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Abstract

This paper presents a limiting distribution theory for GMM and Indirect Inference estimators when
local identification conditions fail at first-order but hold at second-order. These limit distributions
are shown to be non-standard, but we show that they can be easily simulated, making it possible
to perform inference about the parameters in this setting. We illustrate our results in the context
of a dynamic panel data model in which the parameter of interest is identified locally at second
order by non-linear moment restrictions but not at first order at a particular point in the parameter
space. Our simulation results indicate that our theory leads to reliable inferences in moderate to
large samples in the neighbourhood of this point of first-order identification failure. In contrast,
inferences based on standard asymptotic theory (derived under the assumption of first-order local
identification) are very misleading in the neighbourhood of the point of first-order local identifica-
tion failure.

Keywords: Moment-based estimation, First-order identification failure, Minimum-chi squared esti-
mation, Simulation-based estimation



1 Introduction

Generalized Method of Moments (GMM) was introduced by Lars Hansen in a paper published
in Econometrica in 1982. Since then this article has come to be recognized as one of the most
influential papers in econometrics.1 One aspect of this influence is that applications of GMM have
demonstrated the power of thinking in terms of moment conditions in econometric estimation.
This, in turn, can be said to have inspired the development of other moment-based approaches
in econometrics, a leading example of which is Indirect Inference (II). GMM can be applied in
wide variety of situations including those where the distribution of the data is unknown and those
where it is known but the likelihood is intractable. In the latter scenario, it was realized in the
late 1980’s and early 1990’s that simulation-based methods provide an alternative - and often more
efficient way - to estimate the model parameters than GMM. A number of methods were proposed:
Method of Simulated Moments (McFadden, 1989), Simulated Method of Moments (SMM, Duffie
and Singleton, 1993), Indirect Inference (II, Gourieroux, Monfort, and Renault, 1993, Smith, 1990,
1993)2 and Efficient Method of Moments (EMM, Gallant and Tauchen, 1996). While SMM and
EMM have their distinctive elements, both can be viewed as examples of II as they have the
“indirect” feature of estimating parameters of the model of interest by matching moments from a
different - and potentially misspecified - model.

The standard first-order inference frameworks for Generalized Method of Moments (GMM) and
Indirect Inference (II) rest crucially on the assumption of first-order local identification that is, a
certain derivative matrix has full rank when evaluated at the true parameter value. However, it
has been realized that in a number of situations first-order identification either fails or is close to
failing with the result that inferences based on the standard framework are misleading. To date,
this concern and its consequences have largely been explored in the context of GMM, but recently
concerns about identification have been raised in dynamic stochastic general equilibrium (DSGE)
models to which GMM and II have been applied.3

Within the GMM framework, these concerns about the consequences of identification have
mostly arisen in the special case of Generalized Instrumental Variables (GIV) estimation (Hansen
and Singleton, 1982) in which the moment condition derives from the orthogonality of a function
ut(θ), involving the parameter vector θ, to a vector of instruments, zt. In this case, the condition
for first-order local identification is that ∂ut(θ)/∂θ (evaluated at the true parameter value, θ0)
has a sufficiently strong relationship to zt in the population. However, if this threshold is only
marginally satisfied then the standard first-order asymptotic theory can provide a very poor ap-
proximation to the finite sample behaviour of various GMM-based statistics. To help derive more
accurate approximations, Staiger and Stock (1997) introduced the concept of weak identification.
Statistical analyses demonstrated that key statistics behave very differently under weak identifica-
tion than under the standard first-order asymptotic framework with its assumption of first-order
local identification.4 For example, Dufour (1997) demonstrated that the potential presence of weak
identification renders the conventional “estimator plus/minus a multiple of the standard error”

1For example, see The Royal Swedish Academy of Sciences (2013), p.24.
2Smith (1993) refers to the method as “simulated quasi-maximum likelihood” and his analysis covers a more

restrictive setting than that of Gourieroux, Monfort, and Renault (1993).
3Applications of GMM/II to DSGE include Christiano, Eichenbaum, and Evans (2005), Coenen, Levin, and

Christoffel (2007), Dupaigne, Fève, and Matheron (2007), Ruge-Murcia (2007), Le, Meenagh, Minford, and Wickens
(2011).

4For example, Staiger and Stock (1997) and Stock and Wright (2000) derive the properties of various estimators
such as GMM in linear and nonlinear models respectively.
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confidence interval invalid. In response, the focus shifted to developing inference techniques that
are valid irrespective of the quality of the identification, such as Kleibergen’s (2005) K-statistic.
For our purposes here, it is not necessary to summarize subsequent developments within the weak
identification framework; it suffices to note that weak identification involves a situation in which
both first-order local identification and global identification fail (in the limit).5

Canova and Sala (2009) argue that, at their time of writing, the quality of the identification
in DSGE models was often neglected, and also that there are grounds for suspecting identification
may fail in certain cases of interest. Iskrev (2010), Komunjer and Ng (2011) and Qu and Tkachenko
(2012) derive conditions for first-order local identification using alternative representations of the
model. In this context, the responses to potential identification failure have been twofold. The first
approach is the same as in the GMM literature and is based on developing inference techniques
that are robust to weak identification, for example see Dufour, Khalaf, and Kichian (2013) and
Qu (2014). The second approach views the source of identification failure as deriving from the
method used to solve the DSGE for the path of the variables. DSGE models are typically highly
nonlinear, and so as a result practitioners have resorted to using approximations in solving the
models. For the most part, first-order approximations have been used but Mutschler (2015) has
recently demonstrated that these may be the source of identification failures, finding that the use
of second-order approximations restores first-order local identification in some cases.

As is evident from the above discussion, the focus of the above analyses is on first-order local
identification - understandably, as this condition is crucial for the standard first-order asymptotic
framework. In linear models, first-order local and global identification are the same, but in non-
linear models, they are not: local identification can fail at first order but hold at a higher order.
Furthermore, in such cases, it is possible to develop a framework for inference based on large sample
arguments. For the case where local identification holds at second but not first order, Sargan (1983)
and Rotnitzky, Cox, Bottai, and Robins (2000) develop a limiting distribution theory for estimators
obtained respectively by IV in a nonlinear in parameters model and Maximum Likelihood (ML).
Dovonon and Renault (2009, 2013) derive the limiting distribution of the GMM overidentifying
restrictions test statistic. This pattern of identification has been shown to arise in a number of
situations in statistics and econometrics such as: ML for skew-normal distributions, e.g. Azzalini
(2005); ML for binary response models based on skew-normal distributions, Stingo, Stanghellini,
and Capobianco (2011); ML for missing not at random (MNAR) models, e.g. Jansen, Hens, Molen-
berghs, Aerts, Verbeke, and Kenward (2006); GMM estimation of conditionally heteroscedastic
factor models, Dovonon and Renault (2009, 2013); GMM estimation of panel data models using
second moments, Madsen (2009); ML estimation of panel data models, Kruiniger (2014).

In this paper, we consider the case where local identification fails at first order but holds at second
order. Although this situation has been recognized to arise in models of interest, there are no general
results available on either GMM or II estimators in this case. In this paper, we fill this gap and
make the following four main contributions. First, we present the large sample distribution of the
GMM estimator when the parameter vector is globally identified but only identified locally at second
order. Second, we consider the large sample properties of an II estimator when local identification
is only at second order. Here we focus on the II estimator defined by the following set-up: the
auxiliary model consists of a set of population moment conditions indexed by a vector of auxiliary
parameters and the target function for the II estimation is a GMM estimator of the auxiliary
parameter vector. Within this framework, there are two types of identification conditions: one set

5Subsequent developments include the introduction of asymptotics based on either nearly-weak identification or
many moments; for a recent review of this literature see Hall (2015).
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involving the binding function, and the other involving the auxiliary parameters. The standard first-
order asymptotic theory is premised on the assumption that the binding function satisfies global and
first-order local identification conditions and the auxiliary parameters are globally and first-order
locally identified within the auxiliary model. In this paper, we present the limiting distribution of
the II estimator under the following two scenarios: (i) the binding function satisfies the global and
first-order local identification conditions and the auxiliary parameters are globally identified but
only locally identified at second order; (ii) the binding function satisfies the global identification
condition but only satisfies the local identification condition at second order, and the auxiliary
parameters are globally and first-order locally identified. The limit distributions of both GMM and
II estimators under our conditions are shown to be non-standard but easily simulated, making it
possible to perform inference about the parameters in this setting. Our third contribution is to use
our results on II to analyze the large sample behaviour under second-order local identification of
a version of II that has recently been shown by Frazier and Renault (2016) to be optimal within
the standard first-order asymptotic framework. We find that the large sample properties of this
optimal estimator are affected by the failure of the first-order local identification condition on
either the binding function or the auxiliary parameters. However, interestingly, we find that use
of this optimal estimator means inferences are robust to one possible source of failure of the first-
order local identification condition involving the binding function. Our fourth contribution is to
examine the accuracy of our distribution theory as an approximation to finite sample behaviour in
a small simulation study involving a dynamic panel data model in which the parameter of interest
is identified locally at second order by a set of non-linear moment restrictions but not at first order
at a particular point in the parameter space. Our simulation results indicate that the limiting
distribution theory derived in our paper leads to reliable GMM/II-based inferences in moderate to
large samples in the neighbourhood of this point of first-order identification failure. In contrast,
inferences based on standard asymptotic theory (derived under the assumption of first-order local
identification) are very misleading in this neighbourhood. Comparing GMM and II, we find our
limiting distribution theory provides a reasonable approximation to the behaviour of the GMM at
smaller sample sizes than it does for the II estimator, but that II exhibits smaller bias at the point
of first-order local identification failure.

Our results for GMM cover all the cases cited in the paragraph before last, and our results for II
cover cases in which any of the models cited in the previous paragraph are used as auxiliary model
or (for those involving a distributional assumption) as simulator.6 We conjecture our results may
also be relevant to estimation of certain DSGE models by GMM or II, an issue to which we return
at the end of the paper.

An outline of the paper is as follows. Section 2 briefly reviews GMM and II estimation and
their inference frameworks under first-order local identification. Section 3 defines second-order
identification and provides two examples. Sections 4 and 5 present the limiting distribution for
GMM and II estimators respectively. Section 6 reports the results from the simulation study, and
Section 7 offers some concluding remarks. All proofs are relegated to an Appendix.

6Gourieroux, Phillips, and Yu (2010) suggest using II to bias correct ML. In this case, the auxiliary model is the
ML estimator from the sample and is based on the same distributional assumption as the the simulator.
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2 Identification and the first-order asymptotics of GMM and
II

In this section, we briefly review the basic GMM and II inference frameworks based on first-order
asymptotics, paying especial attention to the role of first-order local identification. Since both
methods can be viewed as special cases of “minimum chi-squared”, we use the latter to unify our
presentation. Therefore, we begin by defining the GMM and II estimators, and then present the
minimum chi-squared framework. To this end, we introduce the following notation. In each case
the model involves random vector X which is assumed strictly stationary with distribution P (θ0)
that is indexed by a parameter vector θ0 ∈ Θ ⊂ R

p. For some of the discussion only a subset of
the parameters may be of primary interest, and so we write θ = (φ′, ψ′)′ where φ ∈ Φ ⊂ R

pφ and
ψ ∈ Ψ ⊂ R

pψ . Throughout, WT denotes a positive semi-definite matrix with the dimension defined
implicitly by the context.

GMM:
GMM is a partial information method in the sense that its implementation does not require knowl-
edge of P ( · ) but only a population moment condition implied by this underlying distribution. In
view of this, we suppose that φ0 is of primary interest and the model implies:7

E[g(X, φ0)] = 0, (1)

where g( · ) is a q × 1 vector of continuous functions. The GMM estimator of φ0 based on (1) is
defined as:

φ̂GMM = argminφ∈Φ Q
GMM
T (φ), (2)

where

QGMM
T (φ) = T−1

T
∑

t=1

g(xt, φ)′WT T
−1

T
∑

t=1

g(xt, φ), (3)

and {xt}Tt=1 represents the sample observations on X.
As evident from the above, GMM estimation is based on the information that the population

moment E[g(X, φ)] is zero when evaluated at φ = φ0. The form of this moment condition depends
on the application: in economic models that fit within the framework of discrete dynamic program-
ming models then the moment condition often takes the form of Euler equation times a vector of
instruments;8 in models estimated via quasi-maximum likelihood then the moment condition is the
quasi-score.9

II:
II is essentially a full information method in the sense it provides a method of estimation of θ0 given
knowledge of P ( · ). Within II, there are two models: the “simulator” which represents the model of
interest - X ∼ P (θ) in our notation - and an “auxiliary model” that is introduced solely as the basis
for estimation of the parameters of the simulator. Although θ0 is unknown, data can be simulated
from the simulator for any given θ. To implement II, this simulation needs to be performed a

7If pψ = 0 then φ = θ and our presentation covers the case when the entire parameter vector is being estimated.
8For example, the consumption based asset pricing model in the seminal article by Hansen and Singleton (1982).
9For example, see Hamilton (1994)[p.428-9].
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number of times, s say, and we denote these simulated series by {x(i)
t (θ)}Tt=1 for i = 1, 2, . . .s. The

auxiliary model is estimated from the data; let hT = h
(

{xt}Tt=1

)

be some feature of this model that

we refer to as the “target function”, and h
(i)
T (θ) = h

(

{x(i)
t (θ)}Tt=1

)

. Assume dim(hT ) = ` ≥ p. The

II estimator of θ0 is:10

θ̂II = argminQIIT (θ), (4)

where

QIIT (θ) =

[

hT − 1

s

s
∑

i=1

h
(i)
T (θ)

]′

WT

[

hT − 1

s

s
∑

i=1

h
(i)
T (θ)

]

. (5)

To characterize the population analog of the information being exploited here, we assume that

hT
p→ h0, for some constant h0. Noting that there exists a mapping from θ0 to h( · ) through

xt(θ0), we can write h0 = b(θ0) for some b( · ), known as the binding function. Then, as Gourieroux,
Monfort, and Renault (1993) observe, II exploits the information that k(h0, θ0) = h0 − b(θ0) = 0 -
in essence that, at the true parameter value, the simulator encompasses the auxiliary model.

The choice of h( · ) varies, in practice, and depends on the setting. Examples include: raw data
moments, such as the first two moments of macroeconomic or asset series, e.g. see Heaton (1995);
the estimator or score vector from an auxiliary model that is in some way closely related to the
simulator,11 e.g. Gallant and Tauchen (1996), Garcia, Renault, and Veredas (2011); estimated
moments or parameters from the auxiliary model, such as in DSGE models, e.g. see the references
in footnote 3.

Minimum chi-squared:
As is apparent from the above definitions, both GMM and II estimation involve minimizing a
quadratic form in the sample analogs to the population information about φ0 or θ0 on which they
are based namely, E[g(X, φ0)] = 0 for GMM and k(h0, θ0) = 0 for II. As such they can both be
viewed as fitting within the class of minimum chi-squared. This common structure explains many
of the parallels in their first-order asymptotic structure, and is also useful for highlighting the role
of various identification conditions in the analyses.

Minimum chi-squared estimation is first introduced by Neyman and Pearson (1928) in the
context of a specific model, but their insight is applied in more general models by Neyman (1949),
Barankin and Gurland (1951) and Ferguson (1958). Suppose again that φ0 is of primary interest,
recalling that pψ = 0 implies φ = θ, and let mT (φ) be a n× 1 vector, where n ≥ pφ, satisfying

Assumption 1. (i) mT (φ) = Op(1) for all φ ∈ Φ; (ii) T 1/2mT (φ0)
d→ N( 0, Vm), where Vm is a

positive definite matrix of finite constants.

As a result, T mT (φ0)
′V −1
m mT (φ0)

d→ χ2
n, and this structure explains the designation of the

following estimator as a minimum chi-squared:

argminφ∈Φ TmT (φ)′V̂ −1
m mT (φ), (6)

10We note that II as defined in (4)-(5) is one version of the estimator. An alternative version involves simulating
a single series of length ST . For scenarios involving optimization in the auxiliary model, this second approach has
the advantage of requiring only one optimization. The first-order asymptotic properties of the II estimator are the
same either way; see Gourieroux, Monfort, and Renault (1993).

11For the first-order asymptotic equivalence of these two approaches, see Gourieroux, Monfort, and Renault (1993).
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where V̂m
p→ Vm. However, for our purposes here, it is convenient to begin with the more general

definition of minimum chi-squared estimator:12

φ̂MC = argminφ∈Φ QT (φ), (7)

where
QT (φ) = mT (φ)′WTmT (φ). (8)

To consider the first-order asymptotic properties of minimum chi-squared estimators, we intro-
duce a number of high level assumptions.

Assumption 2. (i) WT
p→W , a positive definite matrix of constants; (ii) Φ is a compact set; (iii)

QT (φ)
p→ Q(φ) = m(φ)′Wm(φ) uniformly in φ; (iv) Q(φ) is continuous on Φ; (v) Q(φ0) < Q(φ)

∀φ 6= φ0, φ ∈ Φ.

Assumption 2(v) serves as a global identification condition. These conditions are sufficient to
establish consistency; for example see Newey and McFadden (1994).

Proposition 1. If Assumption 2 holds then φ̂MC
p→ φ0.

The first-order conditions of the minimization in (7) are:

MT (φ̂MC)′WTmT (φ̂MC) = 0, (9)

where MT (φ̄) = ∂mT (φ)/∂φ′
∣

∣

φ=φ̄
, a matrix commonly referred to as the Jacobian in this context.

These conditions are the source for the standard first-order asymptotic distribution theory of the
estimator, but the latter requires the Jacobian to satisfy certain restrictions. To present these
conditions, define Nφ,ε to be an ε-neighbourhood of φ0 that is, Nφ,ε = {φ; ‖φ− φ0‖ < ε}.

Assumption 3. (i) φ0 is an interior point of Φ; (ii) MT (φ)
p→ M(φ) uniformly on Nφ,ε; (iii)

M(φ) is continuous on Nφ,ε; (iv) M(φ0) is rank pφ.

Assumption 3(iv) is the condition for first-order local identification. It is sufficient but not
necessary for local identification of φ0 on Nφ,ε, but it is necessary for the development of the
standard first-order asymptotic theory. Under Assumptions 1-3, the Mean Value Theorem applied
to (9) yields:

T 1/2(φ̂MC − φ0) ' −{M(φ0)
′WM(φ0)}−1

M(φ0)
′Wm̃T (φ0),

where ' denotes equality up to terms of op(1), from which the first-order asymptotic distribution
follows.

Proposition 2. If Assumptions 1-3 hold then:

T 1/2(φ̂MC − φ0)
d→ N(0, Vφ),

where
Vφ = [M(φ0)

′WM(φ0)]
−1M(φ0)

′WVmWM(φ0)[M(φ0)
′WM(φ0)]

−1. (10)

12See Ferguson (1958).
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As apparent, Vφ depends on W . Hansen (1982)[Theorem 3.2] shows that the choice of W that
minimizes Vφ is W = V −1

m which yields: Vφ = {M(φ0)
′V −1
m M(φ0)}−1. This efficiency bound can

be achieved by setting WT = V̂ −1
m where V̂m

p→ Vm to produce the version of the estimator in (6).

Identification:
Hansen (1982) provides general conditions under which the first-order asymptotic framework above
goes through for GMM with

mT (φ) = T−1
T
∑

t=1

g(xt, φ).

Gourieroux, Monfort, and Renault (1993) prove the same results for II with13

mT (θ) = hT − 1

s

s
∑

i=1

h
(i)
T (θ). (11)

We now turn to the nature and role of the identification conditions in the above analysis.14

Global identification is crucial for consistency; global and first-order local identification are needed
for the asymptotic distribution theory. We now consider what these conditions imply for GMM
and II estimators in turn.

For GMM, given Assumption 2(i), the global identification condition for GMM can be equiva-
lently stated as E[g(X, φ)] = 0 has a unique solution at φ = φ0. The first-order local identification
can be stated as E[∂g(X, φ)/∂φ′|φ=φ0 ] is full column rank.

For II, the situation is more subtle as the identification conditions involve the binding function
and may also involve the auxiliary model depending on the nature of the target function. The
binding function needs to satisfy global and first-order local identification conditions. The global
identification condition is that h0 − b(θ) = 0 has a unique solution at θ = θ0, and the first-order
local identification condition is that ∂b(θ)/∂θ′|θ=θ0 has full column rank. If the target function
hT depends on a vector of parameters in the auxiliary model then these parameters need to be
globally and first-order locally identified in order for hT to exhibit the large sample properties

assumed above. The latter properties are: (a) hT
p→ h0; (b) mT (θ0) in (11) converges to a mean

zero normal distribution. To show the link between these properties and the identification of the
auxiliary parameter vector, we consider the case where the auxiliary model consists of a set of
moment conditions indexed by a vector of auxiliary parameters, and hT is a sample-based GMM
estimator of the vector of auxiliary parameters. In this case, condition (a) represents the GMM
global identification condition of the auxiliary parameter vector in the auxiliary model. Condition
(b) is established by showing that T 1/2(hT − h0) converges to a normal distribution which in turn
requires the auxiliary model to satisfy the standard GMM condition for first-order local identifica-
tion of h0 in the auxiliary model; see Gourieroux, Monfort, and Renault (1993)[p.S109]. Therefore,
when hT depends on estimated parameters of the auxiliary model, there are two sets of identifi-
cation conditions that must hold for the standard first-order asymptotic framework of II to apply:

13In spite of the similarities of the two methods, the asymptotic properties of II cannot be deduced directly from the
corresponding GMM analysis because the simulation-based implementation takes II outside the GMM framework;
see inter alia Duffie and Singleton (1993) or Ghysels and Guay (2003, 2004).

14The minimum chi-squared structure can also be used to explain other common features of GMM and II, see
Dovonon and Hall (2015).
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conditions on the binding function and conditions involving the identification of the parameters in
the auxiliary model.15

In linear models, global and first-order local identification are equivalent. However in nonlinear
models, global identification is possible without first-order local identification because local identi-
fication can be ensured by higher order derivatives of m(φ). Under such a scenario, the parameters
can be consistently estimated but the standard first-order asymptotic framework described above is
not valid. For the rest of this paper, we focus on situations in which parameters are globally identi-
fied but local identification is only second-order: Section 3 defines second-order local identification
and provides two examples of econometric models in which it occurs; Section 4 develops a limiting
distribution theory of the GMM estimator; Section 5 characterizes the limiting behaviour of the II
estimator when the target function hT is the GMM estimator of a set of auxiliary parameters.

3 Second-order local identification

For our analysis of GMM and II, we adopt the definition of second-order local identification originally
introduced by Dovonon and Renault (2009). To present this definition, we introduce the following
notations. Let m(φ) = E[g(X, φ)] and

M
(2)
k (φ0) = E

[

∂2gk(X, φ)

∂φ∂φ′

∣

∣

∣

∣

φ=φ0

]

, k = 1, 2 . . . , q,

where gk(X, φ) is the kth element of g(X, φ) and g(·) is defined in (1). Second-order local identifi-
cation is defined as follows.

Definition 1. The moment condition m(φ) = 0 locally identifies φ0 ∈ Φ up to the second order if:

(a) m(φ0) = 0.

(b) For all u in the range of M(φ0)
′ and all v in the null space of M(φ0), we have:

(

M(φ0)u+
(

v′M
(2)
k (φ0)v

)

1≤k≤q
= 0

)

⇒ (u = v = 0).

This condition is derived using a second order expansion of m(φ) around m(φ0) and can be
motivated as follows.16 For any non-zero φ− φ0 with φ ∈ Nφ,ε, we have φ− φ0 = c1u+ c2v where
c1, c2 are constants such that c1 6= 0 and/or c2 6= 0.17 For those directions for which c1 is non-zero
then the first order term is non-zero and dominates, and for those directions in which c1 = 0, then
the second-order term is non-zero. Thus, without requiring that the Jacobian matrixM(φ0) to have
full rank, conditions (a) and (b) in Definition 1 guarantee local identification in the sense that there
is no sequence of points {φn} different from φ0 but converging to φ0 such that m(φn) = 0 for all
n. The difference between first-order local identification and second-order local identification (with

15If hT involves purely raw data moments then conditions (a) and (b) hold if T 1/2(hT −h0) satisfies the conditions
for the Central Limit Theorem and so the only identification conditions are those relating to the binding function.

16We implicitly assume throughout the paper that the local dominance conditions under which expectation and
derivatives can be interchanged hold whenever useful.

17Recall the range of M (φ0)
′ is the orthogonal complement of the null space of M (φ0).
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M(φ0) rank deficient) is how sharply m(φ ) moves away from 0 in the neighborhood of φ0. We
now consider two examples in which local identification fails at first order but holds at second order.

Example 1. Nonstationary panel AR(1) model with individual fixed effects.
Consider the standard AR(1) panel data model with individual specific effects,

yit = ρyi,t−1 + ηi + εit, i = 1, . . . , N, t = 1, 2. (12)

Assume that the vector (yi0, ηi, εi1, εi2) is i.i.d. across i with mean 0 and that E(ε2it) = σ2
ε ,

E(εisεit) = 0 for s 6= t, s, t = 1, 2, E(η2
i ) = σ2

η, E(y2
i0) = σ2

0, E(εitηi) = 0, E(εityi0) = 0,
t = 1, 2, and E(yi0ηi) = σ0η. For this example, θ = (ρ, σ2

0, σ
2
η, σ0η, σ

2
ε)

′. Our primary focus here is
on estimation of ρ and so we partition the parameter vector as follows: θ = (ρ, θ2)

′.
For |ρ| < 1, this model can be estimated via GMM using the moment conditions in Arellano

and Bond (1991). However as pointed out by Blundell and Bond (1998), the Arellano-Bond (AB)
moments only provide weak identification of θ as ρ tends to one. Blundell and Bond (1998) propose
augmenting the AB moments with an additional set of moments to produce the so-called “System
GMM estimator”: this approach solves the weak identification problems for ρ less than one but is not
valid for ρ = 1 because the approach exploits properties of the series that only hold for |ρ| < 1. Quasi
Maximum Likelihood estimation of the model has been studied by Kruiniger (2013) for −1 < ρ < 1.

An alternative solution to the identification problems with the AB moments is to base estimation
on higher moments. Expressing the variance of yi = (yi0, yi1, yi2)

′ as a function of the model
parameters, θ can be identified by the moment condition restriction:

E [g(yi) −H(ρ)θ2] = 0, (13)

where g( · ) = [g1( · )′, g2( · )′]′, H( · ) = [H1( · )′, H2( · )′]′,

g1(yi) =

(

yi0yi1
yi0yi2

)

, g2(yi) =









y2
i0

y2
i1

yi1yi2
y2
i2









,

H1(ρ) =

(

ρ 0 1 0
ρ2 0 1 + ρ 0

)

, H2(ρ) =









1 0 0 0
ρ2 1 2ρ 1
ρ3 1 + ρ ρ(1 + 2ρ) ρ
ρ4 (1 + ρ)2 2ρ2(1 + ρ) 1 + ρ2









.

Note that H2(ρ) is nonsingular for all ρ 6= 0 and we have:

θ2(ρ) = H−1
2 (ρ)E[g2(yi)].

Using (13) involving g1( · ), we can therefore consider the moment condition:

E
[

g1(yi) −H1(ρ)(H2(ρ))
−1g2(yi)

]

= 0 (14)

for inference about ρ, our main parameter of interest. The true parameter value that we consider
for the data generating process is θ∗ = (1, θ∗2), with θ∗2 = (σ∗2

0 , 0, 0, σ
∗2

ε )′. In the appendix, it is
shown that (14) globally identifies ρ but local identification fails at first order and holds at second
order.
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While the above discussion has concentrated on GMM, we note that II methods have also
been proposed for dynamic panel data models. Gourieroux, Phillips, and Yu (2010) propose an II
estimator in which the function hT is the MLE under normality. They note that the II approach
can be based on nonlinear moments and, following their suggestion, II can be applied using the
moments in (14) as the auxiliary model. In Section 6, we report simulation results that compare
GMM based on (14) with II using (14) as the auxiliary model.

Example 2. A conditionally heteroscedastic factor model
Consider the conditionally heteroskedastic factor (CHF) model of two asset returns:

(

y1t
y2t

)

=

(

γ1

γ2

)

ft +

(

u1t

u2t

)

, (15)

with
E [(ft, u

′
t)
′|Ft−1] = 0, V ar [ft|Ft−1] = σ2

t−1,

V ar[(u1t, u2t)
′|Ft−1] = Diag(Ω1,Ω2), Cov[ft, ut|Ft−1] = 0.

(16)

In this model, ft is the latent common GARCH factor, ut is the vector of idiosyncratic shocks and
σ2
t−1 is the time varying conditional variance of ft where the conditioning set Ft is an increasing

filtration containing current and past values of ft and yt. In addition to this specification, it is
assumed that γ1 6= 0 and γ2 6= 0, meaning that the two asset return processes are conditionally
heteroskedastic. Conditions for the identification of the factor structure18 (15)-(16) can be found in
Doz and Renault (2004). The parameter vector of interest is θ ≡ (γ1 , γ2,Ω1,Ω2)

′.

This model has been introduced by Diebold and Nerlove (1989) and further studied by Fiorentini,
Sentana, and Shephard (2004) and Doz and Renault (2006). Fiorentini, Sentana, and Shephard
(2004) impose additional structure on the model and propose a Markov chain Monte Carlo approach
to estimation. Doz and Renault (2006) propose a GMM approach based on moment conditions
that identify the parameters up to one (say, γ1) that is given a ‘reasonable’ value. This partial
identification is the cost of allowing V ar[(u1t, u2t)

′|Ft−1] to be non-diagonal. Here, we consider
an II estimator for the model. The simulator is (15)-(16) and the assumption that (ft, u

′
t)

′ is
conditionally normally distributed.

The auxiliary model is defined as:

E

[(

1
zt−1

)

{

(y1t − δy2t}2 − c
]

]

= 0

E[y2
1t] = b1

E[y2
2t] = b2

E[y1ty2t] = b3.

(17)

where zt−1 ∈ Ft−1, (e.g lagged square returns), δ = γ1/γ2, b1 = γ2
1 + Ω1, b2 = γ2

2 + Ω2, b3 =
γ1γ2, c = Ω1 + δ2Ω2, and c = b1 + δ2b2 − 2δb3. The parameter vector in the auxiliary model,

18The conditionally heteroskedastic factor representation (15)-(16) for yt is uniquely determined if we restrict to
decompositions such that the factor has unit variance and non degenerate conditional variance with no positive lower
bound, that is: E(σ2

t ) = 1, V ar(σ2
t ) > 0 and P (σ2

t > σ2) < 1 for all σ2 > 0. In this case, Ω is uniquely determined
and γ = (γ1, γ2)′ is identified up to the sign. Restricting γ1 > 0 completes the identification of the factor structure.
We refer to Doz and Renault (2004) for a more detailed discussion on the identification of CHF models.
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h = (b1, b2, b3, δ, c)
′, is globally identified. In addition, the parameter θ of the structural model can

be determined from h (enforcing γ1 > 0)as follows:

θ1 ≡ γ1 =
√

δb3, θ2 ≡ γ2 =

√

b3
δ
, θ3 ≡ Ω1 = b1 − δb3, θ4 ≡ Ω2 = b2 −

b3
δ
.

However, as shown in the appendix, h is not locally identified at first order but is at second order.

4 The limiting distribution of the GMM estimator

In this section, we consider the moment condition model (1) and study the asymptotic behaviour
of the GMM estimator when φ0 is second-order locally identified because the moment condition
exhibits the properties in Definition 1 but the standard local identification condition (Assumption
3(iv)) fails.19

We study the asymptotic behaviour of the GMM estimator by restricting ourselves to the case
of one-dimension rank deficiency, i.e. the rank of M(φ0) is equal to pφ − 1, since this seems to
be the only case that is analytically tractable. We start by considering the case where the rank
deficiency is due to the last column of the Jacobian being null. To this end, we partition φ into
(φ′

1:pφ−1, φpφ)
′ where φ1:pφ−1 is the vector consisting of the first pφ− 1 elements of φ and φpφ is the

pφ
th element of φ. For ease of presentation below, we shorten the subscript and write φ1 for φ1:pφ−1.

Thus φ0 = (φ′
0,1, φ0,pφ)

′ where φ0,1 is a (pφ − 1) × 1 vector containing the true values of φ1:pφ−1

and φ0,pφ is the true value of φpφ . If M(φ0) has rank pφ − 1 with ∂m
∂φpφ

(φ0) = 0, second-order local

identification is equivalent to:

Rank

(

∂m

∂φ′
1

(φ0)
∂2m

∂φ2
pφ

(φ0)

)

= pφ.

This is the setting studied by Sargan (1983) for the instrumental variables estimator in nonlinear
in parameters model.

We now present the regularity conditions under which we derive the asymptotic distribution

of the GMM estimator. Define D = ∂m
∂φ′

1
(φ0) and G = ∂2m

∂φ2
pφ

(φ0). The following condition states

formally the identification pattern described above.

Assumption 4. (i) m(φ) = 0 ⇔ φ = φ0; (ii) ∂m(φ0)/∂φpφ = 0; (iii) Rank (D G) = pφ.

We also require the following regularity conditions to hold.

Assumption 5. (i) mT (φ) has partial derivatives up to order 3 in a neighborhood Nφ,ε of φ0

and the derivatives of mT (φ) converge in probability uniformly over Nφ,ε to those of m(φ).

(ii)
√
T

(

mT (φ0)
∂mT
∂φpφ

(φ0)

)

d→
(

Z0

Z1

)

.

19Lee and Liao (2016) and Sentana (2015) propose an alternative approach using GMM estimation based on an
augmented set of moment conditions that involve both the original moments and restrictions on their derivatives.
While this approach allows the application of standard first-order asymptotic theory, the augmentation substantially
increases the number of moment conditions used in the estimation which tends to lead to a deterioration in the
quality of the first-order asymptotic theory as an approximation to finite sample behaviour; for example see Newey
and Smith (2004).
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(iii) WT −W = oP (T−1/4), ∂mT
∂φ′

1
(φ0) −D = OP (T−1/2),

∂2mT
∂φ2

pφ

(φ0)−G = OP (T−1/2), ∂2mT
∂φ′

1∂φpφ
(φ0)−G1pφ = oP (1), and ∂3mT

∂φ3
pφ

(φ0)−L = oP (1),

with G1pφ = ∂2m
∂φ′

1∂φpφ
(φ0) and L = ∂3m

∂φ3
pφ

(φ0).

These conditions are slightly stronger than those imposed in the standard first-order asymptotic
analysis. The derivation of the asymptotic distribution of the GMM estimator requires a mean value
expansion of mT (φ) up to the third order and the uniform convergence guaranteed by Assumption
5(i) is, in particular, useful to control the remainder of our expansions. Assumption 5(ii) gives
the joint asymptotic distribution of mT (φ0) and ∂mT

∂φpφ
(φ0). Under Assumption 4 and additional

mild conditions on g(X, φ0) and ∂g
∂φpφ

(X, φ0), the central limit theorem guarantees that (Z′
0,Z

′
1)

′ ∼

N(0, v), with v = limT→∞ V ar
[√

T
(

mT (φ0)
′, ∂mT (φ0)

′/∂φpφ
)′
]

. Assumption 5(iii) imposes the

asymptotic order of magnitude of the difference between some sample dependent quantities and
their probability limits. These orders of magnitude are enough to make these differences negligible
in the expansions. Assumption 5(iii) is not particularly restrictive since most of the orders of
magnitude imposed are guaranteed by the central limit theorem.

To facilitate the presentation of our main result in this section, we introduce the following
definitions. Let Md be the matrix of the orthogonal projection on the orthogonal complement of
W 1/2D:

Md = Iq −W 1/2D(D′WD)−1D′W 1/2,

where Iq is the identity matrix of size q, let Pg be the matrix of the orthogonal projection on
MdW

1/2G:

Pg = MdW
1/2G

(

G′W 1/2MdW
1/2G

)−1

G′W 1/2Md,

and letMdg be the matrix of the orthogonal projection on the orthogonal complement of
(

W 1/2 W 1/2G
)

:

Mdg = Md − Pg.

Let

R1 =
(

Z
′
0W

1/2PgW
1/2

Z0G
′ −G′W 1/2MdW

1/2
Z0Z

′
0

)

W 1/2MdW
1/2
(1

3
L +G1pφHG

)

/σG

+ Z
′
0W

1/2MdgW
1/2(Z1 +G1pφHZ0), (18)

with σG = G′W 1/2MdW
1/2G, and H = −(D′WD)−1D′W .

The following result gives the asymptotic distribution of the GMM estimator φ̂ as defined by
(3).

Theorem 1. Under Assumptions 2(i)-(iv), 4, and 5, we have:

(a) φ̂1 − φ0,1 = OP (T−1/2) and φ̂pφ − φ0,pφ = OP (T−1/4).

(b) If in addition, φ0 is interior to Φ, then

√
T

(

φ̂1 − φ0,1

(φ̂pφ − φ0,pφ)
2

)

d→
(

HZ0 +HGV/2
V

)

,

12



with V = −2 ZI(Z<0)
G′W1/2MdW1/2G

and Z = G′W 1/2MdW
1/2

Z0. I(·) is the usual indicator
function.

(c) If in addition, R1 does not have an atom of probability at 0, then:

( √
T (φ̂1 − φ0,1)

T 1/4(φ̂pφ − φ0,pφ)

)

d→ X ≡
(

HZ0 +HGV/2

(−1)B
√

V

)

,

with B = I(R1 ≥ 0).

The proof of this theorem is provided in Appendix. Part (a) is due to Dovonon and Renault
(2009), however we provide a proof since our conditions are slightly different from theirs. Part

(b) gives the asymptotic distribution of
[

(φ̂1 − φ0,1)
′, (φ̂pφ − φ0,pφ)

2
]

. This result is obtained by

eliciting the OP (T−1) terms of m′
T (φ̂)WTmT (φ̂) which are collected into KT (φ) as given by (58) in

the Appendix. The fact that KT (φpφ) is a quadratic function of (φpφ −φ0,pφ)
2 gives an intuition of

the fact that only the asymptotic distribution of (φ̂pφ − φ0,pφ)
2 can be obtained from this leading

term of the expansion of the GMM objective function. The distribution of (φ̂pφ − φ0,pφ) can be
obtained from Part (b) up to the sign which cannot be deduced from this leading term but rather
is obtainable from the higher order, OP (T−5/4), term of the objective function’s expansion. We
actually obtain:

m′
T (φ̂)WTmT (φ̂) = KT (φ̂pφ) + (φ̂pφ − φ0,pφ)R1T + oP (T−5/4),

showing that the minimum is reached when (φ̂pφ − φ0,pφ) has the opposite sign to R1T . See (59) in
Appendix for the expression of R1T . So long as TR1T , with limit distribution R1, does not vanish
asymptotically, the sign of (φ̂pφ−φ0,pφ) can be identified by this higher order term in the expression
leading to Part (c) of the theorem.

Remark 1. The continuity condition for R1 at 0 is not expected to be restrictive in general since
R1 is a quadratic function of the Gaussian vector (Z′

0,Z
′
1)

′. However, when q = p = pφ = 1 (one
moment restriction with one non first-order locally identified parameter), we can see that R1 = 0. In

this case, the characterization of the asymptotic distribution of T 1/4(φ̂− φ0) may be problematic if

the estimating function is quadratic in φ. Actually, T 1/4(φ̂−φ0) may not have a proper asymptotic

distribution in this case whereas
√
T (φ̂− φ0)

2 does have one as given by Theorem 1(b).

Remark 2. The asymptotic distributions in Parts (b) and (c) of Theorem 1 are both non-standard
but easy to simulate. The source of randomness is (Z′

0,Z
′
1)

′ which is typically a Gaussian vector

with zero mean and asymptotic variance v = limT→∞ TV ar

(

mT (φ0)
∂mT
∂φpφ

(φ0)

)

which can be consis-

tently estimated by the sample variance if there are no serial correlation or by heteroskedasticity
and autocorrelation consistent procedures if there are serial correlations (see Andrews, 1991). Rea-
sonable approximations to these limiting distributions can be obtained by drawing randomly copies
of (Z′

0,Z
′
1)

′ from N(0, v̂), where v̂ is a consistent estimate of v, and using consistent estimators of
D, W , G, L and G1pφ.

Remark 3. When the moment condition model has a single parameter that is not locally identified
at the first order but is at the second order, asymptotically correct (1 − α)-confidence interval,
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1 − α > 1/2, for φ0 can be obtained without simulation using the following formula deduced from
Theorem 1(b). The proof of asymptotic correctness is provided in Appendix.

CI1−α(φ0) = φ̂± 1

T 1/4
·
(

2
√

Ĝ′WT V̂mWT Ĝ

Ĝ′WT Ĝ
zα

)
1
2

, (19)

where φ̂ is the GMM estimator of φ0, Ĝ is a consistent estimator of G, V̂m a consistent estimator of
Vm, the long run variance of the sample moment evaluated at φ = φ0, and zα is the (1−α)-quantile
of the standard normal distribution.

Assumption 4 requires that the rank deficiency occurs in a particular way, namely because one
column of the Jacobian matrix of the moment function vanishes and the other columns are linearly
independent. This is only a particular form of first-order identification failure; for example it does
not fit our second example in Section 3. However, as mentioned by Sargan (1983), up to a rotation
of the parameter space, all rank deficient problems can be brought into this configuration as we
demonstrate below.

Let M0 = ∂m
∂φ′

(φ0) and assume that the moment condition model (1) is such that Rank (M0) =

pφ − 1 without having a column that is equal to 0. Let R be any nonsingular (pφ, pφ)-matrix such
that M0R•pφ = 0, where R•pφ represents the last column of R. We can write (1) in terms of the
parameter vector η: φ = Rη and consider the model:

m(Rη0) = E [g(X,Rη0)] = 0. (20)

By the chain rule, it follows that the population moment condition in (20) identifies η0 = R−1φ0

with local identification properties matching Assumption 4. More precisely, setting η = (η′1, ηpφ)
′

where η1 is (pφ − 1) × 1, we have:

∂m(Rη)

∂ηpφ

∣

∣

∣

∣

η0

= M0R•pφ = 0 and Rank

(

∂m(Rη)

∂η′1

∣

∣

∣

∣

η0

)

= Rank(M0R1) = pφ − 1,

where R1 is the sub-matrix of the first pφ − 1 columns of R. We can therefore claim that the

asymptotic distribution, X̃, of

( √
T (η̂1 − η0,1)

T 1/4(η̂pφ − η0,pφ)

)

is obtained by Theorem 1 with D, G, L, and

G1pφ replaced respectively by:

D̃ = M0R1, G̃ =

(

R′
•pφ

∂2mk

∂φ∂φ′
(φ0)R•pφ

)

1≤k≤q

, L̃ =
(

R′
•pφAkR•pφ

)

1≤k≤q
,

Ak =

(

∂3mk

∂φi∂φj∂φ′
(φ0)R•pφ

)

1≤i,j≤pφ

,

and G̃1pφ , the (q, pφ − 1)-matrix with its kth row equal to R′
•pφ

∂2mk
∂φ∂φ′

(φ0)R1.

We use the fact that φ̂−φ0 = R(η̂−η0) to obtain the asymptotic distribution of φ̂−φ0. Specifi-

cally, letting BT =

( √
TIpφ−1 0

0 T 1/4

)

, we obtain the asymptotic distribution of BTR
−1(φ̂−φ0)
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as that of BT (η̂ − η0).

Feasible inference is possible by replacing R by a consistent estimate R̂. However, because all the
components of R−1(φ̂−φ0) are not converging at the same rate, one needs to exercise some caution

in claiming the asymptotic equivalence between BT R̂
−1(φ̂ − φ0) and BTR

−1(φ̂− φ0). Clearly,

BT R̂
−1(φ̂− φ0) = BTR

−1(φ̂− φ0) + εT (21)

εT = −BT R̂−1(R̂−R)R−1(φ̂− φ0). But εT does not always vanish asymptotically. We distinguish
two cases:

Case 1: R̂−R = oP (T−1/4). This is the case, for example, if R does not depend on φ0 and R̂ is a
smooth function of sample means of the data. In such a case we typically have R̂−R = OP (T−1/2).
By the Cauchy-Schwarz inequality, we have:

‖εT ‖ ≤ ‖R̂−1‖‖T 1/4(R̂−R)‖‖T 1/4R−1(φ̂− φ0)‖ = OP (1)oP (1)OP (1),

and this remainder is negligible so that:

BT R̂
−1(φ̂− φ0)

d→ X̃. (22)

Case 2: R̂−R = OP (T−1/4). This is expected, for example, if R is a function of φ0, i.e. R ≡ R(φ0).
If R(·) is continuously differentiable in a neighborhood of φ0, we can show (see Appendix) that:

εT = −A
√
T (η̂pφ − η0,pφ)

2 + oP (1), (23)

with

A =

(

Ipφ−1 0
0 0

)

R−1∂R•pφ

∂φ′
(φ0)R•pφ .

Hence, we have:

BT R̂
−1(φ̂− φ0)

d→ X̃ − A(X̃pφ)
2. (24)

To perform inference about φ0 in the current local identification set up, it is essential to estimate
a relevant reparameterization matrix R that may depend on the model parameter φ. In many cases,
including Examples 1 and 2, it is possible, by examining the population Jacobian matrix at the
true value, to figure out that it is of rank pφ − 1 at φ0 because a non-zero vector R•pφ(φ0) is found
in its null space. At most, R•pφ(φ0) is a moment function depending on φ0 that can be consistently

estimated by sample moments evaluated at φ̂ providing, therefore, a consistent estimator R̂•pφ(φ̂).
This vector can be completed by the first pφ − 1 elements of the canonical basis of R

pφ that do

not linearly determine R̂•pφ(φ̂) to obtain an estimate R̂(φ̂) of the full reparameterization matrix
R(φ0). Examples 1 and 2 are further studied below to determine their respective reparameterization
matrices.

In other cases, one may rely on testing to determine whether the rank of the Jacobian matrix
at φ0 is pφ − 1. The rank test of Wright (2003) can serve this purpose. In this case, the estimation
of an element of the null space of the Jacobian is a bit more involved. Assuming that the first

pφ−1 columns of E
(

∂g(X,φ0)
∂φ′

)

are linearly independent. Then, in a similar spirit as the augmented
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regression of Arellano, Hansen, and Sentana (2012), we can find an element R•pφ in its null space
such that R•pφ = (r′,−1)′ ∈ R

pφ−1 × R, with r defined by:

E

[

∂g(X, φ0)

∂φ′
1

r − ∂g(X, φ0)

∂φpφ

]

= 0.

Letting Γ1(φ) = E
[

∂g(X,φ)
∂φ′

1

]

and Γpφ(φ) = E
[

∂g(X,φ)
∂φpφ

]

, we have: r = r(φ0) with

r(φ) = (Γ1(φ)′Γ1(φ) )
−1

Γ1(φ)′Γpφ(φ).

Hence, r can be estimated by plug-in where φ0 is replaced by φ̂ and the population means are
replaced by sample means:

r̂ = r̂(φ̂) =
(

Γ̂1(φ̂)′Γ̂1(φ̂)
)−1

Γ̂1(φ̂)′Γ̂pφ)(φ̂),

where Γ̂1(φ̂) = T−1
∑T

t=1 ∂g(xt, φ)/∂φ′
1

∣

∣

φ=φ̂
and Γ̂pφ(φ̂) = T−1

∑T
t=1 ∂g(xt, φ)/∂φpφ

∣

∣

φ=φ̂
. This

leads to an estimate R̂•pφ(φ̂) that can be completed as described above to obtain an estimate R̂ of

R. If R̂− R = oP (T−1/4), then valid inference can be carried out about φ0 using (22). This is the
case for instance when Γ1(φ0) and Γpφ(φ0) do not depend on φ0. However, one would in general

expect that R̂ − R = OP (T−1/4) and inference will be based on (24). In this case, a consistent

estimate of A can be obtained as follows. Note that
∂R•pφ

∂φ′
(φ0) =

(

∂r′

∂φ
(φ0) 0

)′

. Letting φk be the

kth component of φ,20 Γj ≡ Γj(φ) and Γj,k ≡ ∂Γj
∂φk

(φ), for j = 1, pφ and k = 1, . . . , pφ, we have:

∂r

∂φk
(φ) = (Γ′

1Γ1)
−1
{

−
(

Γ′
1,kΓ1 + Γ′

1Γ1,k

)

(Γ′
1Γ1)

−1
Γ1Γpφ + Γ′

1,kΓpφ + Γ′
1Γpφ,k

}

.

The derivative ∂r/∂φk(φ0) can be estimated consistently via a similar plug-in approach as for r(φ0)
above.

Returning to our examples we can see that in Example 1 of Section 3, the Jacobian matrix of
the moment function (14) is null, hence, Theorem 1 applies to the GMM estimator of this model
without a need for reparameterization. In Example 2 of the same section, the Jacobian matrix of
the auxiliary model at the true parameter value is:













0 0 0 −2(b3 − δb2) −1
0 0 0 −2(b3 − δb2)E(zt−1) −E(zt−1)
−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0













.

Recall that b3−δb2 = −Ω2 6= 0. The null space of this matrix contains R5 = (0, 0, 0,−1, 2(b3−δb2))′
and, by completing this vector by the elements of the canonical basis of R

5, we obtain a relevant

20This involves a slight abuse of notation: in the formula for Γj,k ∂r/∂φk, φ1 denotes the first element of φ and
not φ1:pφ−1 as above.
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reparameterization matrix along with a consistent estimator as:

R =













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 −1
0 0 0 0 2(b3 − δb2)













and R̂ =













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 −1

0 0 0 0 2(b̂3 − δ̂b̂2)













,

respectively. The asymptotic distribution for the auxiliary estimator is given by (24) which can be
used to build inference about the indirect inference estimator along with Theorem 2 in the next
section.

We now describe how the above results can be used to perform inference about the parameters.
Our discussion focuses on Case 1 above but the methods can also be applied in settings covered by
Case 2. Suppose first it is desired to construct a confidence set for φ0. Under the mild assumption
that ‖X̃‖2 has a continuous distribution at c1−α, it follows from (22) via the Continuous Mapping
Theorem that

limT→∞P
(

‖BT R̂−1(φ̂− φ0)‖2 ≤ c1−α

)

= 1 − α, (25)

where c1−α is the 100(1− α)th percentile of ‖X̃‖2. Thus,

{φ, ‖BT R̂−1(φ̂− φ)‖2 ≤ c1−α}

represents a 100(1− α)% confidence set for φ0. To derive a confidence interval for the jth element
of φ0, φ0,j,

21 we re-write (22) as

φ̂− φ0
a∼ R̂B−1

T X̃, (26)

where
a∼ denotes “asymptotically distributed as”. A confidence interval for φ0,j can be built using

simulation of X̃ as follows: simulate X̃ to obtain the simulated distribution of [R̂B−1
T X̃]j, the

jth element of R̂B−1
T X̃. To construct an equal-tailed confidence interval, calculate the cj(α/2) and

cj(1−α/2), respectively the 100(α/2)th and 100(1−α/2)th percentiles of the simulated distribution

of [R̂B−1
T X̃]j. A 100(1 − α)% confidence interval is:

{φj, cj(α/2) < φj < cj(1 − α/2)}.

The results in Theorem 1 can also be used to test hypotheses of the form H0 : f(φ0) = 0 versus
H1 : f(φ0) 6= 0 where f( · ) is a K × 1 vector of two times continuously differentiable functions. In
the appendix, it is shown that:

f(φ̂) − f(φ0)
a∼ ∂f

∂φ′
(φ̂)R̂B−1

T X̃ − 1

2

1√
T

(

R̂′
•pφ

∂2fk
∂φ∂φ′

(φ̂)R̂•pφ X̃
2
pφ

)

1≤k≤K

≡ VT (φ̂, X̃). (27)

Quantiles of VT (φ̂, X̃) can be simulated from copies of X̃. Note that if f is a linear function then
the second order term in (27) drops out and

VT (φ̂, X̃) =
∂f

∂φ′
(φ̂)R̂B−1

T X̃.

21This involves a slight abuse of notation as here φ0,1 denotes the first element of φ0,1 and not the (pφ − 1 × 1)
sub-vector of φ0 as above.
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5 The limiting distribution of the II estimator

In this section, we turn attention to the II estimator defined by (4) and (5) in the case where the
auxiliary model consists of a set of moment conditions indexed by the auxiliary parameter vector
h0 and the target function, hT , is a GMM estimator of h0. It can be recalled from Section 2 that
within this scenario, the standard first order asymptotic theory for II estimators is premised on
identification conditions involving both the binding function and the auxiliary model. We consider
two scenarios. First, we derive the asymptotic distribution of the II estimator in the case where
the auxiliary parameter vector is only identified locally at second order but the other conditions
highlighted in Section 2 still hold. Second, we derive the asymptotic distribution of the II estimator
in the case where the local identification condition associated with the binding function fails at first
order but holds at second order, and the other conditions highlighted in Section 2 still hold. The
section concludes by using our results to explore the large sample properties of the optimal version
of II recently proposed by Frazier and Renault (2016).

5.1 Auxiliary model is identified locally at second order:

Suppose the auxiliary model consists of the following set of q population moment conditions

m(a)(h0) = E[g(X, h0)] = 0, (28)

where g(·) a q× 1 vector of continuous functions. We use the superscript “(a)” here, and below, to
indicate quantities pertaining to the auxiliary model. Let H ⊂ R

` denote the auxiliary parameter
space. The target function hT is the GMM estimator of h0 based on (28) that is,

hT = argminh∈H Q
(a)
T (h), (29)

where
Q

(a)
T (h) = m

(a)
T (h)′WTm

(a)
T (h),

m
(a)
T (h) = T−1

∑T
t=1 g(xt, h) and WT is the weighting matrix.

Adapting the notation from Section 2, let h
(i)
T (θ) denote the analogous GMM estimator to hT

only based on {x(i)
t (θ)}Tt=1 instead of {xt}Tt=1. The II estimator of θ0 is

θ̂II = argminθ∈ΘQ
II
T (θ), (30)

where
QIIT (θ) = mIT (θ)′ΩT mIT (θ),

mIT (θ) = hT − 1
s

∑s
i=1 h

(i)
T (θ) and we have used ΩT to denote the weighting matrix to distinguish

it from for the weighting matrix used in the estimation of hT .
To present the necessary regularity conditions, we introduce the following notation. We partition

the auxiliary parameter vector as h = (h′1:`−1, h`)
′ where h` is the `th element of h but for ease

of notation in the formulae below set h1 = h1:`−1. Define M (a)(h0) = E[∂g(X, h)/∂h′
∣

∣

h=h0
] and

G(a) = E[∂2g(X, h)/∂h2
`

∣

∣

h=h0
].

The auxiliary model is assumed to satisfy the following conditions.
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Assumption 6. (i) m(a)(h) = 0 ⇔ h = h0, where h0 is an interior point of the compact set H;

(ii) Q
(a)
T (h) converges uniformly to Q(a)(h) = m(a)(h)′Wm(a)(h) on H where W is positive definite;

(iii)M (a)(h0) = [D(a), 0q×1] where D(a) is a q×(`−1) matrix of constants with full column rank and
0q×1 is the q×1 null vector; (iv) G(a) is a vector of finite constants and rank{[D(a), G(a)]} = `; (v)

m
(a)
T (h) has partial derivatives up to order 3 in an ε-neighbourhood of h0, Nh,ε, and the derivatives

of m
(a)
T (h) converge uniformly over Nh,ε to those of m(a)(h);

(vi)
√
T

(

m
(a)
T (h0)

∂m
(a)
T

∂φh`
(h0)

)

d→
(

Z0

Z1

)

;

(vii) WT −W = oP (T−1/4),
∂m

(a)
T

∂h′

1
(h0) − D(a) = OP (T−1/2),

∂2m
(a)
T

∂h2
`

(h0) − G(a) = OP (T−1/2),

∂2m
(a)
T

∂h′

1∂h`
(h0) − G

(a)
1,` = oP (1),

∂3m
(a)
T

∂h3
`

(φ0) − L(a) = oP (1), where W , G
(a)
1,` = ∂2m(a)

∂h′

1∂h`
(h0), and L(a) =

∂3m(a)

∂h3
`

(h0) are all matrices of finite constants.

It can be recognized that under Assumption 6 the auxiliary model identifies h0 globally but
only at second order locally, and also satisfies the regularity conditions for Theorem 1. Thus, in
Theorem 2 below, we present the limiting distribution theory for II estimator in the case where the
failure in first-order local identification of the auxiliary parameter is due to the last column of the
Jacobian in the auxiliary model being null. We discuss the extension of this result to other patterns
of identification failure in Remark 4 below.

Let R
(a)
1 be the random variable obtained by replacing G, D, G1pφ and L on the right-hand side

of (18) by G(a), D(a), G
(a)
1,` and L(a) respectively.

Assumption 7. R
(a)
1 has no atom of probability at 0.

Under Assumptions 6 and 7, the limiting distribution of the GMM estimator of the auxiliary
parameter vector is characterized by Theorem 1(c).

We now define the binding function associated with our framework. To this end, recall that
the simulator takes the form X ∼ P (θ) where P ( · ) is given and θ ∈ Θ. Let Eθ[ · ] denote the
expectations operator relative to P (θ). Defining,

Q(a)(h; θ) = Eθ[g(X, h)]
′WEθ[g(X, h)],

the binding function, denoted b(θ), is given by:

b(θ) = argminh∈H Q(a)(h; θ).

Define MIT (θ) = ∂mIT (θ)/∂θ′. Regularity conditions on the simulator, binding function and II
minimand are given in the following assumption.

Assumption 8. (i) X ∼ P (θ0) where θ0 is an interior point of the compact set Θ ⊂ R
p, and the

simulated series {x(i)
t (θ), t = 1, 2, . . . , T}si=1 are generated by drawing from P (θ); (ii) b : θ → b(θ) is

an injective mapping; (iii) b(θ) is continuous on Θ and differentiable on Nθ,ε, an ε-neighbourhood of

θ0; (iv) ∂b(θ)/∂θ′
∣

∣

θ=θ0
is full column rank; (v) ΩT

p→ Ω, a positive definite matrix of finite constants;

(vi) QIIT (θ) converges uniformly to k(θ)′Ω k(θ) on Θ where k(θ) = h0−b(θ); (vii) MIT (θ) converges
uniformly to −∂b(θ)/∂θ′, a matrix of finite constants (possibly dependent on θ) on Nθ,ε.
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Assumption 8(i) states that the simulator is the true distribution for X. Assumption 8(i) com-
bined with Assumption 6(i)-(ii) imply that h0 = b(θ0). This property combined with Assumption
8(ii) yields the global identification on the binding function discussed in Section 2. Assumption
8(iv) is the first-order local identification condition associated with the binding function that is also
discussed in Section 2. Note that these identification conditions imply ` ≥ p. Assumption 8(v)-(vi)
specialize Assumptions 2(i) and 2(iii) to the II estimator considered here. Assumptions 8(ii) and
8(v) and h0 = b(θ0) are equivalent to Assumption 2(v) and so it follows from Proposition 1 that

θ̂II
p→ θ0 under Assumptions 6 and 8.

Since θ0 is interior to Θ, the indirect estimator solves with probability approaching 1 the first-
order condition (9):

MIT (θ̂II )
′ΩTmIT (θ̂II) = 0.

By a first-order mean value expansion of mIT around θ0, we have:

MIT (θ̂II )ΩT

(

mIT (θ0) +MIT (θ̇T )(θ̂II − θ0)
)

= 0,

with θ̇T ∈ (θ̂II , θ0) and may differ from row to row. We deduce that:

θ̂II − θ0 = ḞT

(

hT − 1

s

s
∑

i=1

h
(i)
T (θ0)

)

, (31)

with

ḞT = −
(

MIT (θ̂II )
′ΩTMIT (θ̇T )

)−1

MIT (θ̂II)
′ΩT .

The asymptotic distribution of θ̂II − θ0 depends on that of hT − 1
s

∑s
i=1 h

(i)
T (θ0). Define BT to be

the diagonal `× ` matrix of rates of convergence with all its diagonal elements equal to
√
T except

for the last one which is T 1/4. Under Assumption 6, we can apply Theorem 1 to deduce that,

BT (hT − h0)
d→ X, and BT (h

(i)
T − h0)

d→ X,

for all i = 1, . . . , s, where X is defined as in Theorem 1(c) only with m(a)( · ), its derivatives and

h replacing respectively m( · ), its analogous derivatives and φ. Hence, assuming that h
(i)
T (θ0) are

independent across i and independent of hT
22, we have:

BT

(

hT − 1

s

s
∑

i=1

h
(i)
T (θ0)

)

d→ Y ≡ X0 −
1

s

s
∑

i=1

Xi,

where X0,X1, . . .Xs are independent with the same distribution as X.
The fact that the rates of convergence in the diagonal of BT are not all equal make the deter-

mination of the rate of convergence of θ̂II − θ0 from that of mIT (θ0) more complicated than in the
standard case. Pre-multiplying (31) by T 1/4, we have:

T 1/4(θ̂II − θ0) = ḞT,•`T
1/4mIT,`(θ0) + oP (1) = F•`T

1/4mIT,`(θ0) + oP (1), (32)

22This is the case when there are no state variables so that the simulated samples are independent across i = 1, . . . , s.
(See Gourieroux, Monfort, and Renault, 1993).
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where under Assumptions 6 and 8,

ḞT
p→ F =

{

(

∂b(θ0)

∂θ′

)′

Ω

(

∂b(θ0)

∂θ′

)

}−1
(

∂b(θ0)

∂θ′

)′

Ω,

∂b(θ0)/∂θ
′ = ∂b(θ)/∂θ′

∣

∣

θ=θ0
, and ḞT,•` and F•` are the `th column of ḞT and F , respectively.

Hence:
T 1/4(θ̂II − θ0)

d→ F•`Y`,

where Y` is the `th component of Y.
This asymptotic distribution represents a p-dimensional sample dependent random vector that

converges in distribution to a random vector that has only one dimension of randomness. In
fact, T 1/4 appears to be the slowest rate of convergence of (θ̂II − θ0) in any direction in the space.
However asymptotic inference on θ0 would benefit from a further characterization of the asymptotic
distribution. We expect that some linear combinations of θ̂II − θ0 converge faster than others that
converge at the rate T 1/4.

To derive this asymptotic distribution, we rely on a second-order expansion of mIT (θ̂II ) around

θ0. Such a higher order expansion is required by the fact that (θ̂II −θ0) has the rate of convergence
T 1/4 in some directions and therefore, its quadratic function is a non-negligible component of
mIT (θ̂II ). We make the following assumption.

Assumption 9. ∆IT,k(θ) ≡ ∂2mIT,k(θ)
∂θ∂θ′

converges in probability uniformly over Nθ,ε to ∆I,k(θ) ≡
−∂2bk(θ)

∂θ∂θ′ for k = 1, . . . , ` and bk(θ) denotes the kth element of b(θ).

By a second-order mean value expansion of mIT (θ0) around θ̂II , and after re-arranging, we
have:

mIT (θ̂II ) = mIT (θ0) +MIT (θ̂II)(θ̂II − θ0) −
1

2

(

(θ̂II − θ0)
′∆IT,k(θ̇T )(θ̂II − θ0)

)

1≤k≤`
,

where θ̇T ∈ (θ0, θ̂II) may differ from row to row. Solving this in (θ̂II − θ0) yields:

θ̂II − θ0 = F̂T

(

mIT (θ0) −
1

2

(

(θ̂II − θ0)
′∆IT,k(θ̇T )(θ̂II − θ0)

)

1≤k≤`

)

, (33)

with

F̂T = −
(

MIT (θ̂II )
′ΩTMIT (θ̂II )

)−1

MIT (θ̂II )
′ΩT .

To characterize the directions of fast convergence of θ̂II−θ0, let Ŝ be the p×p matrix with unit and
pairwise orthogonal p-vectors as rows with the last row equal to the last column of F̂T normalized
and let Ŝ1 be the (p − 1) × p sub-matrix of the first (p − 1) rows of Ŝ. Remark 4 below gives how
the matrix Ŝ can be determined as a continuous function of the last column of F̂T .

Remark 4. Let (e1, . . . , ep) be the canonical basis of R
p, with ej the p-vector of 0’s except for its

jth entry equal 1. Consider Condition C below:

Condition C: u ∈ R
p \ {0} and there exists a unique subset {ei1 , . . . , eip−1} of p − 1 ele-

ments of the canonical basis of R
p such that the absolute determinant of the (p × p)-matrix

(u ei1 . . . eip−1 ) is maximum.
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Let u ∈ R
p \{0}. Consider the following three step procedure. Step 1: Find p−1 elements of the

canonical basis of R
p such that the absolute determinant of (u ei1 . . . eip−1 ) is maximum, with ik an

increasing sequence in k. Step 2: Determine an orthonormal basis from (u ei1 . . . eip−1 ) using the
Gram-Schmidt orthonormalization process and let (ũ, ẽ1, ẽ2, . . . , ẽp−1) be the resulting orthonormal
basis. Step 3: Take

S(u) = (ẽ1 ẽ2 . . . ẽp−1 ũ)
′
.

We can show that if u satisfies Condition C, then u 7→ S(u) is continuous at u. In particular, if
F•` satisfies Condition C, we set Ŝ = S(F̂T,•`). The continuity of S at F•` allows the application
of the continuous mapping theorem as we do in the proof of Theorem 2 below.

If p−1 elements {efi1 , . . . , e
f
ip−1

} of the canonical basis of R
p are known to be linearly independent

of F•`, then one can skip Step 1 in the definition of S(u) and use (efi1 , . . . , e
f
ip−1

) in Step 2. In
this case, F•` need not satisfy Condition C.

By construction, Ŝ1F̂TmIT (θ0) does not depend on the slow converging component, mIT,`(θ0),
of mIT (θ0). We therefore have:

√
T Ŝ1

(

θ̂II − θ0

)

= Ŝ1F̂TBT

(

mIT (θ0) −
1

2

(

(θ̂II − θ0)
′∆IT,k(θ̇T )(θ̂II − θ0)

)

1≤k≤`

)

. (34)

Combining (32) and (34) and letting S be the probability limit of Ŝ andBIT =

( √
TIp−1 0

0 T 1/4

)

,

we obtain the following result.

Theorem 2. Let the II estimator be defined by (30) with the target function in (29), and Assump-
tions 6-9 hold. If the s indirect inference samples are generated independently and the last column
of F satisfies Condition C in Remark 4 then:

BIT Ŝ
(

θ̂II − θ0

)

d→







S1F
(

Y − (Y`)
2

2
(F ′

•`∆I,k(θ0)F•`)1≤k≤`

)

Sp•F•`Y`






,

where S1 is the sub-matrix of the first (p−1) rows of S, Sp• is the pth row of S, Y = X0− 1
s

∑s
i=1 Xi,

with Xj’s independently and identically distributed as X, and Y` is the `th element of Y.

The proof is relegated to the Appendix. The asymptotic distribution of BIT Ŝ(θ̂II − θ0) can be

simulated by replacing S, F and ∆I,k(θ0), k = 1, . . . , ` by their estimates, Ŝ, F̂ and ∆IT,k(θ̂II ),
k = 1, . . . , `. The simulation of Y is based on that of X which is described in the previous section.

Remark 5. In the case where the rank deficiency in the auxiliary model appears in a way that
no column of the Jacobian matrix is nil, we can obtain the asymptotic distribution of the indirect
estimator as follows. The asymptotic distribution of BT R̂

−1(hT − h0) is derived in the previous
section. Let X̃ denote this asymptotic distribution in either Case 1 or Case 2. From (31), we can
show that:

T 1/4(θ̂II − θ0) = FR•` T
1/4(R̂−1mIT (θ0))` + oP (1),
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where R•` is the `th column of R and (R̂−1mIT (θ0))` is the `th element of R̂−1mIT (θ0). Also, from
(33), we have

θ̂II − θ0 = F̂T R̂

(

R̂−1mIT (θ0) −
1

2
R̂−1

(

(θ̂II − θ0)
′∆IT,k(θ̇T )(θ̂II − θ0)

)

1≤k≤`

)

.

Letting ŜR be row-wise, the orthonormal basis obtained by completing the `th column of F̂T R̂
according to Remark 4, and SR its probability limit, we have that:

BIT ŜR

(

θ̂II − θ0

)

d→







SR,1FR
(

Ỹ − (Ỹ`)
2

2
R−1 (R′

•`F
′∆I,k(θ0)FR•`)1≤k≤`

)

SR,p•FR•`Ỹ`






,

where Ỹ = X̃0 − 1
s

∑s
i=1 X̃i, with X̃j’s are independent and identically distributed as X̃ and SR,1,

SR,p• are defined similarly to S1 and Sp• in Theorem 2.

5.2 The local identification condition associated with the binding func-
tion holds at second order

We now consider the large sample behaviour of the II estimator when the binding function satisfies
the global identification condition but only satisfies the local identification condition at second
order. For this analysis, it is assumed that the auxiliary parameter vector is globally and first-order
locally identified.

Assumption 10. (i) Assumption 6(i)-(ii) hold; (ii) m
(a)
T (h) is differentiable in an ε-neighbourhood

of h0, Nh,ε, and the derivatives of m
(a)
T (h) converge uniformly over Nh,ε to those of m(a)(h); (iii)

rank{M (a)(h0)} = `.

To present the necessary regularity conditions on the binding function, we introduce the following
notation. We partition the parameter vector as θ = (θ′1:p−1 , θp)

′ where θp is the pth element of θ but

for ease of notation in the formulae below set θ1 = θ1:p−1. Define M (b)(θ0) = −∂b(θ)/∂θ′
∣

∣

θ=θ0
and

G(b) = −∂2b(θ)/∂θ2p
∣

∣

θ=θ0
. Here the superscript “(b)” indicates quantities pertaining to the binding

function.

Assumption 11. (i) Assumption 8(i)-(ii) hold; (ii) b(θ) is continuous on Θ and three times
continuously differentiable on Nθ,ε, an ε-neighbourhood of θ0; (iii) M (b)(θ0) = [D(b), 0`×1] where
D(b) is `× (p−1) matrix of constants with full column rank; (iv) G(b) is a vector of finite constants
with Rank{[D(b), G(b)]} = p; (v) Assumption 8(v)-(vi) hold; (vi) mIT (θ) is three times continuously
differentiable on Nθ,ε and the derivatives of mIT (θ) converge in probability uniformly over Nθ,ε to
those of −b(θ).

The combination of Assumptions 10 and 11 has important implications for the source of the first-
order local identification failure in the binding function as we now explain. Within our framework,
the binding function is defined as

b(θ) = argminh Eθ[g(X(θ), h)]′WEθ[g(X(θ), h)]. (35)
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Using Assumption 10, we can equivalently characterize binding function through the first order
conditions:

b(θ) = h where h satisfies

{

Eθ

[

∂g(X(θ), h)

∂h′

]}′

WEθ[g(X(θ), h)] = 0. (36)

From the Implicit Function Theorem, Dhrymes (1984)[Proposition 94, p.109] and using (28), we
have:

∂b(θ0)

∂θ′
= − [M (a)′WM (a)]−1M (a)′WΓθ. (37)

where M (a) = M (a)(h0) and

Γθ = Eθ0

[

∂g(X(θ), h0)

∂θ′

∣

∣

∣

∣

θ=θ0

]

.

From Assumption 10, rank{M (a)′W} = ` and so rank deficiency in ∂b(θ0)/∂θ
′ can occur in two

ways.23 First, we have rank{Γθ} = p but rank{M (a)′WΓθ} < p: this situation can be interpreted
as one in which the identification failure is due to the choice of target function rather than the
auxiliary model. In this case, it may be possible to restore first-order identification by use of a
different target function. Second, we have rank{Γθ} < p: in this case the identification failure
stems from the choice of auxiliary model.24 Our analysis covers both possibilities; we return to this
issue in Section 5.3.

The asymptotic distribution of the II estimator is readily available by similar arguments to the
proof of Theorem 1. In the scenario here, the limiting distribution is a function of the limiting
distribution of [mIT (θ0)

′, ∂mIT (θ0)/∂θp]. Below we make an assumption about the large sample
behaviour of this term, but before doing so provide a motivation for the condition in question.
Within our framework here, we have:

√
TmIT (θ0) =

√
T (hT − h0) −

1

s

s
∑

i=1

√
T
(

h
(i)
T (θ0) − h0

)

Under Assumption 10 and some additional mild conditions,25
√
T (hT−h0) converges in distribution

to a random vector Z0h with Z0h ∼ N(0, Vh) where Vh is defined by the right-hand side of (10)

with M (a) replacing M(φ0) and Vm defined as Vm = limT→∞ V ar
(√

Tm
(a)
T (h0)

)

. It then follows

that
√
TmIT (θ0)

d→ Z0h(s) ≡ Z
(0)
0h +

1

s

s
∑

i=1

Z
(i)
0h ,

where Z
(k)
0h (k = 0, . . . , s) are independent copies of Z0h. Using Assumption 11(iii), it follows from

a Central Limit Theorem that

T 1/2∂mIT (θ0)/∂θp
d→ Z1h(s) ≡

1

s

s
∑

i=1

Z
(i)
1h

23For the following discussion, recall M (a)′W is ` × q and Γθ is q × p with q ≥ ` ≥ p, and rank{AB} ≤
min(rank{A}, rank{B}) for conformable matrices A and B.

24We note that if the target function consists of a set of raw data moments then local identification can only fail
because rank{Γθ} < p.

25See Proposition 2 in Section 2.
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where Z
(k)
1h (k = 1, . . . , s) are independent copies of Z1h ∼ N(0, V1), and using (37), we have

V1 = [M (a)′WM (a)]−1M (a)′WV2WM (a)[M (a)′WM (a)]−1,

with

V2 = limT→∞V ar

[

T−1/2
T
∑

t=1

∂g (X(θ0), h0 ) /∂θp

]

.

This limiting behaviour is implied by the following assumption.

Assumption 12. (i) The auxiliary model (28) is such that: h0 = b(θ0),
√
T (hT − h0) converges

in distribution to Z0h ∼ N(0, Vh) and

√
T

(

mIT (θ0)
∂mIT (θ0)

∂θp

)

d→
(

Z0h(s)
Z1h(s)

)

.

for Z0h(s) and Z1h(s) defined above. (ii) ΩT − Ω = oP (T−1/4), ∂mIT
∂θ′1

(θ0) − D(b) = OP (T−1/2),

∂2mIT
∂θ2p

(θ0) − G(b) = OP (T−1/2), ∂2mIT
∂θ′1∂θp

(θ0) − G
(b)
1p = oP (1), and ∂3mIT

∂θ3p
(θ0) − L(b) = oP (1),

with G
(b)
1p = − ∂2b

∂θ′1∂θp
(θ0) and L(b) = − ∂3b

∂θ3p
(θ0).

Let M
(b)
d , P

(b)
g , M

(b)
d g, R

(b)
1 (s), σ

(b)
G , and H(b) be defined as Md, Pg, Mdg , R1(s), σG, and H ,

respectively with Iq, D, G, W , Z0, Z1, L and G1pφ replaced by I`, D
(b), G(b), Ω, Z0h(s), Z1h(s),

L(b) and G
(b)
1p , respectively.

Theorem 3. Under Assumptions 11 and 12, we have

(a)
√
T

(

θ̂1 − θ0,1
(θ̂p − θ0,p)

2

)

d→
(

H(b)
Z0h(s) +H(b)G(b)

V
(b)(s)/2

V
(b)(s)

)

,

with V
(b)(s) = −2

Z
(b)(s)I(Z(b)(s)<0)

σ
(b)
G

and Z
(b)(s) = G(b)′Ω1/2M

(b)
d Ω1/2

Z0h(s).

(b) If in addition, R
(b)
1 (s) does not have an atom of probability at 0, then:

( √
T (θ̂1 − θ0,1)

T 1/4(θ̂p − θ0,p)

)

d→ X(s) ≡
(

H(b)
Z0h(s) +H(b)G(b)

V
(b)(s)/2

(−1)Bs
√

V(b)(s)

)

,

with Bs = I(R
(b)
1 (s) ≥ 0).

This result follows readily from Theorem 1. As with that earlier result, the limiting distribution
is non-standard but it can easily be simulated using similar approach as that described in Remark 2.
It is worth mentioning that part (a) of the theorem does not require the whole set of Assumptions
11 and 12. Indeed, (a) holds if we maintain twice continuous differentiability in Assumptions 11(ii)

and 11(vi) in addition to Assumption 12(i) with merely
√
TmIT (θ0)

d→ Z0h(s); without imposing
the joint convergence in distribution. Assumption 12(ii) and third order differentiability are useful

for the higher order expansion of the QIIT (θ) from which is deduced the sign of T 1/4(θ̂p − θ0,p).
If the Jacobian matrix of the binding function at θ0 is of rank p−1 but does not have a column of

zeros, similar transformations as those leading to (22) and (24) can be made for the characterization
of the asymptotic distribution of the indirect inference estimator.
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5.3 Optimal (based on first order asymptotics) II estimation

In our analysis, we consider the framework where the target function is the GMM estimator of
h0 based on (28). While this choice of target function has a certain practical appeal as GMM is
widely implemented in empirical economics, Frazier and Renault (2016) show that this choice of
target function is not optimal for II estimation under the assumptions that permit a first-order
asymptotic analysis. The latter conditions include first-order local identification involving both
the auxiliary parameter vector and the binding function. Below we consider the properties of this
optimal estimator within our framework in which local identification only holds at second order.
To do so, we must briefly summarize Frazier and Renault’s results within the standard first-order
asymptotic framework.

Frazier and Renault (2016) consider the case where the auxiliary model is (28) and the target
function is the Method of Moments (MM) estimator of h0 based on the moment conditions:

AE [g(X, h0) ] = Am(a)(h0) = 0, (38)

where A is a ` × q matrix of given constants with full row rank and (28) is assumed to first-order
locally identify h0 that is, M (a) is full column rank. Let hT (A) denote the MM estimator of h0 based
on (38). As pointed out by Frazier and Renault (2016), this framework includes an estimator that
is first-order equivalent to the two-step GMM estimator based on (28) by setting A = M (a)′V −1

where V is Avar[m
(a)
T (h0)] = limT→∞V ar[T

1/2m
(a)
T (h0)].

26 Let bA(θ) denote the binding function
associated with the use of hT (A) as the target function. Frazier and Renault (2016) show that for
a given A the optimal choice of weighting matrix in the II estimation of θ0 is:

Ω∗(A) = {Avar [hT (A) − h0]}−1 = M (a)′A′ {AVA′ }−1
AM (a). (39)

Let θ̂T (A) be the II estimator defined by (30) with the binding function bA(θ) and a weighting

matrix that satisfies ΩT
p→ Ω∗(A). Frazier and Renault (2016) show that the variance of the

limiting distribution of T 1/2(θ̂T (A) − θ0) is:

Avar[θ̂T (A) − θ0] =

(

{

∂bA(θ0)

∂θ′

}′

{Avar [hT (A) − h0]}−1

{

∂bA(θ0)

∂θ′

}

)−1

,

where
∂bA(θ0)

∂θ′
= − [AM (a)]−1AΓθ. (40)

Using the latter result, Frazier and Renault (2016) establish that the efficiency bound for estimation
(in this way) of θ0 is (Γ′

θV
−1Γθ)

−1 and that this can be achieved by setting A = A∗ where

A∗ =





Γ′
θV

−1

· · ·
C ′



 , (41)

and C is an arbitrary matrix of dimension q × (` − p) whose columns do not belong to the space
spanned by the columns of V −1Γθ. As Frazier and Renault (2016) show, the use of the two-step

26This choice of A yields an estimator that is only first-order asymptotically equivalent to the GMM estimator
because A is treated as given whereas the first order conditions of GMM estimation acknowledge the dependence of
the Jacobian matrix on h.
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GMM estimator of h0 based on (28) as the target function only achieves this bound if V −1/2Γθ
lies in the column space of V −1/2M (a). This leads to an important insight about Indirect Infer-
ence estimation, namely that efficient estimation of h0 does not necessarily translate into efficient
estimation of θ0 in this context.

We now consider the large sample properties of θ̂T (A) within the frameworks of Section 5.1
and 5.2 above. First, as in Section 5.1, we consider the case in which the binding function satis-
fies the global and first-order local identification conditions and the auxiliary model satisfies the
global identification but only satisfies the local identification condition at second order. For ease of
exposition, we assume the auxiliary model exhibits that pattern of identification in Assumption 6.

If the auxiliary parameters are only identified locally at second order then the consistency of
θ̂T (A) can no longer be established via the conventional arguments. The reason is that Ω∗(A) in
(39) is singular for any choice of A because M (a) is rank deficient. Therefore, even though the
binding function satisfies the global identification condition, the weighting matrix, Ω∗(A), does not
exhibit the positive definiteness required for the population analog to the II minimand to have a
unique minimum at θ0 . Thus the standard proof of consistency of the II estimator does not go
through. Following some proofs of the consistency of GMM-type estimators,27 consistency can still
be established if Ω∗(A) is positive semi-definite and Ω∗(A){h0 − bA(θ)} = 0 ⇔ θ = θ0. However,
given (39), the latter condition requires that h0 − bA(θ) does not lie in the null space of M (a) for
any θ 6= θ0 which is a strong assumption that - it seems to us - would be hard to justify in many
circumstances.28

Even if θ̂T (A) can be argued to be consistent then it does not have the first-order asymptotic
distribution on which the optimality of A∗ is based because if m(a)(h0) = 0 only identifies h0

locally at second order then Am(a)(h0) = 0 does not identify h0 locally at first order. Recalling
rank(A) = ` and Assumption 6(iii), this can be seen by noting that

∂Am(a)(h0)

∂h′
= AM (a) = [AD(a), 0q×1],

and so rank{AM (a)} ≤ ` − 1. If rank{AM (a)} = ` − 1 and the second-order local identification
conditions hold,29 the large sample distribution theory of the Method of Moments estimator based
on Am(a)(h0) = 0 is characterized by Theorem 1(c).30 Hence the large sample distribution of θ̂T (A)

is given by Theorem 2 (with Am
(a)
T ( · ) replacing m

(a)
T ( · ) etc.).

We now consider the large sample properties of θ̂T (A) within the framework of Section 5.2 in
which the binding function satisfies the global identification condition but only satisfies the local
identification at second order, and the auxiliary model satisfies both global and first-order local
identification conditions. For an arbitrary full row rank matrix A, it follows from (40) (and similar
arguments to Section 5.2) that the first-order identification failure can arise in principle in two
ways:31 (i) rank{Γθ} = p but rank{AΓθ} < p; (ii) rank{Γθ} < p. However if we restrict attention
toA = A∗ then it can be seen from (41) that if rank{Γθ} = p then rank{A∗Γθ} = p by construction.

Thus, by using θ̂T (A∗), one possible source of first-order local identification failure in the binding

function is avoided; and if rank{Γθ} = p then θ̂T (A∗) has the first-order asymptotic distribution

27For example see Newey and McFadden (1984)[p.2132].
28For example, under Assumption 6(iii), this condition would imply that h0 − bA(θ) 6∝ (0′1×(`−1), 1)′ for any θ.
29Since ∂2Am(a)(h0)/∂h2

` = AG the condition for second-order local identification is rank{A[D(a), G(a)]} = `.
30This characterization involves replacing m(a)( · ) and its relevant derivatives by Am(a)( · ) and the its analogous

derivatives.
31This statement is premised on AM (a) being nonsingular.
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described above. However, if the failure in first-order local identification is due to rank{Γθ} < p

then the limiting distribution of θ̂T (A∗) can be obtained from Theorem 3 subject to the model
satisfying the assumptions of this result.

Following the approach of Frazier and Renault (2016), it would be interesting to try to charac-

terize an optimal combination of A and Ω that minimizes the asymptotic variance of θ̂T (A) within
the frameworks of either Sections 5.1 or 5.2. However, the nature of the limiting distribution in
Theorems 2 and 3 make the asymptotic variances of the II estimator depend non-trivially on A and
Ω, making the determination of their optimal values a hard problem to solve analytically. Such an
analysis is beyond the scope of this paper and left to future research.

6 Monte Carlo results

This section illustrates the finite sample performance some of the asymptotic results derived in
this paper through Monte Carlo simulations. We are mainly concerned with coverage probabilities
of confidence intervals (CI) based on the asymptotic distribution derived for the GMM and II
estimators in Theorems 1 and 2, respectively.

Our simulations are based on the dynamic panel data model in Example 1 in Section 3. The
simulated data are generated from εit ∼ NID(0, σ2

ε ), i = 1, . . . , n, t = 1, 2 independent of (ηi, yi0) ∼
NID(0,Σ), with Σ11 = σ2

η, Σ22 = σ2
0, and Σ12 = σ0η. The autoregressive dynamic in (12) is then

used to obtain samples {yi = (yi1, yi2) : i = 1, . . . , n} for various values of ρ.
The parameter of interest ρ is estimated by 2-step GMM and II using the moment restriction in

(14). The 2-step GMM estimator ρ̂ is obtained using the identity matrix as weighting matrix at the
first step and the estimated optimal weighting matrix at the second step. We obtain the indirect
inference estimator as follows. We fix the indirect inference sample parameters at σ̃2

0 , σ̃
2
η, σ̃0η, and

σ̃2
ε. Then, for each ρ, s samples of size n: {yki (ρ) : i = 1, . . . , n} (k = 1, . . . , s) are simulated and

the 2-step GMM estimator of ρ, hk(ρ), is obtained for each sample k = 1, . . . , s. The estimated
binding function bs(ρ) = 1

s

∑s
k=1 hk(ρ) is used to determine the II estimator ρ̂II of ρ:

ρ̂II = arg min
ρ

|ρ̂− bs(ρ)|2 .

We follow Gourieroux, Phillips, and Yu (2010) by setting σ̃2
0 , σ̃

2
η, σ̃0η, and σ̃2

ε to the set of values σ2
0 ,

σ2
η, σ0η, and σ2

ε that govern the dynamics of the original sample. We later relax this for robustness
checking. We set s = 50 throughout.

One of the main interests in the II estimator, as established by Gourieroux, Phillips, and Yu
(2010), is its ability to reduce potential finite sample bias from the original estimator. However,
if interest lies with CI’s, in the case where ρ = 1 and σ2

η = σ0η = 0, the standard asymptotic
distribution fails and inference must be based on Theorem 2.

In each of our Monte Carlo experiments, CI’s from the standard theory and that from our theory
are considered. For the GMM and as already mentioned (see Remark 3), when the moment condition
model has a single parameter that is not locally identified at the first order but rather at the second
order, the asymptotic distribution of n1/4(ρ̂−ρ) is a simple function of a Gaussian variable and CI’s
can be derived analytically using quantiles from the standard Gaussian distribution. However, in
general, the asymptotic distribution of n1/4(ρ̃− ρ) (with ρ̃ being the GMM or II estimator) can be
simulated and one can consider symmetric CI’s based on the quantiles of the asymptotic distribution
of n1/4(ρ̃− ρ) or the so-called equal-tailed CI’s that use α/2-quantile and (1−α/2)-quantile of this
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asymptotic distribution. Throughout this section, only results from symmetric CI’s are reported.
Equal-tailed CI’s have very similar performance and have not been reported. Simulated quantiles
are obtained from 1,000 draws from the estimated asymptotic distribution of n1/4(ρ̃− ρ) where G
and W are replaced by their estimates.

Table 1 gives the results related to GMM estimation and coverage rate of CI’s based on
GMM using the standard asymptotics (Cov-1) and our results (Cov-2 and Cov-3 using analytic
and simulated quantiles, respectively). We take σ2

0 = σ2
ε = 1 and σ2

η = σ0η = 0 and consider
ρ = 0.2, 0.3, 0.5, 0.75, 0.8, 0.9, 0.95, 0.97, 0.98, 1.0, 1.1, 1.2, 1.3 and 1.5. Even though first-order local
identification issues arise at ρ = 1.0, this range of values for ρ allows us to investigate the finite
sample performance of the non-standard CI near ρ = 1.0, i.e. near singularity of the Jacobian
matrix of the moment function. The Euclidean norm of the simulated mean of this Jacobian, D(ρ)

in (42), and the second derivative matrix, G(ρ) in (43), are also reported as | ¯̂D| and | ¯̂G| respectively.
First, we observe that Cov-2 and Cov-3 have approximately the same values meaning that the

non-standard CI’s based on simulation or on quantiles from the standard normal distribution are
almost identical. Besides, for values of ρ ‘far’ from the singularity point (ρ = 0.2, 0.3, 0.5, 1.3 and
1.5), the coverage rates of the standard CI (Cov-1) seem to converge to the nominal level 95% as
n becomes large whereas the non-standard CI substantially over-covers at those values for n large
with coverage rates larger than 99%.

However, near ρ = 1.0, the non-standard CI has coverage rates of about nominal 95% while the
standard CI substantially under-covers at around 82% for n = 5, 000. Specifically, the standard
CI performs poorly for ρ ranging from 0.8 through 1.2 even in large samples. In small samples
(n = 50, 100, 200), except for ρ = 1.3 and 1.5, the non-standard CI seems to outperform the
standard one as it delivers coverage rates substantially closer to nominal. It is worth mentioning

that the smaller the Jacobian norm (| ¯̂D|), the better the non-standard CI performs.
Figure 1 reports, for n = 5, 000, histograms of the simulated GMM estimators for ρ = 0.3, 1.0, 1.3

and also QQ-plots of these distributions against the standard normal distribution. These reveal that
the GMM estimator has a very different distribution for ρ = 1, the point of first-order identification
failure than at the other two points at which ρ is first-order locally identified. The distribution for
ρ = 1 is also evidently non-normal.

To explore the behaviour of the estimator in a different neighbourhood to the point of first-order
local identification failure, we fix ρ = 1 and set σ0η = λ, σ2

η = |λ|, with λ = 0,±0.1, 0.2, 0.3, 0.5.
These results are reported in Table 2. Qualitatively, the results are the same as in Table 1: the CI’s
based on Theorem 1 have approximately the nominal coverage level for λ values close to 0, the point
of first-order local identification failure but the coverage is too high outside this neighbourhood. In
contrast, the coverage of the CI based on the standard theory is well below the nominal 95% level
in this neighbourhood: for example at n = 5, 000, the coverage is between 78%, 82% and 84% for
λ = −0.1, 0, 0.1, respectively.

Table 3 reports analogous results for II to those for Table 1 for GMM. These results indicate
that the CI’s based on standard asymptotic theory are too low at and in the neighbourhood of the
point of first-order local identification failure whereas the coverage for the CI’s based on Theorem
2 are closer to the nominal level although only achieve the nominal level at the largest sample size.
Comparing the GMM and II CI’s based on our theory for parameter values in the neighbourhood of
the point of first-order local identification failure, it can be seen that the coverage rates for GMM
tend to be closer to the nominal level than those for II. As noted above, one reason for employing II
is bias reduction. In Table 3 we report the simulated bias and RMSE of the two estimators. From
Table 3, it can be seen that for ρ ≤ 1, our II estimator exhibits lower bias; but for ρ > 1 GMM

29



exhibits less bias.
The simulated distribution of the II estimator is displayed by Figure 2 which is the II analogue

of Figure 1. We can see that at singularity (ρ = 1), II is also clearly non-normal whereas as ρ = 0.3
or 1.3, related histograms and QQ-plots reveal a behaviour of II in line with normality.

We conclude this simulation experiments by investigating the robustness of the properties of
the II estimator. In this experiment, we assume the researcher uses (13) as the auxiliary model
but calibrates the value of θ2. So for the true data generation process: ρ = 1, σ2

ε = σ2
0 = 1

and σ0η = σ2
η = 0; but the calibrated values of θ2 are: σ̃2

ε = σ̃2
0 = 1, σ̃0η = λ and σ̃2

η = |λ|,
λ = 0,±0.1, 0.2. Note that due to the calibration, only ρ is estimated via II. The results are
displayed in Table 4. The CI based on Theorem 2 outperforms the standard CI for all values of λ
and for all the sample sizes considered. We can also see that for n = 5, 000, the coverage rates from
the non-standard CI are all close to nominal except for λ = −0.1 where the coverage rate is 80.1%.
Note that this still outperforms the standard CI by about 4 percentage points. Besides, for each
sample size, we measure the stability of coverage across λ’s by the mean absolute deviation (MAD)
from the nominal level of 95%. Using this metric, we can see that the non-standard CI has a better
robustness property since its MAD varies from 13.5 (n = 200) to 3.36 (n = 5, 000) and is always
smaller than that of the standard CI which lies between 10.3 and 20.5. It is also worth mentioning
that the bias reduction property expected for II is also robust to the deviations considered for the
II samples since this estimator has a smaller bias than GMM across λ’s.

7 Concluding remarks

In this paper, we provide new results on the limiting behaviour of GMM and II estimators when
local identification conditions fail at first-order but hold at second order. For our analysis of II,
we focus on the case where the auxiliary model consists of a set of population moment conditions
indexed by a vector of auxiliary parameters and the target function for the II estimation is a
GMM estimator of the auxiliary parameter vector. Within this framework, the standard first-order
asymptotic theory is premised on the assumption that the binding function satisfies both global
and first-order local identification conditions and the auxiliary parameters are globally and first-
order locally identified within the auxiliary model. We present the limiting distributions of the II
estimator in the case where the local identification condition for either the binding function or the
auxiliary only holds at second order. These limiting distributions are different in each case, and, like
the limiting distribution of the GMM estimator, non-standard. However, we show that these limit
distributions can be easily simulated making it possible to perform inference about the parameters
in these settings. We also use our results to analyze the large sample behaviour under second-order
local identification of a version of II that has recently been shown by Frazier and Renault (2016)
to be optimal within the standard first-order asymptotic framework. We find that the large sample
properties of this optimal estimator are affected by the failure of the first-order local identification
involving either the binding function or the auxiliary model. However, interestingly, we find that
use of the optimal estimator means inferences are robust to one possible source of failure of the
first-order local identification condition involving the binding function.

While first-order local identification may only fail at a point in the parameter space, our sim-
ulation results indicate that our theory based on second-order identification can provide a better
approximation to finite sample behaviour of GMM and II estimators than standard first order
asymptotic theory in a neighbourhood of the point of first-order local identification failure. Our
simulation study further reveals that the limiting distribution theory derived in our paper leads
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to reliable GMM/II-based inferences in moderate to large samples in the neighbourhood of the
point of first-order identification failure. Comparing GMM and II, we find our limiting distribution
theory provides a reasonable approximation to the behaviour of the GMM at smaller sample sizes
than it does for the II estimator, but that II exhibits smaller bias at the point of first-order local
identification failure.

The choice of limit theory then requires knowledge of the quality of the identification but this
may be difficult to assess a priori. It would be interesting to explore diagnostics for cases when local
identification fails at first order but not at second order. Such diagnostics for local identification
have recently been receiving some attention in the context of DSGE models. Iskrev (2010) and
Qu and Tkachenko (2012) develop methods for evaluating the first-order local identification based
on numerical evaluation of the Jacobian over the parameter space. An attractive feature of such
analyses is that they can reveal areas of the parameter space where first-order identification fails.
By their nature, these methods focus on first-order identification. However, we conjecture that,
given the complexity of the models and the need for approximations to their solutions, parameters
of DSGE models may be second-order but not first-order locally identified in some cases of interest.
The results presented in our paper provide a basis for performing inference about the parameters
in this context. It would therefore be interesting to explore extensions of these diagnostics to look
for evidence of second-order local identification.

Alternatively, it may be of interest to explore ways to generate confidence sets based on GMM
and II estimators that are robust to first- or second- order identification. One possible approach
may be the use of bootstrap methods, building from recent work on bootstrapping the GMM
overidentification test by Dovonon and Gonçalves (2016).
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Dupaigne, M., Fève, P., and Matheron, J. (2007). ‘Avoiding pitfalls in using structural VARs to
estimate economic models’, Review of Economic Dynamics, 10: 238–255.

Ferguson, T. S. (1958). ‘A method of generating best asymptotically normal estimates with appli-
cation to the estimation of bacterial densities’, Annals of Mathematical Statistics, 29: 1046–1062.

Fiorentini, G., Sentana, E., and Shephard, N. (2004). ‘Likelihood-based estimation of generalised
ARCH structures’, Econometrica, 72: 1481–1517.

Frazier, D. T., and Renault, E. (2016). ‘Indirect inference with(out) constraints’, Discussion paper,
Department of Economics, University of Econometrics and Business Statistics, Monash Univer-
sity, Melbourne, New South Wales, Australia.

Gallant, A. R., and Tauchen, G. (1996). ‘Which moments to match?’, Econometric Theory, 12:
657–681.

Garcia, R., Renault, E., and Veredas, D. (2011). ‘Estimation of stable distributions by indirect
inference’, Journal of Econometrics, 161: 325–337.

Ghysels, E., and Guay, A. (2003). ‘Structural change tests for simulated method of moments’,
Journal of Econometrics, 115: 91–123.

Gourieroux, C., Monfort, A., and Renault, E. (1993). ‘Indirect inference’, Journal of Applied Econo-
metrics, 8: S85–S118.

Gourieroux, C., Phillips, P. C. B., and Yu, J. (2010). ‘Indirect Inference for dynamic panel models’,
Journal of Econometrics, 157: 68–77.

Hall, A. R. (2015). ‘Econometricians have their moments: GMM at 32’, Economic Record, 91, S1:
1–24.

Hamilton, J. D. (1994). Time series analysis. Princeton University Press, Princeton, NJ, U. S. A.

Hansen, L. P. (1982). ‘Large sample properties of Generalized Method of Moments estimators’,
Econometrica, 50: 1029–1054.

33



Hansen, L. P., and Singleton, K. S. (1982). ‘Generalized instrumental variables estimation of non-
linear rational expectations models’, Econometrica, 50: 1269–1286.

Heaton, J. (1995). ‘An empirical investigation of asset pricing with temporally dependent preference
specifications’, Econometrica, 63: 681–717.

Iskrev, N. (2010). ‘Local identification in DSGE models’, Journal of Monetary Economics, 57:
189–202.

Jansen, I., Hens, N., Molenberghs, G., Aerts, M., Verbeke, G., and Kenward, M. G. (2006). ‘The
nature of sensitivity in monotone missing not at random models’, Computational Statistics and
Data Analysis, 50: 830–858.

Kleibergen, F. (2005). ‘Testing parameters in GMM without assuming that they are ideintified’,
Econometrica, 73: 1103–1124.

Komunjer, I., and Ng, S. (2011). ‘Dynamic identification of dynamic stochastic general equilibrium
models’, Econometrica, 79: 1995–2032.

Kruiniger, H. (2013). ‘Quasi ML estimation of the panel AR(1) model with arbitrary initial condi-
tions’, Journal of Econometrics, 173: 175–188.

(2014). ‘A further look at Modied ML estimation of the panel AR(1) model with xed eects
and arbitrary initial conditions’, Discussion paper, University of Durham, unpublished mimeo.

Le, V. P. M., Meenagh, D., Minford, P., and Wickens, M. (2011). ‘How much nominal rigidity
is there in the US economy? Testing a new Keynesian DSGE model using indirect inference’,
Journal of Economic Dynamics and Control, 35: 2078–2104.

Lee, J. H., and Liao, Z. (2016). ‘On Standard Inference for GMM with Local Identication Failure
of Known Forms’, Discussion paper, unpublished mimeo, Department of Economics, University
of Illinois, Urbana IL, USA.

Madsen, E. (2009). ‘GMM-based inference in the AR(1) panel data model for parameter values
where local idntification fails’, Discussion paper, Centre for Applied Microeconometrics, Depart-
ment of Economics, University of Copenhagen, Copenhagen, Denmark.

McFadden, D. (1989). ‘A method of simulated moments for estimation of discrete response models
without numerical integration’, Econometrica, 57: 995–1026.

Mutschler, W. (2015). ‘Identification of DSGE models - the effect of higher-order approximation
and pruning’, Journal of Economic Dynamics and Control, 56: 34–54.

Newey, W. K., and McFadden, D. L. (1994). ‘Large sample estimation and hypothesis testing’, in
R. Engle and D. L. McFadden (eds.), Handbook of Econometrics, vol. 4, pp. 2113–2247. Elsevier
Science Publishers, Amsterdam, The Netherlands.

Newey, W. K., and Smith, R. J. (2004). ‘Higher order properties of GMM and generalized empirical
likelihood estimators’, Econometrica, 72: 219–256.

34



Neyman, J. (1949). ‘Contribution to the theory of the χ2 test’, in Proceedings of the Berkeley
Symposium on Mathematical Statistics and Probability, pp. 239–273. University of California
Press, Berkeley, CA, USA.

Neyman, J., and Pearson, E. S. (1928). ‘On the use and interpretation of certain test criteria for
purposes of statistical inference: part II’, Biometrika, 20A: 263–294.

Pearson, K. S. (1894). ‘Contributions to the mathematical theory of evolution’, Philosophical trans-
actions of the Royal Society of London (A), 185: 71–110.

(1895). ‘Contributions to the mathematical theory of evolution, II: skew variation’, Philo-
sophical transactions of the Royal Society of London (A), 186: 343–414.

Qu, Z. (2014). ‘Inference in dynamic stochastic general equilibrium models with possible weak
identification’, Quantitative Economics, 3: 95–132.

Qu, Z., and Tkachenko, D. (2012). ‘Identification and frequency domain quasi-mximum likelihood
estimation of linearized dynamic stochastic general equilibrium models’, Quantitative Economics,
3: 95–132.

Rotnitzky, A., Cox, D. R., Bottai, M., and Robins, J. (2000). ‘Likelihood-based inference with
singular information matrix’, Bernouilli, 6: 243–284.

Ruge-Murcia, F. J. (2007). ‘Methods to estimate dynamic stochastic general equilibrium models’,
Journal of Economic Dynamics and Control, 31: 2599–2636.

Sargan, J. D. (1983). ‘Identification and lack of identification’, Econometrica, 51: 1605–1633.

Sentana, E. (2015). ‘Finite Underidentification’, Discussion paper, CEMFI Working Paper 1508,
Madrid, Spain.

Smith, A. A. (1993). ‘Estimating nonlinear time series models using simulated vector autoregres-
sions’, Journal of Applied Econometrics, 8: S63–S84.

Staiger, D., and Stock, J. (1997). ‘Instrumental variables regression with weak instruments’, Econo-
metrica, 65: 557–586.

Stingo, F. C., Stanghellini, E., and Capobianco, R. (2011). ‘On the estimation of a binary response
model in a selected population’, Journal of Statistical Planning and Inference, 141: 3293–3303.

Stock, J., and Wright, J. (2000). ‘GMM with weak identification’, Econometrica, 68: 1055–1096.

The Royal Swedish Academy of Sciences (2013). Prizes in Economic Sciences 2013, Scientific Back-
ground. http://www.nobelprize.org/nobel prizes/economic-sciences/laureates/2013/advanced-
economicsciences2013.pdf.

Wright, J. H. (2003). ‘Detecting Lack of Identification in GMM’, Econometric Theory, 19: 322–330.

35



A Examples from Section 3

Example 1: panel data model
The moment condition in (13) can be derived using the assumptions in the text along with the
following equation, implied by (12), that holds for all i = 1, . . . , n and t = 1, 2:

yit = ρtyi0 +

t−1
∑

s=0

ρsηi +

t
∑

s=1

ρt−sεis.

It can be shown that the moment condition in (13) globally identify θ if the data generating process

is such that the true parameter value θ∗ satisfies σ∗
0η 6= (1− ρ∗)σ∗

2

0 . Nevertheless, (13) also ensures
global identification of θ if ρ∗ = 1 and σ∗

0η = σ∗
η = 0; that is when the AR(1) panel dynamics has

unit root and no fixed effects.
The Jacobian matrix of this moment function is:

(

−∂H(ρ)

∂ρ
θ2 −H(ρ)

)

.

As shown by Madsen (2009), see also Dovonon and Gonçalves (2015), if ρ∗ = 1 and σ∗
0η = σ∗2

η = 0,
this Jacobian matrix has rank 4 < 5 at the true parameter value so that the moment condition
model (13) is first-order locally under identified. In fact, it can be seen that H(ρ) is of rank 4 for

any ρ and ∂H(1)
∂ρ

θ∗2 = H(1)δ with δ = (0, σ∗2

ε , σ
∗2

0 ,−σ∗2

ε )′.

The statements about the identification of ρ based on (14) can be justified as follows. It can be
shown that (14) globally identifies ρ so long as (13) globally identifies θ (see above). The Jacobian
matrix associated with these moment conditions is:

D(ρ) = −
(

H
(1)
1,ρ −H1,ρH

−1
2,ρH

(1)
2,ρ

)

θ2(ρ), (42)

where Hk,ρ = Hk(ρ) and H
(j)
k,ρ =

∂jHk(ρ)
∂ρj . Since

∂H(1)
∂ρ θ∗2 = H(1)δ, we have: D(1) = 0. Some

straightforward calculations show that the second-order derivative of the moment function in (14)
is:

G(ρ) = −
(

H
(2)
1,ρ −H1,ρH

−1
2,ρH

(2)
2,ρ

)

θ2(ρ) + 2
(

H
(1)
1,ρ −H1,ρH

−1
2,ρH

(1)
2,ρ

)

H−1
2,ρH

(1)
2,ρθ2(ρ), (43)

and G(1) 6= 0 in general. �

Example 2: a conditional heteroscedastic factor model

Auxiliary Model: There exists δ such that
(

1 −δ
)

(

γ1

γ2

)

= 0. Hence, y1t − δy2t = u1t − δu2t.

We therefore have:
E
[

(y1t − δy2t)
2|Ft−1

]

= c(= Ω1 + δ2Ω2).

Taking an instrument zt−1 from Ft−1 such that Cov[zt−1, y
2
2t] 6= 0 and E[zt−1] 6= 0, (e.g lagged

square returns), we have:
m0(zt−1, yt, δ, c) = 0,

with m0(zt−1, yt, δ, c) = E

[(

1
zt−1

)

{

(y1t − δy2t)
2 − c

}

]

.
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We can show that this model identifies globally both δ and c. We also have:

E[y2
1t] = γ2

1 + Ω1 ≡ b1, E[y2
1t] = γ2

1 + Ω2 ≡ b2, and E[y1ty1,t−1] = γ1γ2 ≡ b3.

The auxiliary model is defined as:

m0(zt−1, yt, δ, c) = 0
E
[

y2
1t

]

= b1
E
[

y2
2t

]

= b2
E [y1ty2t] = b3.

(44)

The parameter vector h = (b1, b2, b3, δ, c)
′ of this model is globally identified. In addition, the

parameter θ of the structural model can be determined from h. In fact, we can use the relations:

b1 = γ2
1 + Ω1, b2 = γ2

2 + Ω2, b3 = γ1γ2, c = Ω1 + δ2Ω2, and c = b1 + δ2b2 − 2δb3

to obtain:

θ1 ≡ γ1 =
√

δb3, θ2 ≡ γ2 =

√

b3
δ
, θ3 ≡ Ω1 = b1 − δb3, θ4 ≡ Ω2 = b2 −

b3
δ
.

The auxiliary model is first-order locally underidentified: The Jacobian matrix of

m0(zt−1, yt, δ, c)

at the true parameter value is:

−2E

[(

1
zt−1

)

y2t (y1t − δy2t)

]

−
(

1
E[zt]

)

.

At the true parameter value, y1t − δy2t = u1t − δu2t. Therefore, E [y2t(y1t − δy2t)|Ft−1] = −δΩ2.
(Since y2t(y1t−δy2t) = γ2ft(u1t−δu2t)+u2t(u1t−δu2t).) Thus, By the law of iterated expectations,
this Jacobian matrix is:

(

2δΩ2

(

1
E[zt−1]

)

−
(

1
E[zt−1]

))

which is of rank 1. In total, the Jacobian matrix of the auxiliary model is












0 0 0 2δΩ2 −1
0 0 0 2δΩ2E[zt−1] −E[zt−1]
−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0













which is of rank 4 instead of 5.
The auxiliary model is second-order locally identified. To see this, we can check Condition (b) of
Definition 1 by focusing solely on the first equality of (44). Let φ = (δ, c)′. The range space of
∂m′

0

∂φ
(φ0) is determined by u = a (2δΩ2,−1)′: a ∈ R and the null space of its transpose is determined

by v = b (E(zt−1),−1)
′
: b ∈ R. Also,

∂2m0,1

∂δ2
≡ 2E[y2

2t],
∂2m0,1

∂δ∂c
≡ 0,

∂2m0,1

∂c2
≡ 0
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and
∂2m0,2

∂δ2
≡ 2E[zt−1y

2
2t],

∂2m0,2

∂δ∂c
≡ 0,

∂2m0,2

∂c2
≡ 0.

Hence,
∂m0

∂φ′
(φ0)u+

(

v′
∂2m0,k

∂φ∂φ′
v
)

k=1,2

=





a
(

4δ2Ω2
2 + 1

)

+ 2b2 (E[zt−1])
2
E[y2

2t]

a
(

4δ2Ω2
2 + 1

)

E[zt−1] + 2b2(E[zt−1])
2E[y2

2tzt−1]





which is equal to 0 if and only if a = b = 0, i.e. u = v = 0; so long as Cov[y2
2t, zt−1] 6= 0 and

E[zt−1] 6= 0. �

B Proofs

Proof of Theorem 1 (a) We write mT (φ̂) = mT (φ̂1, φ̂pφ ). A first-order mean value expansion of φ1 7→
mT (φ1, φ̂pφ) around φ0,1 yields:

mT (φ̂1, φ̂pφ) = mT (φ0,1, φ̂pφ ) +
∂mT

∂φ′
1

(φ̄1, φ̂pφ)(φ̂1 − φ0,1),

where φ̄1 ∈ (φ0,1, φ̂1) and may differ from row to row. Next, a second-order mean value expansion of
φpφ 7→ mT (φ0,1, φpφ) around φ0,pφ that we plug back in the expression of mT (φ̂) yields:

mT (φ̂) = mT (φ0) + ∂mT
∂φ′1

(φ̄1, φ̂pφ)(φ̂1 − φ0,1) + ∂mT
∂φpφ

(φ0)(φ̂pφ − φ0,pφ )

+ 1
2
∂2mT
∂φ2
pφ

(φ0,1, φ̄pφ )(φ̂pφ − φ0,pφ )2,

where φ̄pφ ∈ (φ0,pφ , φ̂pφ ) and may differ from row to row.

Since ∂mT
∂φpφ

(φ0) = OP (T−1/2) and φ̂pφ − φ0,pφ = oP (1) (from Proposition 1), we have:

mT (φ̂) = mT (φ0) + ∂mT
∂φ′1

(φ̄1, φ̂pφ)(φ̂1 − φ0,1)

+ 1
2
∂2mT
∂φ2
pφ

(φ0,1, φ̄pφ)(φ̂pφ − φ0,pφ )2 + oP (T−1/2).

(45)

Let us define D̄ = ∂mT
∂φ′1

(φ̄1, φ̂pφ) and Ḡ = ∂2mT
∂φ2
pφ

(φ0,1, φ̄pφ ). Pre-multiplying (45) by D̄′WT , we get

φ̂1 − φ0,1 =
`

D̄′WT D̄
´−1

D̄′WT

“

mT (φ̂) − mT (φ0)
”

− 1
2

`

D̄′WT D̄
´−1

D̄′WT Ḡ(φ̂pφ − φ0,pφ )2 + oP (T−1/2).

(46)

The oP (T−1/2) term stays with the same order because D̄ and WT are both OP (1). Plugging this back
into (45), we get:

mT (φ̂) = mT (φ0) + D̄
`

D̄′WT D̄
´−1

D̄′WT

“

mT (φ̂) − mT (φ0)
”

+ 1
2W

−1/2
T M̄dW

1/2
T Ḡ(φ̂pφ − φ0,pφ )2 + oP (T−1/2),
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with M̄d = Iq − W
1/2
T D̄

`

D̄′WT D̄
´−1

D̄′W
1/2
T .

Hence,

m′
T (φ̂)WTmT (φ̂)

= m′
T (φ0)WTmT (φ0) + 1

4
Ḡ′W

1/2
T M̄dW

1/2
T Ḡ(φ̂pφ − φ0,pφ )4

+(φ̂pφ − φ0,pφ )2OP (T−1/2) + OP (T−1)

(47)

The orders of magnitude in (47) follow from the fact that M̄d converges in probability to Md and therefore
is OP (1) and the fact that both mT (φ0) and mT (φ̂) are OP (T−1/2).
The latter comes from the fact that m′

T (φ̂)WTmT (φ̂) ≤ m′
T (φ0)WTmT (φ0) (by definition of GMM esti-

mator). Since WT converges in probability to W symmetric positive definite, we can claim that mT (φ̂) is
OP (T−1/2) as is mT (φ0). Again, by the definition of the GMM estimator, the left hand side of (47) is less
or equal to m′

T (φ0)WTmT (φ0) and this gives:

1
4 G′W 1/2MdW

1/2GT (φ̂pφ − φ0,pφ )4 + oP (1)T (φ̂pφ − φ0,pφ )4

≤ OP (1) +
√

T (φ̂pφ − φ0,pφ )2OP (1)

(48)

Thanks to Assumption 4(iii) and the fact that W is nonsingular, MdW
1/2G 6= 0. As a consequence,

G′W 1/2MdW
1/2G 6= 0 which is sufficient to deduce from (48) that T (φ̂pφ − φ0,pφ )4 = OP (1); or equiva-

lently that T 1/4(φ̂pφ − φ0,pφ ) = OP (1). We obtain φ̂1 − φ0,1 = OP (T−1/2) from (46).

(b) From (a) and (45), we have

mT (φ̂) = mT (φ0) + D(φ̂1 − φ0,1) +
1

2
G(φ̂pφ − φ0,pφ )2 + oP (T−1/2).

The first-order condition for interior solution is given by:

∂mT

∂φ′ (φ̂)WTmT (φ̂) = 0.

In the direction of φ1, this amounts to

(D′ + oP (1))W

„√
TmT (φ0) + D

√
T (φ̂1 − φ0,1) +

1

2
G
√

T (φ̂pφ − φ0,pφ )2 + oP (1)

«

= 0.

This gives:

√
T (φ̂1 − φ0,1) = −(D′WD)−1D′W

„√
TmT (φ0) +

1

2
G
√

T (φ̂pφ − φ0,pφ )2
«

+ oP (1). (49)

In the direction of φpφ , the first-order condition amounts to

“

G′T 1/4(φ̂pφ − φ0,pφ ) + oP (1)
”

× W
“√

TmT (φ0) + D
√

T (φ̂1 − φ0,1) + 1
2
G
√

T (φ̂pφ − φ0,pφ )2 + oP (1)
”

= 0.
(50)

The terms in the first parentheses are obtained by a first-order mean value expansion of ∂mT
∂φpφ

(φ̂) around

φ0 and taking the limit. Plugging (49) into (50), we get:

T 1/4(φ̂pφ − φ0,pφ )

×
“

G′W 1/2MdW
1/2

√
TmT (φ0) + 1

2G′W 1/2MdW
1/2G

√
T (φ̂pφ − φ0,pφ )2

”

= oP (1).
(51)
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Since
√

TmT (φ0) and T 1/4(φ̂pφ−φ0,pφ ) are OP (1), the pair is jointly OP (1) and by the Prohorov’s theorem,
any subsequence of them has a further subsequence that jointly converges in distribution towards, say,
(Z0, V0). From (51), (Z0, V0) satisfies:

V0

„

Z +
1

2
G′W 1/2MdW

1/2GV
2
0

«

= 0,

almost surely with Z = G′W 1/2MdW
1/2

Z0. Clearly, if Z ≥ 0, then, V0 = 0, almost surely. Conversely,
following the proof of Dovonon and Renault (2013, Proposition 3.2), we can show that if Z < 0, then
V0 6= 0, almost surely, and hence V

2
0 = −2Z/G′W 1/2MdW

1/2G.

In either case, V
2
0 = −2 ZI(Z<0)

G′W 1/2MdW
1/2G

(≡ V) and is the limit distribution of the relevant subsequence

of
√

T (φ̂pφ − φ0,pφ )2. Hence, that subsequence of (
√

TmT (φ0),
√

T (φ̂pφ − φ0,pφ )2) converges in distribution
towards (Z0, V). The fact that this limit does not depend on a specific subsequence means that the whole
sequence converges in distribution to that limit. We use (49) to conclude.

Next, we establish (c). We recall that the result in (b) gives the asymptotic distribution of
√

T (φ̂pφ −
φ0,pφ )2. To get the asymptotic distribution of T 1/4(φ̂pφ − φ0,pφ ), it suffices to characterize its sign. Fol-
lowing the approach of Rotnitzky, Cox, Bottai, and Robins (2000) for MLE, we can do this by expanding
m′
T (φ̂)WTmT (φ̂) up to oP (T−5/4). Being of order OP (T−1), its OP (T−5/4) terms actually provide the sign

of (φ̂pφ − φ0,pφ ); leading to the asymptotic distribution of (
√

T (φ̂1 − φ0,1), T 1/4(φ̂pφ − φ0,pφ )). By a mean

value expansion of mT (φ̂) up to the third order, we have:

mT (φ̂)

= mT (φ0) + ∂mT
∂φ′1

(φ0)(φ̂1 − φ0,1) + ∂mT
∂φp

(φ0)(φ̂pφ − φ0,pφ ) + 1
2
∂2mT
∂φ2
pφ

(φ0)(φ̂pφ − φ0,pφ )2

+ ∂2mT
∂φpφ ∂φ

′

1
(φ0)(φ̂1 − φ0,1)(φ̂pφ − φ0,pφ ) + 1

6
∂3mT
∂φ3
pφ

(φ̇)(φ̂pφ − φ0,pφ )3 + OP (T−1),

where φ̇ ∈ (φ0, φ̂) and may differ from row to row. From Assumption 5(i), we obtain:

mT (φ̂) = mT (φ0) + D(φ̂1 − φ0,1) + ∂mT
∂φpφ

(φ0)(φ̂pφ − φ0,pφ ) + 1
2G(φ̂pφ − φ0,pφ )2

+G1pφ (φ̂1 − φ0,1)(φ̂pφ − φ0,pφ ) + 1
6
L(φ̂pφ − φ0,pφ )3 + oP (T−3/4).

Hence, defining Z0T = mT (φ0) and Z1T = ∂mT
∂φpφ

(φ0), it follows that:

mT (φ̂) = Z0T + D(φ̂1 − φ0,1) + Z1T (φ̂pφ − φ0,pφ ) + 1
2
G(φ̂pφ − φ0,pφ )2

+G1pφ (φ̂11 − φ0,1)(φ̂pφ − φ0,pφ ) + 1
6L(φ̂pφ − φ0,pφ )3 + oP (T−3/4).

(52)

The first-order condition for the φ̂ in the direction of φ1 is:

0 =
∂m′

T
∂φ1

(φ̂)WTmT (φ̂) =
“

D + G1pφ(φ̂pφ − φ0,pφ )
”′

WmT (φ̂) + oP (T−3/4) (53)

Substituting (52) into (53), we obtain an equation of the form:

D′WZ0T + D′WD(φ̂1 − φ0,1) + other terms = oP (T−3/4). (54)

This equation can be solved to yield:

φ̂1 − φ0,1 = −(D′WD)−1 `

D′WZ0T + other terms
´

+ oP (T−3/4). (55)
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Note that “other terms” contains φ̂1 − φ0,1 involved in quadratic functions of φ̂ − φ0. Replacing in “other
terms” φ̂1 − φ0,1 by this expression and keeping only the leading terms (up to OP (T−3/4)), we obtain the
following expression for φ̂1 − φ0,1:

φ̂1 − φ0,1 = H
“

Z0T + (Z1T + G1pφHZ0T )(φ̂pφ − φ0,pφ ) + 1
2
G(φ̂pφ − φ0,pφ )2

+
`

1
2G1pφHG + 1

6 L
´

(φ̂pφ − φ0,pφ )3
”

+H1

“

(Z0T + DHZ0T )(φ̂pφ − φ0,pφ ) + 1
2 (DHG + G)(φ̂pφ − φ0,pφ )3

”

+oP (T−3/4)

= H
“

Z0T + 1
2 G(φ̂pφ − φ0,pφ )2

”

+
`

HZ1T + HG1pφHZ0T + H1Z0T + H1DHZ0T

´

(φ̂pφ − φ0,pφ )

+ 1
2

`

H(G1pφHG + L
3
) + H1(DHG + G)

´

(φ̂pφ − φ0,pφ )3 + oP (T−3/4).

with H = −(D′WD)−1D′W and H1 = −(D′WD)−1G′
1pφ

W . Hence, for a natural definition of A1, B1 and

C1, (φ̂1 − φ1
0) has the form:

(φ̂1 − φ0,1) = A1 + B1(φ̂pφ − φ0,pφ ) + C1(φ̂pφ − φ0,pφ )3 + oP (T−3/4) (56)

Using (52), we have:

m′
T (φ̂)WTmT (φ̂) = m′

T (φ̂)WmT (φ̂) + oP (T−5/4)

= Z ′
0TWZ0T + (φ̂1 − φ0,1)

′D′WD(φ̂1 − φ0,1) + 1
4
G′WG(φ̂pφ − φ0,pφ )4

+2Z ′
0TWD(φ̂1 − φ0,1) + 2Z ′

0TWZ1T (φ̂pφ − φ0,pφ ) + Z ′
0TWG(φ̂pφ − φ0,pφ )2

+2Z ′
0TWG1pφ (φ̂1 − φ0,1)(φ̂pφ − φ0,pφ ) + 1

3
Z ′

0TWL(φ̂pφ − φ0,pφ )3

+2(φ̂1 − φ0,1)
′D′WZ1T (φ̂pφ − φ0,pφ ) + (φ̂1 − φ0,1)

′D′WG(φ̂pφ − φ0,pφ )2

+2(φ̂1 − φ0,1)
′D′WG1pφ (φ̂1 − φ0,1)(φ̂pφ − φ0,pφ ) + 1

3
(φ̂1 − φ0,1)

′D′WL(φ̂pφ − φ0,pφ )3

+Z ′
1TWG(φ̂pφ − φ0,pφ )3 + G′WG1pφ (φ̂1 − φ0,1)(φ̂pφ − φ0,pφ )3

+ 1
6
G′WL(φ̂pφ − φ0,pφ )5 + oP (T−5/4).

(57)

Replacing φ̂1−φ0,1 by its expression from (56) into (57), the leading OP (T−1) term of m′
T (φ̂)WTmT (φ̂)

is obtained as KT (φ̂pφ) with

KT (φpφ )

= Z ′
0TWZ0T +

`

Z0T + 1
2
G(φpφ − φ0p)

2
´′

H ′D′WDH
`

Z0T + 1
2
G(φpφ − φ0,pφ )2

´

+ 1
4G′WG(φpφ − φ0,pφ )4 + 2Z ′

0TWDH(Z0T + 1
2G(φpφ − φ0,pφ )2)

+Z ′
0TWG(φpφ − φ0,pφ )2 +

`

Z0T + 1
2G(φpφ − φ0,pφ )2

´′
H ′D′WG(φpφ − φ0,pφ )2.
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Hence,
KT (φpφ) = Z ′

0TW 1/2MdW
1/2Z0T + Z ′

0TW 1/2MdW
1/2G(φpφ − φ0,pφ )2

+ 1
4G′W 1/2MdW

1/2G(φpφ − φ0,pφ )4.

(58)

The next leading term in the expansion of m′
T (φ̂)WTmT (φ̂) is of order OP (T−5/4) and given by:

RT = (φ̂pφ − φ0,pφ )×
n

2A′
1D

′WDB1 + 2Z ′
0TWDB1 + 2Z ′

0TWZ1T

+2Z ′
0TWG1pφA1 + 2A′

1D
′WZ1T + 2A′

1D
′WG1pφA1

+(φ̂pφ − φ0,pφ )2
“

2A′
1D

′WDC1 + 2Z ′
0TWDC1 + 1

3
Z ′

0TWL + B′
1D

′WG

+ 1
3
A′

1D
′WL + Z ′

1TWG + G′WG1pφA1

”

+(φ̂pφ − φ0,pφ )4
`

C′
1D

′WG + 1
6
G′WL

´

o

RT = (φ̂pφ − φ0,pφ )×
n

2Z ′
0TH ′D′WDB1 + 2Z ′

0TWDB1 + 2Z ′
0TWZ1T + 2Z ′

0TWG1pφHZ0T

+2Z ′
0TH ′D′WZ1T + 2Z ′

0TH ′D′WG1pφHZ0T

+(φ̂pφ − φ0,pφ )2
“

2Z ′
0TH ′D′WDC1 + 2Z ′

0TWDC1 + 1
3Z ′

0TWL + B′
1D

′WG

+ 1
3Z ′

0TH ′D′WL + Z ′
1TWG + G′WG1pφHZ0T + G′H ′D′WDB1

+G′H ′D′WZ1T + Z ′
0TWG1pφHG + Z ′

0TH ′D′WG1pφHG + G′H ′D′WG1pφHZ0T

”

+(φ̂pφ − φ0,pφ )4
“

C′
1D

′WG + 1
6
G′WL + 1

2
G′H ′D′WG1pφHG + G′H ′D′WDC1

+ 1
6
G′H ′D′WL + 1

2
G′WG1pφHG

”o

≡ (φ̂pφ − φ0,pφ ) × 2R1T .

Re-arranging the terms and using the fact that MdW
1/2D = 0, we have:

2R1T = 2Z ′
0TW 1/2MdW

1/2Z1T + 2Z ′
0TW 1/2MdW

1/2G1pφHZ0T

+(φ̂pφ − φ0,pφ )2
“

1
3 Z ′

0TW 1/2MdW
1/2L + Z ′

1TW 1/2MdW
1/2G

+G′W 1/2MdW
1/2G1pφHZ0T + Z ′

0TW 1/2MdW
1/2G1pφHG

”

+(φ̂pφ − φ0,pφ )4
“

1
6
G′W 1/2MdW

1/2L + 1
2
G′W 1/2MdW

1/2G1pφHG
”

.

(59)

We can check that the GMM estimator φ̂pφ as given by the first-order condition (51) is minimizer of
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KT (φpφ ). When T 1/4(φ̂pφ − φ0,pφ ) is not oP (1), this first-order condition determines

(φ̂pφ − φ0,pφ )2 = −2
G′W 1/2MdW

1/2Z0T

G′W 1/2MdW 1/2G
+ oP (T−1/2)

but not the sign of (φ̂pφ − φ0,pφ ). Following the analysis of Rotnitzky, Cox, Bottai, and Robins (2000) for

the maximum likelihood estimator, the sign of φ̂pφ − φ0,pφ can be determined by the remainder RT of the

expansion of m′
T (φ̂)WTmT (φ̂). At the minimum, we expect RT to be negative; i.e. (φ̂pφ − φ0,pφ ) and R1T

have opposite sign.
Hence,

T 1/4(φ̂pφ − φ0,pφ ) = (−1)BT T 1/4|φ̂pφ − φ0,pφ |,
with BT = I(TR1T ≥ 0).

Plugging the expression of (φ̂pφ − φ0,pφ )2 into (59) and scaling by T , we can see, using the continuous
mapping theorem, that TR1T converges in distribution towards R1:

R1 = Z
′
0W

1/2MdgW
1/2(Z1 + G1pφHZ0)

+
“

Z
′
0W

1/2(Md − Mdg)W
1/2

Z0G
′ − G′W 1/2MdW

1/2
Z0Z

′
0

”

×W 1/2MdW
1/2

“

1
3
L + G1pφHG

”

/σG,

(60)

with σG = G′W 1/2MdW
1/2G and

Mdg = Md − MdW
1/2G(G′W 1/2MdW

1/2G)−1G′W 1/2Md, the matrix of the orthogonal projection on the

orthogonal of
“

W 1/2D W 1/2G
”

.

We actually have that: (
√

TZ0T ,
√

TZ1T , TR1T ) converges in distribution towards (Z0, Z1, R1). Apply-

ing Lemma 1, we have (
√

TZ0T ,
√

TZ1T , (−1)BT )
d→ (Z0, Z1, (−1)B), where B = I(R1 ≥ 0).

Since
“√

T (φ̂1 − φ0,1), T 1/4|φ̂pφ −φ0,pφ |, (−1)BT
”

= OP (1), any subsequence of the left hand side has

a further subsequence that converges in distribution. Using (b), such subsequence satisfies:

“√
T (φ̂1 − φ0,1), T 1/4|φ̂pφ − φ0,pφ |, (−1)BT

”

d→
“

HZ0 + HGV/2,
√

V, (−1)B

”

.

(We keep T to index the subsequence for simplicity.)
Since the limit distribution does not depend on the subsequence, the whole sequence converges towards

that limit. By the continuous mapping theorem, we deduce that:

“√
T (φ̂1 − φ0,1), T 1/4(φ̂pφ − φ0,pφ )

”

d→
“

HZ0 + HGV/2, (−1)B
√

V

”

.

�

Lemma 1. Let (XT )T and (YT )T be two sequences of random variables and BT = I(XT ≥ 0). If

(XT , YT )
d→ (X,Y ) and P (X = 0) = 0, then

“

(−1)BT , YT
”

d→
“

(−1)B , Y
”

,

with B = I(X ≥ 0).
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Proof of Lemma 1: Using the Cramer-Wold device, it suffices to show that: for all (λ1, λ2) ∈ R × R,

λ1(−1)BT + λ2YT
d→ λ1(−1)B + λ2Y.

Let x ∈ R be a continuity point of F (x) = P (λ1(−1)B + λ2Y ≤ x). We show that:

P
“

λ1(−1)BT + λ2YT ≤ x
”

→ F (x), as T → ∞.

We have:

P
“

λ1(−1)BT + λ2YT ≤ x
”

= P (λ2YT ≤ x − λ1, XT < 0) + P (λ2YT ≤ x + λ1, XT ≥ 0).

To complete the proof, it suffices to show that, as T → ∞,

P (λ2YT ≤ x − λ1, XT < 0) → P (λ2Y ≤ x − λ1, X < 0) and

P (λ2YT ≤ x + λ1, XT ≥ 0) → P (λ2Y ≤ x + λ1, X ≥ 0)
(61)

since F (x) = P (λ2Y ≤ x − λ1, X < 0) + P (λ2Y ≤ x + λ1, X ≥ 0).
We now establish the first condition in (61). The second one is obtained along the same lines.

Note that P (λ2YT ≤ x − λ1, XT < 0) = P ((λ2YT , XT ) ∈ A) with boundary of A given by: ∂A =
((−∞, x − λ1] × {0}) S

({x − λ1} × (−∞, 0]). Since (XT , YT ) converge jointly in distribution towards (X,Y ),
it suffices to show that

P ((λ2Y, X) ∈ ∂A) = 0.

We have:
P ((λ2Y, X) ∈ (−∞, x − λ1] × {0}) ≤ P (X = 0) = 0.

Besides,
P ((λ2Y, X) ∈ {x − λ1} × (−∞, 0]) = P (λ2Y = x − λ1, X ≤ 0).

By continuity of F at x, P
`

λ1(−1)B + λ2Y = x
´

= 0, i.e.

P (λ2Y = x + λ1, X ≥ 0) + P (λ2Y = x − λ1, X < 0) = 0.

Thus, P (λ2Y = x − λ1, X < 0) = 0. Since P (X = 0) = 0, we can claim that

P (λ2Y = x + λ1, X ≤ 0) = 0.

This completes the proof. �

Proof of Equation (19): First, we observe that the asymptotic distribution V of T 1/2(φ̂−φ0)
2 is continuous

at any c > 0 (with P (V = 0) = 1/2). Let us search for c1−α such that P (V ≤ c1−α) = 1 − α. Since
1 − α > 1/2, we have c1−α > 0 and P (T 1/4|φ̂ − φ0| ≤ √

c1−α) → 1 − α, as T → ∞. Hence,
√

c1−α defines
an asymptotically correct confidence interval for φ0. To obtain c1−α, we recall that:

P (V ≤ c1−α) = P
“

− 2ZI(Z<0)
σG

≤ c1−α
”

= P
“

− 2ZI(Z<0)
σG

≤ c1−α, Z ≥ 0
”

+ P
“

− 2ZI(Z<0)
σG

≤ c1−α, Z < 0
”

= P
`

Z ≤ σG
2 c1−α

´

.

The last equality uses the fact that Z has a symmetric distribution about 0 as a zero mean Gaussian
variable. Since Z ∼ N(0, G′WΩWG), c1−α solves:

σG

2
√

G′WΩWG
c1−α = zα
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giving c1−α = 2
√
G′WΩWG
σG

zα.

When a consistent estimator ĉ1−α of c1−α is used as in the statement of (19), we can rely on the following
two facts to conclude: (1) V has a continuous distribution at all c > 0 and (2) if Xn is a sequence of random
variables converging in distribution to X with cumulative distribution function FX that is continuous on
an interval [a, b], then the sequence of cumulative distributions FXn of Xn converges uniformly over [a, b]
to FX . �

Proof of Equation (23): Since φ̂ − φ0 = R(η̂ − η0), we have

T 1/4(φ̂ − φ0) = R•pφT 1/4(η̂pφ − η0,pφ ). (62)

We also have
εT = −BT R̂−1(R̂ − R)R−1(φ̂ − φ0) = −BT R̂−1(R̂ − R)(η̂pφ − η0,pφ ).

But R̂ ≡ R(φ̂) and R ≡ R(φ0). By mean value expansions, for j = 1, . . . , pφ,

R̂•j − R•j =
∂R•j
∂φ′ (φ̇j)(φ̂ − φ0),

where φ̇j ∈ (φ0, φ̂) and may differ from row to row and R•j denotes the column vector corresponding to the
jth column of the matrix R. We also use Rh• to denote the row vector corresponding to the hth row of R.

For h = 1, . . . , pφ − 1,

εT,h = −
√

T
“

R̂−1
”

h•

pφ
P

j=1

“

∂R•j

∂φ′
(φ̇j)(φ̂ − φ0)

”

(η̂j − η0,j )

= −
“

R̂−1
”

h•

pφ
P

j=1

“

∂R•j

∂φ′
(φ̇j)T

1/4(φ̂ − φ0)
”

T 1/4(η̂j − η0,j)

= −
`

R−1
´

h•
∂R•pφ

∂φ′
(φ0)R•pφ

“

T 1/4(η̂pφ − η0,pφ )
”2

+ oP (1),

where the last equality uses (62) and the fact that R̂ and
∂R•j

∂φ′
(φ̇j) converge in probability towards R and

∂R•j

∂φ′
(φ0), respectively and the fact that T 1/4(η̂j − η0,j) = oP (1) for j = 1, . . . , pφ − 1.

Besides, we have

εT,pφ = −
“

R̂−1
”

pφ•

pφ
X

j=1

„

∂R•j
∂φ′ (φ̇j)T

1/4(φ̂ − φ0)

«

(η̂j − η0,j) = oP (1).

Putting together these last two equalities, we get:

εT = −A
“

T 1/4(η̂pφ − η0,pφ )
”2

+ oP (1)

as expected. �

Proof of Equation (27): A second-order mean value expansion yields:

f(φ0) = f(φ̂) +
∂f

∂φ′ (φ̂)(φ0 − φ̂) +
1

2

„

(φ0 − φ̂)′
∂2fk
∂φ∂φ′ (φ̇)(φ0 − φ̂)

«

1≤k≤K
,

with φ̇ ∈ (φ0, φ̂) and may vary from row to row. This can be re-written:

f(φ̂) − f(φ0) =
∂f

∂φ′ (φ̂)(φ̂ − φ0) − 1

2

„

(φ̂ − φ0)
′ ∂2fk
∂φ∂φ′ (φ̇)(φ̂ − φ0)

«

1≤k≤K
.
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From (26), we can claim that:

f(φ̂) − f(φ0)
a∼ ∂f

∂φ′ (φ̂)R̂B−1
T X̃ − 1

2

„

X̃
′B−1
T R̂′ ∂2fk

∂φ∂φ′ (φ̇)R̂B−1
T X̃

«

1≤k≤K
.

Note that the first term on the RHS is of order OP (T−1/4) or OP (T−1/2) and cannot vanish trivially at
a rate faster than OP (T−1/2) if ∂f

∂φ′
(φ0) 6= 0 because R and V ar(X̃) are non singular. The only element

from the expansion of the second term that does not vanish at a rate faster than OP (T−1/2) is, with R̂•pφ
denoting the pthφ column of R̂,

−1

2

1√
T

„

R̂′
•pφ

∂2fk
∂φ∂φ′ (φ̇)R̂•pφ X̃

2
pφ

«

1≤k≤K
.

Thus, we have

f(φ̂) − f(φ0)
a∼ ∂f

∂φ′ (φ̂)R̂B−1
T X̃ − 1

2

1√
T

„

R̂′
•pφ

∂2fk
∂φ∂φ′ (φ̇)R̂•pφX̃

2
pφ

«

1≤k≤K
. (63)

Under standard conditions, we have:

∂2fk
∂φ∂φ′ (φ̇) − ∂2fk

∂φ∂φ′ (φ̂) = oP (1)

and using this result in (63) yields (27). �

Proof of Theorem 2: We have:

BIT Ŝ
“

θ̂II − θ0

”

=

„ √
T Ŝ1(θ̂II − θ0)

T 1/4Ŝp•(θ̂11 − θ0)

«

,

where Ŝp• is the pth row of Ŝ. From (34), we have

√
T Ŝ1

“

θ̂II − θ0

”

= Ŝ1F̂T

„

BTmIT (θ0) − 1

2
zT

«

,

with zT = BT

“

(θ̂II − θ0)
′∆IT,k(θ̇T )(θ̂II − θ0)

”

1≤k≤`
. For k = 1, . . . , ` − 1,

zT,k =
√

T (θ̂II − θ0)
′∆IT,k(θ̇T )(θ̂II − θ0) = T 1/4(θ̂II − θ0)

′∆IT,k(θ̇T )T 1/4(θ̂II − θ0)

and
zT,` = T 1/4(θ̂II − θ0)

′∆IT,`(θ̇T )(θ̂II − θ0).

From (32), we have T 1/4(θ̂II − θ0) = F•`T
1/4mIT,`(θ0) + oP (1). In addition, the fact that ∆IT,k(θ̇T )

converges in probability towards ∆I,k(θ0) for all k = 1, . . . , `, allows us to claim that: for 1 ≤ k ≤ ` − 1,

zT,k = F ′
•`∆I,k(θ0)F•`

“

T 1/4mIT,`(θ0)
”2

+ oP (1)

and
zT,` = OP (1)OP (1)oP (1) = oP (1).

Thus,

√
T Ŝ1

“

θ̂II − θ0

”

= Ŝ1F̂T

„

BTmIT (θ0) − 1
2

„

(F ′
•`∆I,k(θ0)F•`)1≤k≤`−1

0

«

“

T 1/4mIT,`(θ0)
”2

«

+ oP (1).
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Since the last column of Ŝ1F̂T is nil, we can write:

√
T Ŝ1

“

θ̂II − θ0

”

= Ŝ1F̂T

„

BTmIT (θ0) − 1
2 (F ′

•`∆I,k(θ0)F•`)1≤k≤`

“

T 1/4mIT,`(θ0)
”2

«

+ oP (1).
(64)

Using again (32), we have

T 1/4Ŝp•(θ̂II − θ0) = Ŝp•F•`T
1/4mIT,`(θ0) + oP (1). (65)

By the continuous mapping theorem, Ŝ1F̂T converges in probability towards S1F with nil last column and
Ŝp• converges in probability towards Sp•. Since BTmIT (θ0) converges in distribution towards Y, we can
deduce from (64) and (65) that:

0

@

√
T Ŝ1(θ̂II − θ0)

T 1/4Ŝp•(θ̂11 − θ0)

1

A

d→

0

B

@

S1F
“

Y − (Y`)
2

2
(F ′

•`∆I,k(θ0)F•`)1≤k≤`

”

Sp•F•`Y`

1

C

A
.

�
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C Tables and graphs

Table 1: GMM estimation of panel data model

Coverage probabilities

ρ ρ̂ RMSE Cov-1 Cov-2 Cov-3 |
¯̂
D| |

¯̂
G|

| ¯̂G|
| ¯̂D|

n = 50
0.20 0.928 6.203 67.88 83.98 83.99 0.643 89.291 138.89
0.30 0.756 2.566 73.45 87.77 87.74 0.561 34.497 61.49
0.50 0.730 1.160 79.34 92.31 92.30 0.428 30.346 70.86
0.75 0.909 0.698 78.29 91.31 91.25 0.299 4.937 16.51
0.80 0.966 1.042 78.21 90.44 90.37 0.269 2.813 10.46
0.90 1.044 0.482 78.34 88.84 88.83 0.198 3.010 15.20
0.95 1.079 0.540 78.46 87.69 87.66 0.137 2.832 20.67
0.97 1.097 0.369 78.59 87.19 87.16 0.117 2.908 24.85
0.98 1.104 0.359 78.78 86.87 86.86 0.105 2.911 27.72
1.00 1.119 0.363 78.78 86.16 86.16 0.089 2.997 33.67
1.10 1.197 0.355 79.35 83.12 83.07 0.118 3.322 28.15
1.20 1.277 0.356 79.28 79.66 79.50 0.241 3.558 14.76
1.30 1.361 0.349 79.21 77.65 77.55 0.366 3.851 10.52
1.50 1.546 0.313 81.57 78.08 78.03 0.544 4.385 8.06

n = 100
0.20 0.503 2.157 72.82 87.82 87.80 0.663 21.984 33.13
0.30 0.502 4.404 79.12 91.97 91.97 0.617 96.243 155.90
0.50 0.618 0.504 82.48 95.27 95.24 0.416 22.801 54.78
0.75 0.884 0.336 80.52 93.77 93.76 0.293 2.788 9.52
0.80 0.931 0.325 80.30 93.31 93.33 0.267 2.248 8.42
0.90 1.015 0.293 80.44 91.78 91.78 0.180 2.333 12.96
0.95 1.047 0.291 80.56 90.30 90.30 0.115 2.539 22.08
0.97 1.059 0.289 80.66 89.70 89.67 0.088 2.592 29.45
0.98 1.066 0.289 80.72 89.44 89.39 0.078 2.626 33.67
1.00 1.078 0.289 80.63 88.54 88.49 0.062 2.738 44.16
1.10 1.160 0.296 81.17 84.86 84.73 0.131 3.066 23.40
1.20 1.242 0.297 80.87 81.22 81.16 0.265 3.402 12.84
1.30 1.330 0.288 81.37 80.15 80.07 0.382 3.702 9.69
1.50 1.531 0.245 84.99 83.83 83.79 0.515 4.230 8.21

n = 200
0.20 0.334 1.149 80.68 93.16 93.16 0.669 5.359 8.01
0.30 0.381 0.462 86.09 96.62 96.59 0.567 95.114 167.85
0.50 0.574 0.226 85.87 96.99 97.00 0.438 4.809 10.97
0.75 0.844 0.248 81.51 94.70 94.71 0.275 2.044 7.43
0.80 0.897 0.250 81.60 94.51 94.44 0.248 2.025 8.17
0.90 0.989 0.246 81.08 93.39 93.40 0.168 2.171 12.92
0.95 1.022 0.244 80.93 92.19 92.14 0.101 2.351 23.28
0.97 1.034 0.242 81.11 91.36 91.34 0.072 2.428 33.72
0.98 1.039 0.241 81.25 90.99 90.99 0.058 2.479 42.74
1.00 1.051 0.241 81.45 90.02 89.97 0.044 2.574 58.50
1.10 1.125 0.250 81.49 84.85 84.76 0.169 2.998 17.74
1.20 1.211 0.250 81.17 81.71 81.65 0.300 3.336 11.12
1.30 1.316 0.235 82.78 83.10 83.05 0.361 3.554 9.84
1.50 1.527 0.184 88.21 90.25 90.20 0.471 4.103 8.71

Continued over
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Table 1 (continued): GMM estimation of panel data model

Coverage probabilities

ρ ρ̂ RMSE Cov-1 Cov-2 Cov-3 |
¯̂
D| |

¯̂
G|

| ¯̂G|
| ¯̂D|

n = 1000
0.20 0.226 0.069 91.07 99.63 99.63 0.724 2.015 2.78
0.30 0.320 0.070 92.98 99.94 99.94 0.657 1.191 1.81
0.50 0.521 0.096 91.68 99.82 99.82 0.484 1.156 2.39
0.75 0.784 0.154 83.61 96.78 96.72 0.253 1.718 6.79
0.80 0.839 0.163 82.15 96.24 96.17 0.215 1.815 8.44
0.90 0.961 0.166 81.96 97.11 97.08 0.168 1.928 11.48
0.95 1.005 0.162 81.91 96.18 96.11 0.118 2.076 17.59
0.97 1.014 0.160 82.22 95.35 95.28 0.079 2.177 27.56
0.98 1.019 0.160 82.13 94.96 94.93 0.060 2.227 37.12
1.00 1.025 0.159 82.52 93.77 93.74 0.019 2.351 123.74
1.10 1.092 0.168 83.07 87.35 87.23 0.174 2.818 16.20
1.20 1.198 0.158 83.28 87.18 87.12 0.251 3.079 12.27
1.30 1.312 0.129 88.66 93.32 93.23 0.293 3.308 11.29
1.50 1.512 0.088 93.03 98.47 98.46 0.470 4.028 8.57

n = 5000
0.20 0.204 0.026 94.27 100.00 100.00 0.787 0.616 0.78
0.30 0.302 0.029 94.52 100.00 100.00 0.692 0.623 0.90
0.50 0.503 0.042 93.67 100.00 100.00 0.496 0.950 1.92
0.75 0.760 0.083 87.93 99.29 99.29 0.250 1.565 6.26
0.80 0.812 0.096 84.66 98.35 98.35 0.202 1.710 8.47
0.90 0.927 0.114 81.06 97.43 97.41 0.127 1.943 15.30
0.95 0.992 0.113 81.72 97.74 97.71 0.113 2.013 17.81
0.97 1.009 0.111 81.59 97.02 97.00 0.089 2.083 23.40
0.98 1.013 0.110 81.51 96.53 96.49 0.069 2.134 30.93
1.00 1.016 0.108 82.17 94.87 94.84 0.014 2.268 162.00
1.10 1.084 0.115 81.18 87.80 87.77 0.164 2.726 16.62
1.20 1.207 0.089 87.69 95.47 95.43 0.194 2.922 15.06
1.30 1.308 0.065 92.14 99.23 99.20 0.285 3.255 11.42
1.50 1.504 0.040 94.20 99.98 99.98 0.488 4.031 8.26

Notes: Simulated mean and root-mean-squared-error of the GMM estimator of ρ; coverage probability of confidence
intervals (in %) based on: the standard asymptotic theory assuming first-order local identification (Cov-1); the
asymptotic distribution in Theorem 1(b), using asymptotic critical values (Cov-2) and simulated critical values

(Cov-3); |
¯̂
D| is the norm of the simulated mean of the Jacobian; |

¯̂
G| is the norm of the second-order derivative of

the moment function. The true underlying data set has a dynamic panel structure (Example 1) with σ2
0 = σ2

ε = 1,
σ2
η = σ0η = 0 and ρ as in the table. (10,000 runs)
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Figure 1: Histogram of simulated GMM estimator of ρ; ρ = 0.3, 1.0 and 1.3, respectively and their
QQ-plot versus the standard normal distribution. The true underlying data set has a dynamic panel
structure (Example 1) with σ2

0 = σ2
ε = 1, σ2

η = σ0η = 0 and ρ. Simulated sample size n = 5, 000.
(10,000 runs)
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Table 2: GMM estimation of panel data model

Coverage probabilities

λ ρ̂ RMSE Cov-1 Cov-2 Cov-3 |
¯̂
D| |

¯̂
G|

| ¯̂
G|
| ¯̂D|

n = 50
-0.50 1.131 0.439 78.96 89.25 89.23 0.694 3.019 4.35
-0.30 1.154 0.447 76.48 85.32 85.29 0.410 3.037 7.41
-0.20 1.152 0.397 76.55 84.91 84.87 0.279 2.994 10.73
-0.10 1.138 0.387 77.72 85.25 85.20 0.164 2.960 18.05
0.00 1.119 0.363 78.78 86.16 86.16 0.089 2.997 33.67
0.10 1.109 0.373 79.25 80.08 80.01 0.386 4.352 11.27
0.20 1.095 0.384 79.20 74.45 74.35 0.787 5.688 7.23
0.30 1.084 0.382 78.75 70.64 70.57 1.172 6.955 5.93
0.50 1.067 0.350 79.39 69.56 69.54 1.826 8.937 4.89

n = 100
-0.50 1.105 0.406 82.62 93.77 93.71 0.652 2.663 4.08
-0.30 1.139 0.346 77.56 88.78 88.77 0.344 2.594 7.54
-0.20 1.139 0.338 76.91 87.15 87.01 0.220 2.599 11.81
-0.10 1.115 0.314 78.23 87.51 87.41 0.128 2.633 20.57
0.00 1.078 0.289 80.63 88.54 88.49 0.062 2.738 44.16
0.10 1.064 0.311 80.92 80.98 80.92 0.407 4.036 9.92
0.20 1.050 0.317 81.23 75.90 75.84 0.804 5.297 6.59
0.30 1.052 0.313 80.92 73.66 73.56 1.113 6.278 5.64
0.50 1.052 0.275 82.41 75.82 75.66 1.657 7.919 4.78

n = 200
-0.50 1.069 0.227 86.54 97.30 97.25 0.657 2.545 3.87
-0.30 1.114 0.284 79.79 91.96 91.86 0.324 2.407 7.43
-0.20 1.122 0.293 77.01 89.05 89.00 0.190 2.399 12.63
-0.10 1.101 0.272 77.49 88.97 88.93 0.101 2.437 24.13
0.00 1.051 0.241 81.45 90.02 89.97 0.044 2.574 58.50
0.10 1.027 0.258 82.13 81.93 81.86 0.436 3.880 8.90
0.20 1.031 0.264 82.19 78.19 78.21 0.755 4.901 6.49
0.30 1.042 0.255 81.73 77.51 77.49 1.007 5.715 5.68
0.50 1.044 0.209 85.35 82.39 82.39 1.525 7.268 4.77

n = 1000
-0.50 1.014 0.087 94.20 99.92 99.94 0.694 2.496 3.60
-0.30 1.047 0.152 88.35 97.22 97.24 0.365 2.322 6.36
-0.20 1.073 0.188 82.07 94.02 93.96 0.192 2.235 11.64
-0.10 1.077 0.196 77.61 91.66 91.61 0.070 2.220 31.71
0.00 1.025 0.159 82.52 93.77 93.74 0.019 2.351 123.74
0.10 1.004 0.169 85.25 87.35 87.23 0.384 3.481 9.07
0.20 1.031 0.168 85.00 86.69 86.62 0.597 4.220 7.07
0.30 1.031 0.145 86.89 89.10 88.97 0.878 5.063 5.77
0.50 1.016 0.090 93.12 96.85 96.79 1.517 6.894 4.54

n = 5000

-0.50 1.002 0.035 94.86 100.00 100.00 0.707 2.504 3.54
-0.30 1.008 0.057 94.77 99.90 99.89 0.415 2.375 5.72
-0.20 1.024 0.096 89.69 97.18 97.14 0.248 2.287 9.22
-0.10 1.052 0.137 78.20 91.44 91.50 0.072 2.185 30.35
0.00 1.016 0.108 82.17 94.87 94.84 0.014 2.268 162.00
0.10 1.016 0.116 84.14 90.46 90.27 0.300 3.216 10.72
0.20 1.018 0.094 88.13 92.52 92.50 0.588 4.083 6.94
0.30 1.008 0.060 93.40 98.37 98.36 0.927 5.045 5.44
0.50 1.003 0.037 93.76 99.89 99.89 1.569 6.936 4.42

Notes: Definitions as Table 1 except that the true underlying data set has a dynamic panel structure (Example 1)
with ρ = 1, σ2

0 = σ2
ε = 1, σ0η = λ, σ2

η = |λ|, with λ as in the table.
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Table 3: GMM and II estimation of panel data model

Bias RMSE Cov. probability

ρ GMM II GMM II Cov-1ii Cov-2ii |
¯̂
D| |

¯̂
G|

| ¯̂G|
| ¯̂D|

n = 50
0.30 0.486 0.349 2.402 2.383 82.70 87.50 0.511 1.656 3.240
0.80 0.140 -0.035 0.548 0.511 83.50 89.96 0.249 3.442 13.806
0.90 0.131 -0.054 0.483 0.471 75.78 78.12 0.469 4.561 9.729
1.00 0.101 -0.088 0.366 0.388 67.12 67.94 0.802 5.909 7.370
1.20 0.073 -0.105 0.355 0.426 67.18 66.26 1.451 8.179 5.638
1.30 0.063 -0.109 0.348 0.432 66.06 63.28 1.678 8.719 5.196

n = 100
0.30 0.118 0.080 0.611 0.575 90.40 97.30 0.653 1.238 1.896
0.80 0.127 0.038 0.299 0.265 79.00 86.34 0.190 3.305 17.427
0.90 0.112 0.017 0.294 0.262 80.66 84.38 0.181 3.369 18.614
1.00 0.081 -0.019 0.289 0.268 82.14 84.50 0.315 3.745 11.902
1.20 0.039 -0.066 0.298 0.299 77.92 78.20 0.703 4.655 6.622
1.30 0.040 -0.062 0.288 0.294 79.10 74.42 0.792 4.787 6.042

n = 200
0.30 0.079 0.034 0.403 0.390 61.30 71.40 0.558 3.257 5.839
0.80 0.101 0.032 0.252 0.217 84.50 93.68 0.174 2.382 13.693
0.90 0.094 0.019 0.248 0.216 84.74 90.18 0.094 2.510 26.664
1.00 0.055 -0.022 0.243 0.227 81.92 83.62 0.198 3.003 15.144
1.20 0.006 -0.074 0.251 0.261 71.60 70.20 0.597 3.922 6.575
1.30 0.010 -0.069 0.236 0.252 75.04 72.54 0.683 4.103 6.006

n = 1000

0.30 0.019 -0.004 0.069 0.068 94.30 99.50 0.634 1.556 2.453
0.80 0.036 -0.004 0.162 0.149 85.48 92.04 0.158 2.025 12.796
0.90 0.058 0.018 0.165 0.159 79.48 91.70 0.097 2.122 21.909
1.00 0.021 -0.017 0.158 0.170 75.66 85.00 0.107 2.587 24.218
1.20 0.001 -0.017 0.158 0.179 75.36 78.32 0.315 3.222 10.233
1.30 0.015 0.008 0.130 0.138 86.66 89.72 0.311 3.347 10.771

n = 5000
0.30 0.002 0.002 0.030 0.030 94.30 100.00 0.691 0.645 0.933
0.80 0.012 0.005 0.095 0.088 87.40 97.82 0.193 1.730 8.987
0.90 0.026 0.008 0.112 0.096 90.12 96.38 0.098 1.999 20.426
1.00 0.016 -0.009 0.107 0.100 86.68 94.06 0.043 2.360 55.217
1.20 0.008 -0.016 0.088 0.098 82.60 86.48 0.263 3.033 11.536
1.30 0.008 -0.009 0.064 0.067 91.56 97.66 0.337 3.325 9.860

Notes: Simulated mean and root-mean-squared-error of the GMM and II estimators of ρ; coverage probability of II-
based confidence intervals for ρ using: (i) the standard II asymptotic theory assuming first-order local identification
(Cov-1ii); and the result of Theorem 2 (Cov-2ii). We set s = 50 for the estimated II binding function. For other
definitions see the notes to Table 1. (5,000 runs)
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Figure 2: Histogram of simulated II estimator of ρ; ρ = 0.3, 1.0 and 1.3, respectively and their QQ-
plot versus the standard normal distribution. The true underlying data set has a dynamic panel
structure (Example 1) with σ2

0 = σ2
ε = 1, σ2

η = σ0η = 0 and ρ. Simulated sample size n = 5, 000.
(5,000 runs)
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Table 4: Robustness of II simulating model

Bias RMSE Cov. probability

λ GMM II GMM II Cov-1ii Cov-2ii |
¯̂
D| |

¯̂
G|

| ¯̂G|
| ¯̂D|

n = 200
-0.20 0.051 -0.009 0.244 0.235 80.10 83.50 0.171 2.977 17.436
-0.10 0.051 -0.041 0.244 0.237 78.60 80.90 0.256 3.202 12.483
0.00 0.051 -0.025 0.244 0.229 80.60 83.10 0.201 3.018 15.048
0.10 0.051 -0.052 0.244 0.256 74.10 79.10 0.325 3.479 10.702
0.20 0.051 -0.060 0.244 0.269 74.60 81.30 0.401 3.895 9.724

MAD 16.65 13.35

n = 1000
-0.20 0.022 -0.022 0.159 0.176 73.60 79.80 0.122 2.625 21.460
-0.10 0.022 -0.015 0.159 0.181 73.40 82.70 0.112 2.618 23.370
0.00 0.022 -0.015 0.159 0.171 76.10 85.20 0.104 2.582 24.801
0.10 0.022 0.008 0.159 0.174 74.70 82.60 0.067 2.545 38.220
0.20 0.022 0.008 0.159 0.160 87.60 95.90 0.049 2.473 50.663

MAD 20.55 12.43

n = 5000
-0.20 0.019 0.006 0.107 0.099 87.00 95.10 0.011 2.299 215.015
-0.10 0.019 0.004 0.107 0.110 76.50 80.10 0.018 2.323 128.947
0.00 0.019 -0.006 0.107 0.100 87.40 94.90 0.036 2.351 65.579
0.10 0.019 0.004 0.107 0.097 87.70 93.70 0.013 2.304 183.863
0.20 0.019 0.000 0.107 0.106 84.90 94.60 0.025 2.334 95.251

MAD 10.30 3.36

Notes: The true underlying data set has a dynamic panel structure (Example 2) with ρ = 1, σ2
0 = σ2

ε = 1,
σ0η = σ2

η = 0. II estimation of ρ uses (12) for simulated samples and (13) as auxiliary model with θ2 calibrated as

follows: σ̃2
0 = σ̃2

ε = 1, σ̃0η = λ and σ̃2
η = |λ|, with λ as in the table. All figures in the table relate to the estimators of

ρ. ‘MAD’ is the mean absolute deviation of the coverage probabilities from the nominal (95%). For other definitions
see the notes to Table 3. (1,000 runs)

54


