions based on LMIs, but the system is allowed
to be marginally stable which is not desirable. Here, we
provide an SNI Lemma which guarantees not only the
SNI property but also the stability of the system under
the mild assumption of A being nonsingular. Moreover,
the proposed SNI lemma generalizes some of the results
in [20,19] since minimal state-space realization is not as-
sumed here.

Theorem 3.1 (SNI Lemma). Let

A B

C D

 be a state-

space realization of the real, rational, proper transfer
function G : C → Cm×m with R = CB + (CB)T > 0.
Then, the following statements are equivalent:

(i) G(s) is SNI and A is Hurwitz;
(ii) D = DT , A is Hurwitz and the Hamiltonian matrix

H =

[
A−BR−1CA BR−1BT

−ATCTR−1CA −
(
A−BR−1CA

)T
]
(1)

has no jω-axis eigenvalues except at the origin;
(iii) D = DT , det(A) 6= 0 and there exists a real X =
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XT ≥ 0 such that

ATX +XA

+ (CA−BTX)TR−1(CA−BTX) = 0 (2)

and σ(A−BR−1(CA−BTX)) ⊂ C<0 ∪ {0};
(iv) D = DT , A is Hurwitz and there exist a real X =

XT and a real L such that

ATX +XA = −LTL, (3)

C = −BTA−TX (4)

and rank(M(jω)) = m for all ω ∈ R>0, where
M(s) = LA−1(sI −A)−1B.

PROOF. Let F (s) = s(G(s)−D) and

Φ(s) = F (s) + F∼(s)

=

−(sI + A)−1B

I

T  0 (CA)T

CA R

(sI −A)−1B

I

 .

Note that G(s) is SNI if and only if D = DT , F (s) ∈
RH∞, F (0) = 0 and Φ(jω) > 0 for all ω in R>0 by [11,
Lemma 3.1]. Then, condition (i) is equivalent to

(i’) D = DT , A is Hurwitz and Φ(jω) > 0 for all ω ∈
R>0.

(i’)⇔(ii) This follows by Lemma 2.4 on noting that as-
sumptions of Lemma 2.4 are satisfied, det(Φ(0)) = 0,
Φ(∞) = R > 0 and

σ(H) = σ

([
A−BR−1CA −BR−1BT

ATCTR−1CA −(A−BR−1CA)T

])
.

(ii)⇒(iii) This follows from Lemma 2.4 on noting that
X ≥ 0 since A is Hurwitz and ATX + XA ≤ 0 (from
(2)).

(iii)⇒(ii) We will show that X is unique and A is Hur-
witz, so the implication follows by Lemma 2.4. To achieve
this, let us first assume that A is Hurwitz. Then, a sim-
ple Popov-Belevitch-Hautus test [31] shows that the pair(
A−BR−1CA,BR−1BT

)
is stabilizable. This guaran-

tees the uniqueness ofX [31,2,8]. The proof is completed
by showing that (CA−BTX,A) is detectable, because
it implies A is Hurwitz (by noting that X ≥ 0 and
ATX +XA ≤ 0 are satisfied by assumption). So, let us
assume, to the contrary, that the pair (CA − BTX,A)
is not detectable. Then, there exist 0 6= x ∈ Cn and
<(λ) ≥ 0 such that Ax = λx, (CA − BTX)x = 0
and (A − BR−1(CA − BTX))x = λx. Therefore, λ is

also an eigenvalue of A−BR−1(CA−BTX) which im-
plies that λ = 0. This contradicts detA 6= 0. Therefore,
(CA−BTX,A) is detectable.

(iii)⇒(iv) A is Hurwitz, as shown above. Also, it follows
from [24, Lemma 2] that (3) and (4) hold. Furthermore,
Φ(s) = −s2M∼(s)M(s) is easily verified by the use of
(3), (4) and by routine algebra. Finally, rank(M(jω)) =
m for all ω ∈ R>0 since Φ(jω) > 0 for all ω ∈ R>0 (by
the equivalence between (iii) and (i’)).

(iv)⇒(i’) This was proved in [29, Corollary 4]. �

Remark 3.2. Note that when any of these conditions
hold, the almost stabilizing solution to the ARE (2) is
unique, as shown in the proof of necessity (iii)⇒(ii).
Also, the partial multiplicities (i.e. the sizes of the Jor-
dan blocks to which an eigenvalue belongs) of the zero
eigenvalues of the Hamiltonian (1) are all even [2,8]. Fur-
thermore, assumption R > 0 allows us to establish the
necessity of (iv), but this assumption can be removed
when only sufficiency of (iv) is of interest as shown in
[29].

The importance of Theorem 3.1 can be summarized as
follows: 1) The SNI property can be easily and directly
tested by checking the spectrum of the associated Hamil-
tonian which depends only on the state-space matrices
(non-necessarily minimal). 2) Condition (iii) is useful for
synthesis as shown in section 5. 3) Condition (iv) pro-
vides a connection with existing literature, however, it
is not desired for synthesis because it involves a rank
condition that results in a non-convex problem which is
hard to solve.

4 A strongly SNI Lemma with non-minimal
state-space realization

Interestingly, for SSNI systems the spectral properties
of the Hamiltonians allow us to transform an ARE with
an almost stabilizing solution into an ARE that has the
same solution but being stabilizing for this new ARE.
Consequently, we provide an SSNI lemma based on
Hamiltonians and an ARE with better numerical prop-
erties. The ARE changing procedure was motivated by
the double-shift technique in [2]. Notice that the SSNI
lemma in [11] is based on LMIs which is complementary
to the SSNI lemma below. Moreover, contrary to [11]
we do not impose any controllability or observability
condition on the state-space realization, only the mild
assumption of A being Hurwitz.

Lemma 4.1 (SSNI Lemma). Let

A B

C D

 be a state-

space realization of the real, rational, proper transfer
function G : C → Cm×m with R = CB + (CB)T > 0.
Then, the following statements are equivalent:
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(i) G(s) is SSNI with A Hurwitz;
(ii) D = DT , det(A) 6= 0 and there exists a real X =

XT ≥ 0 such that (2) holds and the matrix A −
BR−1(CA − BTX) has all its eigenvalues in C<0

except m eigenvalues at the origin;
(iii) D = DT , det(A) 6= 0 and there exists a real X =

XT ≥ 0 such that C = −BTA−TX,

ÃTX +XÃ+XB̃X + C̃ = 0, (5)

and σ(Ã+ B̃X) ⊂ C<0, where for any η < 0,

Ã = A−BR−1CA+ ηA−1B
(
B†A− C

)
,

B̃ = BR−1BT − ηA−1BBTA−T ,
C̃ = ATCTR−1CA− η[CT (C −B†A)− (B†A)TC].

Furthermore, the matrix X in conditions (ii) and (iii) is
the same.

PROOF. Let H as in (1), S =
[
(A−1B)T −C

]T
, W =[

(A−2B)T CA−1
]T

, Λ = A − BR−1(CA − BTX) and

E =

[
0 I

−I 0

]
. Note that the columns of A−1B, S and W

are linearly independent because det(R) 6= 0. Moreover,
a simple calcultion shows that HS = 0, STEH = 0.

(i)⇔(ii) Observe that Theorem 3.1 already establishes
part of this equivalence. Then, C = −BTA−TX and
K = limω→0+ ω

−1j[G(jω) − G(jω)∗] = CA−2B +

BT
(
A−T

)2
CT ≥ 0. Hence, it remains to prove that γ =

dim(kerK) = 0 if and only if H has 2m zero eigenvalues

(by noting that

[
I 0

−X I

]
H

[
I 0

X I

]
=

[
Λ BR−1BT

0 −ΛT

]
).

To this end, observe that K = STEW and there exists

a nonsingular P such that PTKP =

[
I 0

0 0γ

]
. Thus, γ

columns of WP are orthogonal to γ columns of ESP
and clearly, the columns of WP are right generalized
eigenvectors of H (i.e. HWP = SP ) while the columns
of ESP are left eigenvectors corresponding to zero
eigenvalues (i.e. (ESP )TH = 0). Then, in view of [2,
Remark A.8], γ zero eigenvalues of H have partial mul-
tiplicity strictly greater than two. Hence, γ = 0 if and
only if H has 2m zero eigenvalues.

(ii)⇔(iii) Let H̃ be the Hamiltonian associated with
the ARE (5). First, note that (ii) implies (4) by Theo-

rem 3.1. Also, notice that H̃ = H + ηSFT + ηQSTE,

where F =
[
B†A 0

]T
, Q =

[
−(A−1B)T C −B†A

]T
.

Then, S =
[
I X

]T
A−1B, STE

[
I X

]T
= 0 and

SFT
[
I X

]T
=

[
I X

]T
A−1BB†A. Consequently,

H̃
[
I X

]T
=
[
I X

]T
Λ̃ if and only if H

[
I X

]T
=[

I X
]T

Λ, where Λ̃ = Λ + ηA−1BB†A. In other

words, X = XT ≥ 0 is a solution to (2) if and only if
X = XT ≥ 0 is a solution to (5) and (4) holds. Next,

it only remains to show that Λ̃ is Hurwitz if and only
if Λ has all its eigenvalues in C<0 except m eigenvalues
at the origin. To this end, note that rank(Λ) = n −m
because rank(Λ) = rank(ΛA−1) and the eigenvalues
of BR−1(C − BTXA−1) are m at unity together with
n − m eigenvalues at zero, obtained by observing that
the non-zero eigenvalues of BR−1(C − BTXA−1) are
the same as those of R−1(CB − BTXA−1B) = Im.
This yields dim(ker Λ) = m and ker Λ = Im(V1), where
V1 = A−1B. If we now assume that Λ has m + k
eigenvalues at the origin, then there exist matrices
M ∈ Cm×k and J ∈ Cn−(m+k)×n−(m+k) and full col-
umn rank matrices V2 ∈ Cn×k, V3 ∈ Cn×n−(m+k) such

that
[
V1 V2 V3

]
is nonsingular and Λ

[
V1 V2 V3

]
=

[
V1 V2 V3

]
0m M 0

0 0k 0

0 0 J

. Consequently, Λ̃
[
V1 V2 V3

]
=

[
V1 V2 V3

]
ηIm M + ηV †1 V2 ηV

†
1 V3

0 0k 0

0 0 J

. Thus, Λ̃ is Hur-

witz if and only if J is Hurwitz and k = 0. �

5 SNI control problem

Consider the uncertain linear system depicted in Fig. 1,
where the uncertainty ∆(s) is assumed to be NI and the
generalized plant G(s) is described by

ẋ = Ax+B1w +B2u,

z = C1x+D11w +D12u, (6)

y = C2x+D21w +D22u,

where x is the state of the plant, w is the disturbance
acting on the system, u is the control input, z is the
controlled output signal, y is the measurement output,
A ∈ Rn×n, B1 ∈ Rn×m B2 ∈ Rn×q, C1 ∈ Rm×n, C2 ∈
Rp×n, D11 ∈ Rm×m, D12 ∈ Rm×q, D21 ∈ Rp×m, D22 ∈
Rp×q, q ≤ m and p ≤ m.

Our aim is to construct a controller K(s) such that the
closed-loop system Fl (G,K) is SNI and the associated
linear fractional interconnection is internally stable.
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Fig. 1. Feedback control of an uncertain system

5.1 Static state-feedback

When all the system states are available, a state-
feedback controller can render the closed-loop system
SNI, as shown in the following result.

In this case, the generalized plant G(s) is described by

ẋ = Ax+B1w +B2u

z = C1x+D11w (7)

y = x

and the static state-feedback control law is given by u =
Fx.

Theorem 5.1. Consider the generalized plant G(s) in
(7) where C1B2 is full column rank, and (A,B2) is sta-
bilizable. Let R = C1B1 +BT1 C

T
1 > 0 and suppose that

(i) D11 = DT
11;

(ii) there exists a real X ≥ 0 such that

ATxX +XAx +XRxX +Qx = 0, (8)

where

Ax = (I −B1R
−1C1)[I −B2(BT2 C

T
1 R
−1C1B2)−1

BT2 C
T
1 R
−1C1]A, (9)

Rx = B1R
−1BT1 − (I −B1R

−1C1)B2(BT2 C
T
1 R
−1

C1B2)−1BT2 (I −B1R
−1C1)T , (10)

Qx = ATCT1 R
−1[R− C1B2(BT2 C

T
1 R
−1C1B2)−1BT2

CT1 ]R−1C1A. (11)

Then, the state-feedback controller u = Fx generates an
NI closed-loop systemA+B2F B1

C1 D11

 , (12)

where

F = −(BT2 C
T
1 R
−1C1B2)−1BT2 [X + CT1 R

−1

(C1A−BT1 X)]. (13)

Moreover, if in addition σ(Ax +RxX) ⊂ C<0 ∪ {0} and
det(A + B2F ) 6= 0, the closed-loop system (12) is SNI
with A+B2F Hurwitz.

PROOF. Let AF = A+B2F . Then,

0 = ATxX +XAx +XRxX +Qx
= ATX +XA+ (C1A−BT1 X)TR−1(C1A−BT1 X)

−
[
X + (C1A−BT1 X)TR−1C1

]
B2(BT2 C

T
1 R
−1

C1B2)−1BT2
[
X + (C1A−BT1 X)TR−1C1

]T
= ATFX +XAF + (C1AF −BT1 X)TR−1(C1AF
−BT1 X). (14)

Hence, (12) is NI by [24, Lemma 2]. Moreover note that,

Ax +RxX

= (I −B1R
−1C1)A+B1R

−1BT1 X − (I −B1R
−1C1)

B2(BT2 C
T
1 R
−1C1B2)−1BT2

[
CT1 R

−1C1A+

(I −B1R
−1C1)TX

]
= (I −B1R

−1C1)A+B1R
−1BT1 X + (I −B1R

−1C1)

B2F

=AF −B1R
−1(C1AF −BT1 X).

Thus, on exploiting the fact that X ≥ 0 satisfies (8)
together with σ(Ax + RxX) ⊂ C<0 ∪ {0} and det(A +
B2F ) 6= 0, the closed-loop (12) is SNI with A + B2F
Hurwitz by Theorem 3.1. �

Remark 5.2. Note that when A is nonsingular the
columns of A−1B2 belongs to kerAx ∩ kerQx. On the
other hand, when A is singular there exists 0 6= v ∈ Rn
such that Av = 0, thus v ∈ kerAx ∩ kerQx. Conse-
quently, kerAx∩kerQx is not an empty set. Then, it fol-
lows that the ARE (8) has a singular Hamiltonian and its
solution may not be unique. However, we can find some
of these solutions by following the procedure in [12]. Sin-
gular Hamiltonians arise in NI controller synthesis.

Remark 5.3. The assumption that (A,B2) is stabiliz-
able is not needed to design a feedback gain K such that
Fl(G,K) is NI. This assumption is however required for
A+B2F to be Hurwitz.

5.2 Dynamic output feedback

Consider the generalized plant G(s) in (6). The con-
troller K : C→ Cq×p is described by

ẋk = Akxk +Bky

u = Ckxk +Dky (15)

where xk is the state of the controller, Ak ∈ Rk×k, Bk ∈
Rk×p, Ck ∈ Rq×k and Dk ∈ Rq×p.

Suppose the generalized plant state-space matrices in
(6) satisfy the following assumptions:

(A1) (A,B2) is stabilizable and (C2, A) is detectable;
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(A2) C1B2 is full column rank, D21 has full row rank;
(A3) D12 = 0 and D22 = 0;
(A4) C1B1 +BT1 C

T
1 > 0.

Assumption (A1) is necessary for internal stability. As-
sumption (A2) is analogous to the corresponding as-
sumption in LQG/H∞/PR synthesis [4,27] for the sys-

tem s (G(s)−D11) =


A B1 B2

C1 C1B1 C1B2

C2 D21 D22

. The assump-

tion that C1B2 is full column rank in (A2) means that
the transfer function from u to z has relative degree of
one. The assumptions in (A3) can easily be relaxed as
shown in [25, Lemma 5]. Assumption (A4) is necessary
for the synthesis method presented in the following re-
sult.

Theorem 5.4. Consider the generalized plant G(s) in
(6) and let the assumptions (A1) to (A4) hold. Let R =
C1B1 +BT1 C

T
1 and suppose that

(i) D11 = DT
11;

(ii) there exists a real X ≥ 0 such that ATxX + XAx +
XRxX+Qx = 0, where Ax, Rx and Qx are defined
in (9), (10) and (11), respectively;

(iii) there exists a real Y ≥ 0 such that AyY + Y ATy +
Y RyY +Qy = 0 and σ(Ay + Y Ry) ⊂ C<0, where

Ay = (I −B1R
−1C1)A−B1R

−1DT
21

(D21R
−1DT

21)−1(C2 −D21R
−1C1A),

Ry = ATCT1 R
−1C1A− (C2 −D21R

−1C1A)T

(D21R
−1DT

21)−1(C2 −D21R
−1C1A),

Qy = B1R
−1[R−DT

21(D21R
−1DT

21)−1D21]R−1BT1 ;

(iv) ρ(Y X) < 1.

Then, the closed-loop system Fl (G,K) is NI when
K(s) is given by (15) with Ak = A + B2F + (I −
Y X)−1LC2 + Ψ, Bk = −(I − Y X)−1L, Ck = F
and Dk = 0, where F is defined as in (13), L =
−[Y CT2 + (BT1 − C1AY )TR−1DT

21](D21R
−1DT

21)−1,
Ψ = −[B1 + (I − Y X)−1LD21]R−1[C1(A + B2F ) −
BT1 X]. Moreover, if σ(Ax + RxX) ⊂ C<0 ∪ {0} and

det

([
A+B2F −B2F

−Ψ A+ Ψ−BkC2

])
6= 0, then Fl (G,K)

is SNI and the associated linear fractional interconnec-
tion is internally stable.

PROOF. This proof follows the results given for
strictly PR (SPR) systems in [27], but important modi-
fications are made to allow the synthesis of SNI systems.
Using the specified state-space realizations for G(s) and
K(s) in (6) and (15), respectively, the closed-loop sys-
tem Fl (G,K) has the following state-space realization,

with
[
xT xT − xTk

]T
as the state vector

Ac Bc
Cc Dc

 =


A+B2F −B2F B1

−Ψ A+ Ψ−BkC2 B1 −BkD21

C1 0 D11

 .
We will show first that conditions (i) to (iv) imply that
there exists a real X = X T ≥ 0 such that

Q(X ) = ATc X + XAc
+ (CcAc −BTc X )TR−1(CcAc −BTc X ) = 0, (16)

which, according to [24, Lemma 2], would guarantee that
the closed-loop system is NI. Then, we will show that

σ(Ac −BcR−1(CcAc −BTc X )) ⊂ C<0 ∪ {0} (17)

holds when σ(Ax + RxX) ⊂ C<0 ∪ {0}, because (16)
and (17) would guarantee, when det(Ac) 6= 0, that the
closed-loop system is SNI with Ac Hurwitz via Theo-
rem 3.1.

Towards this end, let AF = A + B2F . Then, by The-
orem 5.1, conditions (i) and (ii) imply that (14) holds.
Next, let Az = Ay + QyX and Rz = XAz + ATzX −
XQyX +Ry, so

0 = AyY + Y ATy + Y RyY +Qy

= (Az −QyX)Y + Y (Az −QyX)
T

+ Y (XQyX−
XAz −ATzX +Rz)Y +Qy

= (I − Y X)AzY + Y ATz (I −XY ) + Y RzY+

(I − Y X)Qy (I −XY ) .

A simple inspection shows that Z = (I − Y X)
−1
Y ≥ 0

(since Y ≥ 0 and ρ(Y X) < 1) satisfies the ARE

AzZ + ZATz + ZRzZ +Qy = 0. (18)

Furthermore, Z is the stabilizing solution of the
ARE (18) since it can be shown that Az + ZRz =
(I − Y X)−1(Ay + Y Ry)(I − Y X), i.e.

σ (Az + ZRz) ⊂ C<0. (19)

Also, long but routine algebraic manipulations show that

Az = Ā−B1R
−1C̄1 −B1R

−1DT
21

(
D21R

−1DT
21

)−1(
C̄2 −D21R

−1C̄1

)
, (20)

Rz = C̄T1 R
−1C̄1 −

(
C̄2 −D21R

−1C̄1

)T (
D21R

−1DT
21

)−1(
C̄2 −D21R

−1C̄1

)
, (21)

where Ā = A − B1R
−1CE , C̄1 = −C1B2F , C̄2 = C2 −

D21R
−1CE and CE = C1AF −BT1 X. Thus, by replacing
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(20), (21) and Qy in the ARE (18), we get

0 = AzZ + ZATz + ZRzZ +Qy

= ĀZ + ZĀT +
(
B1 − ZC̄T1

)
R−1

(
B1 − ZC̄T1

)T − [B1

R−1DT
21 + Z

(
C̄2 −D21R

−1C̄1

)T
]
(
D21R

−1DT
21

)−1[
B1R

−1DT
21 + Z

(
C̄2 −D21R

−1C̄1

)T ]T
=
(
Ā+ L̄C̄2

)
Z + Z

(
Ā+ L̄C̄2

)T
+ (B1 + L̄D21−

ZC̄T1 )R−1
(
B1 + L̄D21 − ZC̄T1

)T
, (22)

where L̄ = −[B1R
−1DT

21 + Z(C̄2 − D21R
−1C̄1)T ]

(D21R
−1DT

21)−1. In addition, it can be shown that
Ā+ L̄C̄2 − (B1 + L̄D21 −ZC̄T1 )R−1C̄1 = Az +ZRz, so
it follows from (19) that

σ
(
Ā+ L̄C̄2 −

(
B1 + L̄D21 − ZC̄T1

)
R−1C̄1

)
⊂ C<0 .(23)

Therefore, since R = RT > 0 (by assumption) and Z =
ZT ≥ 0 is the stabilizing solution of (22), it follows, by
[27, Lemma 2.3], that the (output-injection) system Ā+ L̄C̄2 B1 + L̄D21

C̄1 C1B1


is SPR with Ā+ L̄C̄2 Hurwitz and the ARE

ATLW +WAL + (C̄1 −BT1LW )TR−1
(
C̄1 −BT1LW

)
= 0

has a real stabilizing solution W = WT ≥ 0, i.e.

σ
(
AL −B1LR

−1 (C̄1 −BT1LW
))
⊂ C<0,

where AL = Ā+ L̄C̄2 and B1L = B1 + L̄D21.

Finally, let Q(X ) =

[
Q11 Q

T
21

Q21 Q22

]
with X =

[
X 0

0 W

]
. It is

shown after some calculations that

Q11 = ATFX +XAF + (C1AF −BT1 X)TR−1

(C1AF −BT1 X) = 0

Q21 = −FTBT2 (X + CT1 R
−1CE) = 0

Q22 = ATLW +WAL + (C1B2F +BT1LW )TR−1

(C1B2F +BT1LW ) = 0.

In other words, X = X T ≥ 0 satisfies (16), so via [24,
Lemma 2], we conclude that Fl(G,K) is NI.

Moreover, let Ac−BcR−1(CcAc−BTc X ) =

[
A11 A12

A21 A22

]
.

Then,

A11 = AF −B1R
−1 (C1AF −BT1 X

)
,

A21 = −Ψ + Ψ = 0,

A22 = AL +B1LR
−1 (C1B2F +BT1LW

)
and consequently,

σ(Ac −BcR−1(CcAc −BTc X )) = σ(A11) ∪ σ(A22).

Since σ(A22) ⊂ C<0 and A11 = Ax +RxX (as shown in
Theorem 5.1), σ(Ac−BcR−1(CcAc−BTc X )) ⊂ C<0∪{0}
when σ(Ax+RxX) ⊂ C<0∪{0}. Then, via Theorem 3.1,
we conclude that (whenever det(Ac) 6= 0), Fl(G,K) is
SNI and the associated linear fractional interconnection
is internally stable. �

Remark 5.5. The procedure to synthesize a con-
troller for the SNI problem is as follows: 1) verify that
D11 is symmetric, 2) find the unique solution of the
ARE in condition (iii) in Theorem 5.4, 3) find all the
solutions to the ARE in condition (ii) of Theorem
5.4, 4) from all the solutions found in step 3) check
which of them satisfy σ(Ax + RxX) ⊂ C<0 ∪ {0},

det

([
A+B2F −B2F

−Ψ A+ Ψ−BkC2

])
6= 0 and condition

(iv) of Theorem 5.4. It is worth mentioning that there
may be more than one controller which solves this
problem, as pointed out in Remark 5.2.

6 Illustrative example

Consider the uncertain system in Fig. 1, where the plant
G(s) is described by

[
z(t)

y(t)

]
=



−1 0 0 −1 0 0

1 −1 1 0 1 0

0 1 −1 0 1 1

−1 0 0 1 0 0

0 1 1 0 1 0

1 −1 0 −1 0 0

0 1 1 1 2 0



[
w(t)

u(t)

]

It can be easily seen that the assumptions of Theorem 5.4
are fulfilled. It is also easy to check that for any α ≥ 0,

the matrices X =


1 0 0

0 α α

0 α α

 ≥ 0 and Y = 0 satisfy the

conditions (i) to (iv) of Theorem 5.4 and σ(Ax+RxX) =

{0, 0,−2}. We also construct F = −
[
1 2α 2α

]
, L =
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−


1 0

0.5 0.5

0.5 0.5

, Ψ = 0, Ac =

[
A+B2F −B2F

0 A+ LC2

]
=



−1 0 0 0 0 0

1 −1 1 0 0 0

−1 1− 2α −2α− 1 1 2α 2α

0 0 0 −2 1 0

0 0 0 0.5 −1 0.5

0 0 0 −0.5 1 −1.5


and a controller

K(s) is given by

u(t) =


−2 1 0 1 0

0.5 −1 0.5 0.5 0.5

−1.5 1− 2α −1.5− 2α 0.5 0.5

−1 −2 −2 0 0

 y(t)

It is easy to verify that the modes of the closed-loop sys-
tem matrix Ac are {−2.618,−2,−1.5,−1,−0.382,−2α}
and det(Ac) = 6α. Furthermore, the modes σ(A +
LC2) = {−2.618,−1.5,−0.382} are uncontrollable

since Bc =
[
BT1 0

]T
and the mode λ = −2 is un-

observable. Hence, the closed-loop poles are given by
{−1,−2α}, the closed-loop transfer function matrix

is given by Fl(G,K)(s) =

[
1
s+1 + 1 0

0 2
s+2α + 1

]
and

j [Fl(G,K)(jω)−Fl(G,K)(jω)∗] =

[
2ω
ω2+1 0

0 4ω
4α2+ω2

]
.

Note that for all α > 0, det(Ac) 6= 0 and therefore The-
orem 5.4 states that Fl(G,K) is SNI and its associated
linear fractional interconnection is internally stable. To
verify this, note that none of the poles of Fl(G,K) and
also none of the modes of Ac are in {s ∈ C : <(s) ≥ 0}
and j [Fl(G,K)(jω)−Fl(G,K)(jω)∗] > 0 for all ω > 0.

Moreover, for α = 0, det(Ac) = 0. Thus, Fl(G,K) =[
1
s+1 + 1 0

0 2
s + 1

]
is clearly only NI with a pole at the

origin. To verify this, note that

(i) the poles of Fl(G,K) are {−1, 0} none of which is
in {s ∈ C : <(s) > 0};

(ii) j [Fl(G,K)(jω)−Fl(G,K)(jω)∗] ≥ 0 ∀ω > 0;
(iii) there are no poles on s = jω0 for ω0 ∈ (0,∞);
(iv) s = 0 is a pole ofFl(G,K) but lims→0 s

2Fl(G,K)(s)
= 0 ≥ 0.

7 Conclusions

A set of necessary and sufficient conditions were estab-
lished for the characterization of SNI systems with non-
necessarily minimal state-space realization, which we re-
fer to as the SNI Lemma. This SNI lemma then allowed
us to build on prior methods for SPR synthesis to de-
velop an ARE based method for SNI controller synthesis.
The proposed methodology involves the solution of two
AREs and a coupling condition, but due to essential pe-
culiarities only present in SNI controller synthesis, one
of these AREs has a singular Hamiltonian. This critical
solution may not be unique, as shown in the illustrative
example; therefore, its construction can be numerically
challenging. Although the sufficient conditions provided
for SNI controller synthesis do not appear to be conser-
vative, necessary conditions for SNI controller synthesis
remain an open problem.
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