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Consumer theory

ReferenceJehle and RenyAdvanced Microeconomic Theory, 3rd ed.,
Pearson 2011: Ch. 1.

The economic model of consumer choice has 4 ingredients:

1. The consumption set;

2. The preference relation;

3. The feasible (budget) set;

4. Behavioral assumptions (e.g., rationality).

This basic structure gives rise to a genénalory of choicewhich is used in
several social sciences (e.g., economics & political ®&gn

For concreteness, we focus on explaining the behavior ¢ekpf a
representative consumer, a central actor in much of ecantiraory.
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Consumption set

The consumption or choice set represents the set of alhatiees available
to the (unrestricted) consumer.

In economics, these alternatives are catledsumption plans

A consumption plan represents a bundle of goods, and isawrits a vectox
consisting o different consumption goodg,= (X, . . . , Xn)-

Typical assumptions oX are:

1. 0 # X C RY (i.e., nonempty & each good measured in infinitely
divisible and nonnegative units);

2. Xis closed;
3. Xis convex;
4. 0 X.
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Consumer preferences

Consumer’s preferences represent his attitudes towarbjeets of choice.

The consumer is born with these attitudes, i.e. prefereaea ‘primitive’ in
classical consumer theory.

To represent them formally, we use thideast as good dzinary relation’Z on
X; and for any two bundles' andx?, we say that,

1. The consumer igdifferentbetweerx! andx?, denoted by! ~ x?, if
and only if (iff) x! = x2 andx? = x%;

2. The consumestrictly prefersx! overx?, indicated byx! > X2, iff
xt - x? and—[x? - x1].
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Consumer preferences
We requirez; to satisfy the following axioms:

1. CompletenessFor allx! andx? in X, eitherx! > x2 or x? - x!;

2. Transitivity: For any three bundles', x> andx® in X, if x' > x? and
X2 = x3, thenx! = 2.

When - satisfies these axioms it is said to bexional preference relation

Under completeness and transitivity, for any two bundfes?® € X, exactly
one of the following three possibilities holds: either

> x> X2,
» X2 > xL, or
> XL~ X2

Thus, the rational preference relatignoffers aweak or partial ordeof X
(complete and transitive), ranking any finite number ofralitives inX from
best to worstpossibly with some ties.

Alejandro Saporiti (Copyright) Consumer Theory 5/65



Consumer preferences
Apart from Axioms 1 & 2, we demand three additional proparta~:

3. Continuity: For allx? € X, the setgx € X : x 7 xX°} and
{x € X :x% > x} are closed irX ¢ R";

» Continuity rules out open I A
areas in the indifference set; i i
that is, the set I i
{xeX:x~x} ={xeX: ! '
x 72X n{xe X: X0z x}is ! ﬁ
closed. ‘ !

(a,?o} celoy
[o re [y

» It rules out ‘sudden
preference reversals’ such as
the one happening in Fig 1, Figure 1:Lexicographic preferences,
where(b,0) =, (x,1) for all onR?%; (ar, @) 7 (b, by) iff either
x < b, but(b,1) >, (b,0). a; > by, ora; = by anda, > by.
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Consumer preferences

4. Strict monotonicity For allx!, x? € X, (a) if x: contains at least as much

of every commaodity as?, thenx! - x?; (b) if x* contains strictly more

of every commodity, them! >~ x2.

» This axiom rules out the e

possibility of having
‘indifference zones’; it also
eliminates indifference sets
that bend upward and contain
positively sloped segments.

» Strict monotonicity implies
that the better (resp. worse)
than set is above (resp.

below) the indifference set. Figure 2:Violation of strict monotonicity.
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Consumer preferences

5. Strict convexity For allxt, x? € X, if x! # x2 andx? = x2, then for all
ac (0,1), axt + (1 — a)x? = x2.

» It rules out concave to the origin segments in the indiffesesets.
» It prevents the consumer from preferring extremes in corngiam.

T2

Ty T

Figure 3:Convex Figure 4:Nonconvex
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Consumer preferences
Axioms 3-5 exploit the structure of the spaxe

>

>

Continuity uses the ability to talk about closeness.

Monotonicity uses the orderings on the axis (the abilitydmpare
bundles by the amount of any particular commaodity).

It gives commodities the meaning of ‘good&tore is better

Convexity uses the algebraic structure (the ability to kpddahe sum of
two bundles and the multiplication of a bundle by a scalar).

That is, it assumes the existence a “geography” of the sdtavhatives,
so that we can talk about one alternative being between therat

It's appropriate when the argument “if a move is an improvense is
any move part of the way” is legitimate, while the argumeht‘move is
harmful then so is a move part of the way” is not.
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Utility representation

When preferences are defined over large sets of alternaiivesisually
convenient to employ calculus methods to work out the beibog

To do that, we'd like to represent the information conveygdhe preference
relationz through a function.

A real-valued functioru : R} — R is said to be atility representatiorof the
preference relatioyy if for all x*,x? € X C R

Xt X s u(xt) > uBd). (1)

Theorem 1 (Debreu, 1954)

If the preference relation - is complete, transitive and continuous, then it
possesses a continuous utility representation u : R}, — R.

Consistent pair-wise comparability ov€rand some topological regularity are
enough for a numerical representationof
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Invariance of the utility function

Theordinal natureof the utility representation embedded in (1) implies that
utility function u: R} — R is unique up to any strictly increasing
transformation

More formally, suppose : R} — R represents the preference relatign
Then, for any strictly increasing transformatibn R — R, the function

v(x) = f(u(x)) ¥x € X, (2)
also represents,.
To see this, recall that(-) representg; if for all x,y € X,

X >y & uix >
X~y & u(x

V), 3)
) (4)

u
u
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Invariance of the utility function
Moreover, note that for any two real numberd € R,

(i) f(a) > f(b) ifand only ifa > b; and
(i) f(a) = f(b) ifand only ifa = b.
Thus, using the definition of given in (2) and (i)-(ii), for allx,y € X

V() >v(y) < fu(x) >fuly)) < u(x)>u(y), (5)
v(x) =v(y) < fu(x)) =f(uly) < ulx)=uly). (6)
Combining (5) with (3), we have

V(X) > V(y) & X =Y.
Similarly, combining (6) with (4), we have
V(X) = V(y) & X ~ Y.

Hence v(-) represents:.
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Quasiconcavity

A function u(+) is quasiconcaven a convex seX C R" if and only if for all
Xy € X, and for all\ € (0,1),

UAX+ (1= A)y) = minfu(x), u(y)}- (%)

Strict quasiconcavity is defined analogously by replacigweak inequality
in (x) with the strict inequality.

A function g(+) is quasiconveon a convex seX C R" if and only if for all
xy € X, and for allA € (0,1),

gAX+ (1= X)y) < max{g(x),q(y)}.
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Quasiconcavity

Lony £ Guosiconcon ve, ot

g Not concave.
£6¢y 4 guasiconcaw, °

+n

Mo (-3 £)

oy + — AEO0 +(-2) b7
£ Foany

M= A%+ (= R)Y

Hy= Aoy

Alternatively, we could say that a functiarn-) is quasiconcaven a convex
setX C R"if for all c € R the upper contour séix € X : u(x) > c} is convex.
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Quasiconcavity

u(x) u(x)

u(x | 3 u(x)

y

Figure 5:Quasiconcave Figure 6:Not quasiconcave

In the the picture above, every horizontal cut through timefion must be
convex for the function to be quasi-concave. Thufs) is quasiconcave in
Fig. 5, whereas it isn’t in Fig. 6.
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Quasiconcavity

An important property of quasiconcavity is that it's presat under
increasing transformations.

Proposition 1

Ifu: X CR" — Risquasiconcave on X and ¢ : R — R isa monotone
increasing transformation, then ¢(u(-)) is quasiconcave.

The proof of Proposition 1 is as follows. We wish to show thoatdll X,y € X,
and for allA € (0,1),

P(UAX+ (1= A)y)) = min{a(u(x)), p(u(y))}-
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Quasiconcavity

Sinceu is quasiconcave, for a{,y € X, and for all\ € (0, 1),

UAX+ (1~ A)y) > min{u(x), u(y)}- @)
Applying ¢ to both sides of (7),
P(UAX+ (1= A)y)) = d(min{u(x), u(y)}). ®)
But,

¢(min{u(x), u(y)}) = min{¢(u(x)), ¢(u(y))}- 9)

Hence, combining (8) with (9), we get the desired result; igeor all
xy € X, and for all\ € (0,1),

P(UAX+ (1= A)y)) = min{g(u(x)), p(u(y))}-
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Indifference curve & marginal utility

Given a utility functionu(-), theindifference curvelevel contour set) that
passes through the bundies X is defined as

{xe X:u(x) =u(x)}.

If u(-) is quasiconcave, then the indifference curves are coneeal({rFig. 5:
the upper contour sets of a quasi-concave function are ghnve

If uis differentiable, then for all
i =1,...,n,themarginal utility of x;
atx = (X, ...,%n) IS

ou(x)

MUi(X) = %

At X, consumer is willing to
substitutex; againstx, at the rate of
~~ —AXl/AXQ.
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Marginal rate of substitution

If we'd like to vary x; by a small amountlx;, while keeping utilityu(x)
constant, how much do we need to chargg x;?

Formally, the total differential ofi = u(x) is

ou(x)
6X1

ou(x)

0= 7
OXn

dxg +... + dxn.

Since we only care about changesqjcaused by changes x we set
dx, =O0forallh=1,...,n, withh=#1i,j.

Thus, the total differential simplifies to

oux) ~ oux
O dx; + o dx = 0.
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Marginal rate of substitution

Rearranging the terms, we get that therginal rate of substitutioMRS)
between good and good is given by

dx _ou(x)/9% _ MUi(x)

dxlau=0  Ou(x)/9x  MU;(X)’

MRS;(x) is the rate at which googdcan be exchanged per unit of good
without changing consumer’s utility.

MRS; (%) =

» The absolute value of the MRS
is equal to the ratio of marginal
utilities of i andj atXx;

T2 |MRS12(29,29)| > |MRS1a(x}, 2b)|

» The MRS equals the slope of the
indifference curve.

20
T2

x3
» When preferences are convex, i = u(ry, 2)

the MRS between two goods is
decreasing.
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Budget set

Obviously, the consumer must be able to afford his consumgiundle. This
generally restricts his choice set. We assume

» Each good has a strictly positive pripe> 0, foralli =1,...,n;

» The consumer is endowed with income- 0.

Thus consumer’s purchases are restricted bythiet constraint
n
> px <.
i=1

The budget set is the set of bundles that satisfy this canstra

B(p,y) = {X€ X:piXg + ...+ pn¥n < Y}
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Budget set (2-goods)

Budget seB(p, y):
Xo < % — %Xl.
Budget frontier:

- Y _ M

with slope—p1/pz.

X1
P1
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Behavioral assumption: Rationality

So far, we have a model capable of representing consumasgbfe choices
and his preferences over them.

Now we restrict consumer’s behavior assuming that heréianal agentin
the sense that he chooses the best alternative in the b @psy)
according with his preference relatign

Thusrationalityin microeconomics has two different meanings:

1. Consumer orders consistently (transitivedyf) possible alternatives;

2. Consumer chooses the best alternative among those in sibléeset.

We are now ready to study consumer’s optimal choices!
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Utility maximization

Formally, consumer’sitility maximization problen(UMP) is
max uo;l, - %)
st DL PiX <.

The utility functionu is a real valued and continuous function.

(10)

The budget seB is a nonempty (& X), closed, boundedy( > 0 Vi) and thus
a compact subset @&t".

Therefore, by the Weierstrass theorem, a maximumnafer B exists.

Let's assume the solution of (10), denotedis interior, i.e.vi, x* > 0; then
UMP can be solved using the Kuhn-Tucker method.

Set up the Lagrange function

L(X1,- .y Xn, A) = U(X1, ..., %) + A

y - me] : (11)
i=1
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Interior solution & > 0)

Differentiating £(-) w.r.t. each argument, we get the Kuhn-Tuckest order

conditions(FOC's) at the critical bundl&*:

OL(X*, A¥) 6u( *)
OXi 19)6

— A =0,Vi=1,.

n
A* >0, and\* - (y— me*) =0.
i—1

Imposing strict monotonicity, (13) must be satisfied witluaity, and
therefore (14) becomes redundant.
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Interior solution & > 0)

AssumingMU;(x*) > 0 for somei, it becomes clear from (12) that

aux*) 1 du(x*) 1 ou(x*) 1 .
O0X1 p1 OXo P2 O%n Pn

Hence, the (absolute value of the) marginal rate of sulbistitiatx* between
any two goods equals the price ratio of those goods:

B MU; (x*) P

(15)

Otherwise, the consumer can improve by substituting a gdtidanlower MU
by a good with a higher MU.

The Lagrange multiplien* is called theshadow price of mongyand it gives
the utility of consuming one extra currency unit.
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Interior solution (2 goods)
Graphically, in the case of two goods (15) is equivalent &tngency
between the highest indifference curve and the budget reonist

)

FOC: Vu(z*)=X- Vg(z*)

9(z*) =y — pray — paa; =0

Vu(z*) = (MU (2*), MUy (z*))

X1

Figure 7:Interior solutionx* > 0.
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Interior & corner solution (2 goods)

P
Stope = —*1 15 Stope = — MRS, ,(x¥)

Xzh ‘\; \\,\/

\

Slope = B —MRS,,(x*} Ap
x*ex(p,w) 2
Yu(x*)
“xy X e x(p,w) X

® (b)

Figure 8:(a) Interior solutions® > 0; (b) Corner solutiorx® > 0.
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Second order conditions

Strictly speaking, for any critical poin¢* that satisfies the FOCs, we must
check that the second order conditions (SOCs) for maximaatisfied af*.

However, ifu(-) is quasiconcave oR" and(x*, A*) > 0 solves the FOCs of
the Lagrange maximization problem, thensolves (10).

The consumer’s optimal choices(p, y), as a function of all priceps, . .., pn
and incomey, are called thé&Valrasian demands

N.B. They are also called sometimsirshallian demands

From now on, we assumé (p, y) is differentiable.
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Example
Let’s find the Walrasian demands for the case in which
uxe, %) = (O +x5)Y%, pe (0,1).
Consumer’s utility maximization problem is
max - (x{ +x5)"/"

(x1,%2) ERZ
S.t. P1X1 + P2X2 < Y.

The associated Lagrange function is
[’(Xla X2, )‘) = (Xli + Xg)l/p + )‘(y — p1X1 — pZXZ)'

Because preferences are strictly monotpttie consumer will spend his
whole budget irx; andxs.
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Example

Thus annterior solutionexists, and the FOCs are:

3‘5? Voo g a0,
1
DL (g )0 g ™t~ 2p, —0
X2
OL(X, A
é)\ ) Y — PX1 — p1xg = 0.

Equalising the first two FOCs and rearranging terms, one gets

1

p1\ Pt
Xp =X | =
! 2<P2>

Y = P1Xq1 + pP2Xo.
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Example

Plugging the first expression into the second, we have

1
p e _ 1
p—1

p—1 _pP_
Yy =p1Xe <%> +p2xe =X (py +P5 )P,

Finally, solving forx, and then foix;, we find that

1
. yps '
X(p,y) = ﬁ and
Py +ps
%1
xi(p,y) = S (L

P _P_
pf_l + p2p—1
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Indirect utility

The function mapping out the maximum attainable utility different prices
and income is called thedirect utility function.

It is defined as
n
V(py) = maX{U(xl,---,xn) ) opix < y},

= UK.y, KR,

GeometricallyV(p,y) is equal to the e
utility level associated with the ¥ip2
highest indifference curve the
consumer can achieve with income

. x®.7)
and at price®.

~piip2
1= u(p.y)

x4

»ipy
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Roy'’s identity
An important result in consumer theory, knownRsy’s identity, shows that
the Walrasian demands can be recovered from the indirdity.uti

To be precise, iV is differentiable afp,y) andoV(p,y)/dy # 0, then

6V8(py)
X (p,y) = Y forallj=1,...,n. (16)

9y

The proof of (16) rests on thenvelope theorem

The envelope theorem states that the effect of changingaarederay over
the optimized value of the objective functighis given by the first-order
partial derivative of the Lagrange function with respecttpevaluated at the
optimal (interior) point(x*, A*).

ovf(a)  OL(X", \¥)

= - ck=1,....1. 17
Oay ooy R (17)

Alejandro Saporiti (Copyright) Consumer Theory 34/65



Roy'’s identity

In the utility maximization problem maxu(x) s.t.g(x,p,y) =y—p-x=0,
the Lagrange function is(x, A\) = u(x) + A(y — p- X). If x* > 0,

NVEY) [ OLADY s os .
> aE,-y (_ (gp,- )_—)\ -X(p,y); and

» NPy (: aL(g,A*)) — \* (> 0 cosp > 0 & MU;(x*) > 0 for somei).

dy

Therefore,
Pl Ny
o) = e =Xy

which is precisely Roy’s identity.
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Marginal utility of income

As noted above, by the Envelope theorem,
v NPy
dy
That is, in the utility maximization problem the Lagrangeltiplier is said to
be themarginal utility of income

Alternatively, \* is also called thehadow pricef (the resourcey.
In words, in the UMP the Lagrange multiplier measures thenghaof the

optimal value of the utility function as we relax in one uthietbudget
constraint.
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Indirect utility’s properties
Assumingx® > 0 andMU;(x*) > 0 for some, the indirect utility function
satisfies the following properties:

Forall (p,y) € R”jjrl V(p,y) is (i) decreasing imj, j = 1,...,n, and (ii)
increasing iry; i.e., for all(p,y) € R'}Qf,

> aVa(SJY) A" % (py) <0,j=1,...,n;and

VEY) _ yx

For all (p, y) R”jjrl V(p,y) is quasi-conven prices and income; i.e., for all

(P*,¥?), (P°,¥°), andg € (0, 1),

V(p,y) < max{V(p% y*),V(p°,¥")},
wherep = 8p? + (1 — B)p® andy = By + (1 — B)y".
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Indirect utility’s properties
The intuition as to why (p, y) is quasi-convexn prices and income is given
in the following graph.
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Indirect utility’s properties

Forall (p,y) € R”jjrl V(p,y) is homogeneous of degree zéngprices and
income; i.e., for al(p,y) € R anda > 0,

V(ap,ay) = V(p,y).
To see this, fix anyp,y) € R anda > 0. By definition,

V(ap,ay) = max{u(x): (ap)-x < ay}
= max{u(x): p-x<y}
= V(R

N.B. Bear in mind thak(ap, ay) = X(p,y); i.e. Walrasian demands are
homogeneous of degree zero in prices and incamer(onetary illusion
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Expenditure minimization

Theprimary utility maximizationproblem studied before

max U, . %)

st pXa+-+paXa <Y,
has the followingdual expenditure minimizatioproblem (EMP)

min - P1Xq + - -+ + PrXn
XeX
st u(Xq,..., %) >0,

where the utility leveb is maximal at(p,y), i.e.,0 = V(p,y).

The solution of the EMP gives the lowest possible expenglitarachieve
utility 0 at pricesp.
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Expenditure minimization

Graphically, the problem for thetility-maximizing consumeis to move
along the budget lingg until he achieves the highest I6.

The problem for thexpenditure-minimizing consumés to move along the
Uo-IC until he reaches the lowest iso-expenditure ipe

¥,

Mg

AT se— zsc_?amd' 4ore live Jx&ﬂl\i ‘e

‘5‘=7.z.?
| J

ks
i

indiflerence curve J?XE.QQ‘ s fo)-:Mgz
4

I
I
i -
e . T va
Fo=px
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Expenditure minimization

More generally, the minimum expenditure required to attdility w given
pricesp € R | is found by solving

min p-Xx s.t. u(x) > w. (18)
XERT

Note that, forp > 0 andx € R", the set of expenditurgs- x that satisfies the
restrictionu(x) > wis closed and bounded below by zero. Therefore, a
minimum always exists.
The Lagrange function corresponding to (18) is:

L(X,A\) = —p- X+ A(U(X) — w); (29)

and the Kuhn-Tucker conditions in an interior paxit> 0 are as follows:
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Expenditure minimization

1. M}q“ —pi + A" ( 9 =0,i=1...,n
2. u(xX) > w;
3. A* > 0and\* - (u(x*) —w) = 0.
If p # 0O, then the constraint must be bindingati.e., A\* > 0 andu(x*) = w.

Thus, in the interior solutior® > 0 we have that:

MRS; (x*) = —:'g; - —%' Vi 4] and
ux’) =w
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Hicksian demands

The solution to the EMP, denoted BY(p,w) = (X](p,w), ..., x(p,w)),
provides what is known as thdicksian or compensated demands

xjh(-) depends on pricgs € R} | and welfarew € R, as opposite to the
Walrasian demang'(-), that depends on pricesc R, and incomey > 0.

This is because the Hicksian demands must satisfy theyutdistraint,
whereas the Walrasian demands must satisfy the budgetaionst

Walrasian demands explain consumer’s observable markedmtt behavior.
The Hicksian demands instead are not observable (depentlityf)u

however, their analytic importance will become evident wie explain the
effect of a price change over the quantities demanded of gamt.
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Expenditure function

The value function of the expenditure minimization problisroalled the
expenditure functionand is defined as follows

E(p,u) = min{z PiXi : U(Xa, ..., %) > u}

i=1
= pl XT(pa U) + ot + pn thl(pa U).

The assumptions 1-5 on consumers’ preferences imply thabthenditure
function E(p, u) verifies the following properties:

For every utility levelu € R, E(p, u) is concave im; i.e., for allp/, p”, and
a € (0,1),

E(pom U) > o E(plv U) + (1 - a) : E(pﬂv U),
wherep, = a-p' 4+ (1 —«) - p’.
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Expenditure function’s properties

To see this formally, fou € R, o, p” € RT ,, anda € (0, 1).

By definition,
E(p,u) = P X“(p’,U),
E(p”,u X'(p, ),
E(pa,u) = Pa- Xh(paau)

Sincex"(p/, u), x"(p”, u), and
x"(pa, U) are solutions to their
respective EMPs

p XN, u) <P X (pa, ),

and

p// . Xh(p”, U) < p// . Xh(pa, U).

Alejandro Saporiti (Copyright)
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Expenditure function’s properties

If we multiply (20) by« and (21) by(1 — «), and we add the inequalities, the

ap’ - X"(p,u) + (1 — a)p” - xX(p", u) [ap + (1= a)p”] - X(pa, ),

<
S P - Xh(pOm U).
Therefore,

- E(pla U) + (1 - a) ’ E(pl/’ U) < E(pa, U).

(Shephard’s LemmaJhe Hicksian demands are equal to the partial
derivatives of the expenditure function with respect toghees; i.e., for all
j=1...,njandall(p,u) € R xR,

h — aE(p’ U)
X (PoU) = =55
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Expenditure function’s properties

The proof rests on the Envelope theorem.

The Lagrange function associated to the EMPyminx subject to
u(x) —u>0isL(x,\) = p- X+ Au—u(x)], (with A > 0 cosp > 0).

Hence, using (17), we get the Shephard’s Lemma:

OE(p,u) _ IL(X",A") _ p
oo~ op =X'(p,u). (22)

N.B. The pair(x*, \*) in (22) denotes the interior solution of the EMP.

Intuitively, Shephard’s Lemma says the following. SuppBséer buys 12
units ofx; at $1 each. Assume thptincreases to $1.1.
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Expenditure function’s properties

Shephard’s lemma says that, to
maintain utility u constant, the
expenditure must increase by
AE =% -Api=12-01=$12 =)
(if x; doesn’t change!).

BEGE)
g = i (P

E(P/ )

SinceE(p, u) is concave imp,

X - Ap; overstates the required
increase (cos; actually changes
whenp; changes).

But, for Ap; small enough, the
difference can be ignored.

P
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Expenditure function’s properties

Givenue R, foralli =1,...,n, E(p,u) isincreasing irp;; i.e., OE(pY) - 0,

pi
with strict inequality becaus:é(p, u) > O (interior solution).

This property follows from (22); it simply means that higlpeices=- a
greater expenditure is needed to attain

If there exists an interior solution for the expenditure imiization problem,
then by the Envelope theorem,

OE(p, u)

=\">0.
ou -

Hence, giverp € R |, E(p, u) isincreasing iru.

In the EMP the Lagrange multiplier represents the rate ofighaf the
minimized expenditure w.r.t. the utility target, itbg utility’s marginal cost
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Expenditure function’s properties

Givenu € R, E(p, u) is homogeneous of degree onepin

To see this, note that Hicksian demands are homogeneougr@fedeero in
prices; i.e., for al(p, u) and allk > 0, x"(kp, u) = x"(p, u).

The reason is any equi-proportional change in all prices do¢ alter the
slope of the iso-expenditure curves!

Therefore, giveru € R, for allp € R}, andk > 0,

E<kp U) = (kp) ’ Xh(kpa U) = k(p ’ Xh(pa U)) =k- E(pv U).
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Duality

Though the indirect utility and the expenditure functioe aonceptually
different, there is @lose relationshipetween them.

Indeed, under assumptions 1-5, for@kt R}, , y > 0, andu € R, we have

V(va(pvu)) = U and (23)
E(p,V(p,y) = V. (24)

The intuition for (23) is as follows. (A similar reasoningmigs to (24) too.)

Given a budgeE(p, u), the maximum attainable utility at pricesmust be
equal tou. Instead,

» If V(p,E(p,u)) > u, then it would be possible to take some money aw:
from E(p, u) and still getu, which would contradict thaE(p, u) is the
minimum expenditure necessary to attain utility

» If V(p,E(p,u)) < u, then it would be necessary to spend more than
E(p, u) to getu, which would contradict again th&p, u) is the
minimum expenditure to attain utility.
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Duality

The relationships stated in (23) and (24) indicate that wetdwed to solve
both UMP and EMP to find the indirect utility and the expenaitéunction.

From (23), holding pricep constant, we can inveX(p, -) to get

E(p,u) = V7*(p,u). (25)
Notice thatV—(p, -) exists becaus¥(p, -) is increasing in income.
Similarly, from (24), holdingp fixed, we can inverg(p, -) to get

V(p,y) =E(p.y). (26)
Notice thatE~1(p, -) exists becausg(p, -) is increasing in utility.

Formally, (25) and (26) reflect that the indirect utility atfe expenditure

function are simply the appropriately chosen inverses o edher.
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Duality

In view of this, it is natural to expect a close relationshgivieen the
Hicksian and the Walrasian demands too.

In effect, for allp € R’JH, y>0,ue R,andi =1,...,n, we have

x(p,y) = X(p,V(py); and (27)
h

x'(p,u) = X% (p,E(p,u)). (28)

» (27) says that the Walrasian demand at prizasd incomey is equal to
the Hicksian demand at pricesand the maximum utility afp, y);

» (28) says that the Hicksian demand at pripemd utility u is equal to the
Walrasian demand at pricesand the minimum expenditure &i, u).
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Duality

Another way to read (27) and (28) is the following.

» If xX* solves maxi(x)

s.t.p-x <Yy, thenx* Ty

solves mirp - x) s.t.

u(x) > u* = u(x*); y/po
» Conversely, ifx* E

solves mirfp - X) s.t. #*(p,y) = 2(p, V(p, y))

a(pu) =
u(x) > u, thenx*
solves maxi(x) s.t. u=u(z") = V(p,y)
p-x<y =p-x. y/p 1

For that reason, we say has adualnature.
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Slutsky equation
Fixing an income levey = E(p, u), the expression in (28) implies that
X(p,u) =X (P, Y)- (29)

Differentiating (29) w.r.tjp;, we have

K(pW _ K (py)  K(py) (P
op; op; oy op;
=x'(p,u)

Moving the last term of the RHS to the LHS and using the fadt tha
xjh(p, u) = x*(p,y) wheny = E(p, u), we get theSlutsky equation

% (py) _ 0d(p,u)
8pj 3pj

o (p.y) (30)

X' (p,Y) - dy
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Slutsky equation

The Slutsky equation is sometimes called filnedamental equation of
demand theory

If we differentiate (29) w.r.t. the own-priga, then (30) tells us that the slope
of the Walrasian demand is the sum of two effects:

» An unobservableubstitution effegtox{(p, u)/dp;, given by the slope of
the Hicksian demand; and

» An observableéncome effect—x*(p,y) - [0X" (p,Y)/dY];

Py ey . OX(pY)
(9pi - é)pi Xl(pay) é?y .
~——

SE IE
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Slutsky decomposition

IkeY

X2

Initial choicex? given priceg
and incomey.
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Slutsky decomposition: Substitution effect

X2

Reduce pricg; to p;, but keep
the consumer on the same
indifference curve.

TBRLPY)
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Slutsky decomposition: Income effect

X2

Now increase income to the new
budget line.

Y

&

u*(pe. P2, )
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Upshot from the Slutsky decomposition

A price change has two effects

» substitution effect: always negative, and
» income effect: cannot be sighed—depends on preferences.

Depending on the sum of these two effects, (Walrasian) ddmeay change
either way following a price reduction.

However, we know that

» If 9x* /0y > 0 (normal good, SE and IE goes in the same direction anc
the Walrasian demand has a negative slope;

» If 9" /0y < 0O (inferior good, the sign of the slope of the Walrasian
demand depends on the sizé @& /dp;| in relation to|x' - 9x*/dy|.
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Slutsky matrix

Consider then x n-matrix of first-order partial derivatives of the Hicksian
demands:

X (p,u) Xl (p,u)
op1 T Opn
o(p,u) = : . :
X (p,u) X (p,u)
opL T Opn

By Shephard’s Lemmay(p, u) is the matrix of second-order partial
derivatives of the expenditure function, which is concaverces. Thus,
o(p, u) is negative semi-definite

Moreover, by definition of negative semi-definiteness, feenents of the
diagonal are non-positive; i.e.

Od'(p,u)  9%E(p,u)
R <0. (31)
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Demands’ slopes

That means the Hicksian demands cannot have a positivel slope

Finally if E(p, u) is twice continuously differentiable;(p, u) is symmetric
because Young’s theorem implies

¥ (p,u) _ O(pu)
op; op

Assuming that the Walrasian demand %pis also downward sloping, the
relationship between the slopes is as follows.

For a normal good:

» Whenp; |, Walrasian] more than Hicksian because IE reinforces SE;

» Equally, wherp; T, Walrasian| more than Hicksian because IE
reinforces SE.
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Demands’ slopes: normal good

As a resultWalrasian demand is flatter than Hicksian demand whéna
normal good.

pi
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Demands’ slopes: inferior good
For an inferior good:

» Whenp; |, Walrasian| less than Hicksian because IE offsets part of th
SE;

» Equally, wherp; T, Walrasian| less than Hicksian because IE offsets
part of the SE.

pi

As a result, assuming both have 2i(p.9)
negative slopeg;licksian

demand is flatter than Walrasian
demand whem; is an inferior i
good. P ! (p,V (5, 5))
a b c d ;i
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