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Abstract

We explore the local power properties of different test statistics for conducting inference in mo-
ment condition models that only identify the parameters locally to second order. We consider the
conventional Wald and LM statistics, and also the Generalized Anderson Rubin (GAR) statistic
(Anderson and Rubin, 1949; Dufour, 1997; Staiger and Stock, 1997; Stock and Wright, 2000),
KLM statistic (Kleibergen, 2002, 2005) and the GMM extension of Moreira’s (2003) (GMM-M)
conditional likelihood ratio statistic. The GAR, KLM and GMM-M statistics are so-called “iden-
tification robust” since their (conditional) limiting distribution is the same under first-order, weak
and therefore also second order identification. For inference about the model specification, we con-
sider the identification-robust J statistic (Kleibergen, 2005) and the GAR statistic. Interestingly,
we find that the limiting distribution of the Wald statistic under local alternatives not only de-
pends on the distance to the null hypothesis but also on the convergence rate of the Jacobian. We
specifically analyze two empirically relevant models with second order identification. In the panel
autoregressive model of order one, our analysis indicates that the Wald test of a unit root value
of the autoregressive parameter has better power compared to the corresponding GAR test which,
in turn, dominates the KLM, GMM-M and LM tests. For the conditionally heteroskedastic factor
model, we compare Kleibergen’s (2005) J and the GAR statistics to Hansen’s (1982) overidentifying
restrictions test (previously analyzed in this context by Dovonon and Renault, 2013) and find the
power ranking depends on the sample size. Collectively, our results suggest that tests with mean-
ingful power can be conducted in second-order identified models.

Keywords: Generalized Method of Moments estimation, First-order identification failure, Identification-
robust inference



1 Introduction

The Generalized Method of Moments (GMM) is a popular method for estimating the parameters
of econometric models based on the information in population moment conditions. In his seminal
article introducing GMM, Hansen (1982) proves the consistency of the estimator and provides
a framework for inference based on first-order asymptotic statistical arguments. This original
framework includes confidence intervals for the parameters and the overidentifying restrictions
statistic that can be used to test the model specification, and it has been subsequently extended to a
wide variety of inference procedures, similarly based on first-order asymptotic arguments. However,
the statistical arguments that justify these inference techniques are predicated on certain regularity
conditions among which are the assumptions that the population moment condition is valid and
identifies the parameters both globally and also locally at first order.

Over the last 25 years, there has been a growing awareness that this first-order asymptotic
theory may provide a poor approximation to the finite sample behaviour of GMM-based statistics.
Attention has focussed primarily on cases where the assumed identification conditions fail or are
close to failure. To derive alternative approximations to the behaviour of GMM-based statistics
under this scenario, Staiger and Stock (1997) introduced the concept of weak identification. Within
this framework, parameters are globally and first-order locally identified in finite samples but the
information provided by the population moment declines (at a prescribed rate) as the sample size
increases resulting in the parameters being globally unidentified in the limit. Under weak identi-
fication, the large sample properties of the conventional GMM-based statistics are different from
those derived in Hansen’s (1982) analysis, see Staiger and Stock (1997) and Stock and Wright
(2000). Furthermore, once the possibility of weak identification is admitted, the conventional ap-
proach to constructing confidence intervals based on GMM estimators - “estimator plus/minus a
multiple of the standard error” - is invalid, see Dufour (1997). This has led to a focus on inferences
based on so-called “identification robust” statistics whose distribution is invariant to the quality of
the identification. Leading examples of such statistics are the generalized Anderson-Rubin (GAR)
statistic (Anderson and Rubin, 1949; Dufour, 1997; Staiger and Stock, 1997; Stock and Wright,
2000), the KLM statistic (Kleibergen, 2002, 2005), the J statistic (Kleibergen, 2005), and the gen-
eralized conditional likelihood ratio (GMM-M) statistic (Moreira, 2003; Kleibergen, 2005). In each
case, inferences are performed by inverting the statistic in question to calculate parameter values
consistent with the null hypothesis at the chosen level of confidence/significance.

However, weak identification and its variants are not the only way in which first order local
identification can fail.1 In linear models, first-order local and global identification are the same,
but in nonlinear models, they are not: identification can fail at first order locally but hold at
a higher order. In this paper, we focus on the case where parameters are globally identified,
identification fails locally at first order but holds at second order. This pattern of identification
has been shown to arise in a number of situations in statistics and econometrics such as2: ML for
skew-normal distributions, Azzalini (2005); ML for binary response models based on skew-normal
distributions, Stingo, Stanghellini, and Capobianco (2011); ML for missing not at random (MNAR)
models, Lee and Chesher (1986), Jansen and et al (2006); ML estimation of production function
models, Lee and Chesher (1986), Lee (1993); GMM estimation of conditionally heteroskedastic

1For a recent review of methods for inference under weak identification and its extensions, see Hall (2015).
2The notion of identification at a higher order can be extended to an order larger than two. We are not aware of

any (non-linear) model where identification of some parameters occurs at say the third order so we refrained from
such an extension. We note that our results and also tests for such instances can be developed along the lines of our
current work and existing tests for identification.
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factor models, Dovonon and Renault (2009, 2013); GMM estimation of panel data models using
second moments, Madsen (2009), Bun and Kleibergen (2016); modified-ML estimation of panel
data models, Kruiniger (2014).

Within this second-order identification framework, GMM estimators are consistent but the lim-
iting distribution of statistics based on the estimator is both different from its first-order asymptotic
counterpart and also sensitive to the nature of the first-order identification failure. Local identifi-
cation relates to the behaviour of the population moment condition as the parameter moves away
from the true value. First order identification can fail in some or all directions, and the large sample
behaviour of GMM-based statistics is sensitive to the number of directions in which local identifica-
tion is at second order and not first order. For the case where first order identification only fails in
one direction, the limiting distribution of the GMM estimator has been characterized by Dovonon
and Hall (2018), extending earlier results by Sargan (1983) and Rotnitzky, Cox, Bottai, and Robins
(2000) for estimators obtained respectively by IV in a nonlinear in parameters model and Maximum
Likelihood.3 Dovonon and Renault (2009, 2013) derive the limiting distribution of the overidenti-
fying restrictions statistic for an arbitrary number of directions in which local identification is at
second and not first order.

In this paper, we study the power of commonly used test procedures when the parameter of
interest is only locally second-order identified. We analyze tests on the value of the parameter itself
and the specification of the moment function. To conduct tests on the parameter of interest, we
employ the traditional Wald and Lagrange multiplier (LM) statistics as well as the identification
robust GAR, KLM and GMM-M statistics. For tests on the specification of the moment function, we
use the GAR statistic and Kleibergen’s (2005) J statistic (hereafter denoted as the K-J statistic). For
each type of test, we define the appropriate local alternatives and derive the limiting distributions of
all tests under both null and local alternatives. Interestingly, we find that the limiting distribution
of the Wald statistic under local alternatives not only depends on the distance to the null hypothesis
but also on the convergence rate of the Jacobian. We also illustrate the power properties of the
tests in two empirically relevant models: the panel autoregressive model of order one and the
conditionally heteroskedastic factor model. For the panel data model, it is well known that the
autoregressive parameter is plagued by identification issues if the autoregressive parameter is one.
Bun and Kleibergen (2016) construct a specific moment equation which second-order identifies
the autoregressive parameter at this value. For the conditionally heteroskedastic factor model,
Dovonon and Renault (2013) establish that the parameters are second-order identified by a moment
condition used as a basis for testing for a common factor structure. Because of the second-order
identification, GMM estimators have a quartic root convergence rate and so we observe a very slow
convergence of the finite sample distributions of the tests towards their limiting distributions under
local alternatives. We therefore focus on the finite sample distributions of the tests for varying
numbers of observations. For the panel autoregressive model, the Wald statistic has discriminatory
power that dominates the other tests, although the GAR statistic exhibits comparable power in
large samples. The powers of the KLM and LM statistics are much less than that of the GAR
statistic which is explained by the second-order identification. The power of the GMM-M statistic
is slightly better than the power of the KLM statistic: this relative ranking can be explained by
noting that the parameter of interest is (second-order) identified and so the conditioning statistic
in GMM-M, which tests the significance of the Jacobian, slowly rises when the sample increases.
For the resulting larger values of the conditioning statistic, the GMM-M statistic is known to be

3Kruiniger (2014) derives the limiting distribution of certain modified- ML estimators in a panel data model with
second-order identification that can be viewed as special cases of GMM with just-identified parameters.
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comparable to the KLM statistic. For all statistics, we observe that the finite sample power curves
converge slowly to the local asymptotic power curve which results from the quartic root convergence
rate. For the conditionally heteroskedastic factor model, we compare the power properties of K-
J and the GAR tests with those of Hansen’s (1982) overidentifying restrictions test, previously
analyzed in this context by Dovonon and Renault (2013). Our results indicate that the power
ranking is sensitive to the sample size: in small to moderate sample sizes the K-J test dominates
the other two, which have comparable power; but in large sample sizes this ranking is reversed.

Our analysis contributes to the literature on inference based on the Wald statistic in situations
where the standard first-order asymptotic framework does not apply: Gourieroux and Montfort
(1995) analyze estimation and testing under inequality constraints; Andrews (2001, 2002) considers
the case where the true parameter lies on the boundary of the parameter space; Gaffke, Steyer, and
von Davier (1999) and Gaffke, Heiligers, and Offinger (1999) consider the case where the Jacobian of
the restrictions being tested is singular at the true parameter value. In common with the scenario in
our paper, the limiting distribution of the Wald statistic is non-standard under the null hypothesis
in all these cases.

The paper is organized as follows. In the second section, we set up notation, introduce the
concept of second order identification and present three examples of models with this identification
pattern. In the third section, we introduce the different test statistics and their limiting distributions
under the null hypothesis. In the fourth section, we discuss these distributions under appropriate
local alternatives. The fifth section explores the finite sample power properties of the tests. Finally
the sixth section concludes. All proofs are relegated to a mathematical appendix.

2 Second-order identification: definition and examples

Suppose it is desired to estimate a parameter vector θ0 ∈ Θ ⊂ Rp that indexes an econometric
model. This model may explain behaviour of individual economic agents in a population and so be
estimated from a random sample from that population or the model may explain the behaviour of
economic variables over time and be estimated from time series data. Second-order identification
can arise in either case, as demonstrated by our two examples below, and our results apply equally in
both scenarios. However, certain definitions are different in the two cases. For ease of presentation,
we first describe GMM estimations for the case where the data are obtained from a random sample,
and then briefly note how those definitions need to be adapted for time series in footnote 5 below.

To this end, let X denote a random vector with probability distribution P and sample space X
modeling the variables in the econometric model. We consider the case where this model implies
the following population moment condition:

E[f(X, θ0)] = 0, (1)

where f : X × Θ → Rk is twice continuously differentiable in θ almost everywhere and k ≥ p.
Associated with this population moment condition is a matrix G(θ0) known as the Jacobian and
defined via: G(θ) = E [q(X, θ)], q(θ̄) = ∂f(X, θ)/∂θ′

∣∣
θ=θ̄

. Let {xi, i = 1, . . . , N} be a random

sample of observations for X , and define the sample moment function to be f̄N (θ) = 1
N

∑N
i=1 fi(θ)

where fi(θ) ≡ f(xi, θ).
Following Hansen (1982), we define a GMM estimator of θ0 based on (1) as:

θ̂(WN ) = argmin
θ∈Θ

Nf̄N(θ)
′WN f̄N (θ), (2)
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whereWN is k×k weighting matrix that converges in probability toW , a symmetric positive definite
matrixW . As emphasized by the notation, the GMM estimator depends on the choice of weighting
matrix. Hansen (1982) shows that the optimal choice of weighting matrix is one that satisfies
W = {Vff (θ0)}−1 where Vff (θ0) = V ar[f(X, θ0)], assumed nonsingular throughout. This optimal
choice is implemented via a two-step procedure in which a first-step GMM estimation is used to
obtain a preliminary - “first-step GMM” - estimator, θ̂1,s = θ̂(WN ), based on a sub-optimal choice
of WN . This first-step GMM estimator is used to construct a consistent estimator of V ar[f(X, θ0)],
the inverse of which is used as weighting matrix for a second-step estimation. Defining

V̂ff (θ) =
1

N

N∑

i=1

[
fi(θ)− f̄N (θ)

] [
fi(θ) − f̄N(θ)

]′

and
Q(θ, θ̄) = Nf̄N(θ)

′V̂ff (θ̄)
−1f̄N (θ), (3)

the two-step GMM estimator is:
θ̂N = argmin

θ∈Θ
Q(θ, θ̂1,s). (4)

Within this framework, two statistics are naturally of interest: θ̂N and the overidentifying
restrictions test statistic Q(θ̂N , θ̂1,s). The former is the basis for inference about θ0 and the latter
can be used to assess if the data are consistent with (1) being true in the population, often thought
of as a test of the model specification.4 Hansen (1982) establishes the limiting properties of both

these statistics under a set of regularity conditions.5 Specifically, he shows that: θ̂N is consistent for

θ0; N
1/2(θ̂N − θ0)

d→ N(0, Vθ), where Vθ = {G(θ0)′Vff (θ0)−1G(θ0)}−1; and Q(θ̂, θ̂1,s)
d→ χ2

k−p.
For our purposes here, it suffices to highlight three of these regularity conditions. To this

end, it is useful to condense our notation and write m(θ) = E [f(X, θ)]. The aforementioned three
conditions are then: (i)m(θ0) = 0 so that the estimation is based on valid information; (ii)m(θ̄) 6= 0
for all θ̄ 6= θ0 so that θ0 is globally identified; (iii) rank{G(θ0)} = p so that θ0 is first-order locally
identified.6 Of these three, the consistency of the GMM estimator only requires (i) and (ii) to hold;
but the distributional results listed in the previous paragraph require all three conditions to hold.

As noted in the introduction, first-order local identification is not a necessary condition for
global identification in nonlinear models. In this paper we focus on the case where first-order local
identification fails but the parameters are locally identified at second order. To formally introduce
this scenario, we let

Hs(θ̄) = E

[
∂2fs(X, θ)

∂θ∂θ′

∣∣∣∣
θ=θ̄

]
, s = 1, 2 . . . , k

where fs(X, θ) is the s-th element of f(X, θ). The following assumption defines the identification
configuration maintained throughout our analysis.

4Although some caution needs to be exercised in interpreting the outcome of this test, see Newey (1985) and Hall
(2005)[Section 5.1].

5If the model involves (stationary ergodic) time series then X is replaced by Xt in (1) with t denoting the
time index, and replacing i in the definitions above. In this case the optimal choice of weighting matrix is

Vff = limT→∞ V ar
[

N−1/2
∑N

t=1
f(Xt)

]

and V̂ff (θ) by a member of the class of Heteroskedasticty Autocorre-

lation Covariance (HAC) estimators, for example see Andrews (1991).
6Sometimes referred to as the rank condition for identification.
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Assumption 1. (a) ∀θ ∈ Θ, m(θ) = 0 ⇔ θ = θ0; (b) For all u in the range of G(θ0)
′ and all v

in the null space of G(θ0),

(
G(θ0)u+ (v′Hs(θ0)v)1≤s≤k = 0

)
⇒ (u = v = 0).

Assumption 1(a) combines conditions (i) and (ii) above, and provides the necessary and sufficient
identification condition for consistent estimation of θ0. Assumption 1(b) is the second-order local
identification condition introduced by Dovonon and Renault (2009). This is a sufficient condition for
local identification that extends the standard first-order local identification (property (iii) above).
See Dovonon and Renault (2013) for further discussion.

2.1 Panel data example

Consider the first-order autoregressive linear dynamic panel data model

yi,t = ci + θ0yi,t−1 + uit i = 1, . . . , N, t = 2, . . . , T, (5)

where ci denotes the (unobserved) fixed effect, T equals the number of time periods andN equals the
number of cross section observations. The assumptions commonly used to identify the parameters
of this model are that the error terms are independently distributed from each other and the fixed
effect so that

E[ui,tui,s] = 0, s 6= t; t = 2, . . . , T,
E[ui,tci] = 0, t = 2, . . . , T,

E[ui,tyi,1] = 0, t = 2, . . . , T.
(6)

Based on these assumptions, different moment functions have been proposed to identify the autore-
gressive parameter of which the most commonly used are, perhaps, those proposed by Anderson and
Hsiao (1981), Arellano and Bond (1991), Ahn and Schmidt (1995) and Blundell and Bond (1998).
All these moment conditions have difficulty identifying the autoregressive parameter when its true
value is close to one and the variance of the initial observations and/or fixed effects becomes large,
see Bun and Kleibergen (2016). Bun and Kleibergen (2016) show that a non-linear combination
of these moment conditions does, however, identify the autoregressive parameter in such settings.
This non-linear combination leads to so-called robust moments that do not depend on the initial
observations and fixed effects. Bun and Kleibergen (2016) show that for T = 4 the specification of
the sample moment function associated with these robust moments is:

f̄N (θ) = aθ2 + bθ + d, (7)

where

a =
1

N

N∑

i=1

(
(∆yi,2)

2

0

)
, b = − 1

N

N∑

i=1

(
(yi,3 − yi,1)

2

∆yi,2∆yi,3

)
, d =

1

N

N∑

i=1

(
(yi,4 − yi,1)∆yi,3

∆yi,2∆yi,4

)
.
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Under the assumptions above, the expectation of these terms is given by:

E[a] =

(
E[(ci − (1 − θ0)yi,1)

2] + σ2
2

0

)
,

E[b] =

(
(1 + θ0)

2E[(ci − (1 − θ0)yi,1)
2)− θ20σ

2
2 − σ2

3

−θ20E[(ci − (1 − θ0)yi,1)
2]

)
,

E[d] =

(
θ0(1 + θ0 + θ20)E[(ci − (1 − θ0)yi,1)

2] + θ20(θ0 − 1)σ2
2 + θ0σ

2
3

θ20E[(ci − (1− θ0)yi1)
2]

)
.

(8)

with σ2
t = E[u2it]. If we assume mean-stationarity7 - so that E[(ci − (1 − θ0)yi1)

2] = 0 - and the
errors are homoskedastic - σ2

t = σ2 - then these expected values simplify to

E[a] = σ2

(
1
0

)
, E[b] = −σ2

(
θ20 + 1

0

)
, E[d] = σ2

(
θ20(θ0 − 1) + θ0

0

)
. (9)

From (7) and (9), it follows that if θ0 = 1 then:

m(θ0) = 02×1, G(θ0) = 02×1, H1(θ0) = 2σ2, H2(θ0) = 0, (10)

where we have emphasized the dimensions of the null vectors for clarity. It can be seen from (10)
that if θ0 = 1 then this model is not first-order locally identified but satisfies Assumption 1 and so is
second-order locally identified. In our subsequent analysis of this model, we focus on the inference
about whether or not θ0 = 1.

2.2 Conditionally heteroskedastic factor models

Conditionally heteroskedastic factor (CHF) models are widely used to study the volatility of finan-
cial asset returns.8 Within this approach, the volatility of a vector of assets is assumed to derive
from two sources: a latent common factor that exhibits conditional variation and an idiosyncratic
component that is conditionally homoskedastic. In practice, the number of latent factors is assumed
to be smaller than the number of assets and thus the CHF model provides a relatively parsimonious
way of capturing the conditional variances and covariances of the assets.

Before basing inferences on the model, it is important to assess whether the sample covariance
structure is consistent with this type of specification. Engle and Kozicki (1993) propose a general
methodology for testing for common features in economic time series based on the GMM overi-
dentifying restrictions test, and propose using it to test the validity of the CHF model. However,
they base their decision rule on standard first-order asymptotic behaviour of the overidentifying
restrictions test. Dovonon and Renault (2013) show that this theory is invalid in this case because
the moment condition in question only identifies the parameters locally to second order.

To elaborate, consider the following CHF model for the p× 1 vector of asset returns Yt+1:

E [Yt+1 |Ft] = 0, (11)

V ar [Yt+1 |Ft] = ΛDtΛ
′ + Ω, (12)

7See Blundell and Bond (1998).
8The approach is introduced in Diebold and Nerlove (1989); see also inter alia Engle, Ng, and Rothschild (1990),

Fiorentini, Sentana, and Shephard (2004) and Doz and Renault (2006).

6



where Dt is a L×L diagonal matrix with ℓth diagonal element equal to σ2
ℓ,t for ℓ = 1, 2, . . . , L, Λ is

a p×L matrix, and Ω is a p× p symmetric positive semi-definite matrix. The stochastic processes

{Yt}t≥0 and
{
σ2
ℓ,t

}
1≤ℓ≤L,t≥0

are adapted with respect to the increasing filtration {Ft}t≥0. It is

assumed that rank(Λ) = L and V ar[σ2
ℓ,t] > 0 for all ℓ = 1, 2, . . . , L. If L < p then the factors can

be viewed as “common features” in the sense that there are fewer sources of conditional variation
than the number of assets.

Engle and Kozicki’s (1993) test for common features can be motivated as follows. If L < p then
there exists θ0 6= 0 such that E[(θ′0Yt+1)

2 |Ft] = µ, for some constant µ, and so for any k× 1 vector
zt ∈ Ft, with k > p, θ0 satisfies

m(θ0) = 0 (13)

where m(θ) = E[ft(θ)],
ft(θ) = zt{(θ′Yt+1)

2 − c(θ)}, (14)

and c(θ) = E[(θ′Yt+1)
2]. Clearly (13) only identifies θ up to some normalizing constant, and so in

practice some normalization needs to be adopted. However for our purposes here, we can sidestep
this issue.9 The population moment condition in (13) can be used as a basis for estimation of θ0,
and the existence of the common feature can be tested by testing whether (13) holds using the
overidentifying restrictions statistic.

However, the population moment condition in (13) does not locally identify θ0 at first order.
Dovonon and Renault (2013) show that

G(θ) = 2E [ (zt − E[zt]) θ
′
0 (ΛDtΛ

′ + Ω) ] , (15)

and that under the assumptions above,

E[(θ′0Yt+1)
2 |Ft] = µ ⇔ θ′0Λ = 0. (16)

Therefore, G(θ0) is the null matrix by construction under the null hypothesis of the test. However,
θ0 is second-order locally identified under plausible conditions because

Hs(θ) = Λ′CsΛ, (17)

where Cs is the L × L diagonal matrix with ℓth main diagonal element equal to Cov[zs,t, σ
2
ℓ,t].

Dovonon and Renault (2013) argue this rank condition can be ensured by picking a sufficiently
broad group of instruments zt such that at least one instrument is correlated with every possible

linear combination of the volatilities
{
σ2
ℓ,t

}
.10

Finally, we emphasize that in this model, the value of θ0 is not of primary interest: the key issue
is whether m(θ0) = 0.

3 Test statistics and limiting distributions under the null

In this section, we consider methods for testing two types of hypotheses in models that satisfy
Assumption 1. In the first type, the null hypothesis takes the form: H0 : θ0 = θ∗. Notice that
under this H0 the value of θ0 is completely specified. In the second type of hypothesis, the null

9See Dovonon and Renault (2013) for further discussion and also Section 5.2 for an example.
10Specifically, they assume rank{Cov[zt, dt]} = L where dt = (σ2

ℓ,t, σ
2

ℓ,t, . . . , σ
2

L,t).
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takes the form H0 : m(θ0) = 0; tests of this hypothesis are often interpreted as tests of whether
the model specification is correct. We first present all the test statistics and then provide their
limiting distributions under the respective null hypotheses.

3.1 Test statistics and their null hypotheses

To present the statistics, we introduce the following notation: q̄N (θ) = N−1
∑N
i=1 qi(θ) and qi(θ̄) =

∂fi(θ)/∂θ
′∣∣
θ=θ̄

.

Test statistics for H0 : θ0 = θ∗:

Newey and West (1987) propose a number of statistics for testing whether θ0 satisfies a set of
nonlinear restrictions based on GMM estimators. Here we consider two: the Wald and Lagrange
Multiplier (LM) statistics. Specializing to our null hypothesis, the Wald statistic is:

WaldN (θ∗) = N(θ̂N − θ∗)
′q̄N (θ̂N )′V̂ff (θ̂N )−1q̄N (θ̂N )(θ̂N − θ∗), (18)

and the LM statistic is,

LM(θ∗) = Nf̄N (θ∗)
′V̂ff (θ∗)

−1q̄N (θ∗)
(
q̄N (θ∗)

′V̂ff (θ∗)
−1q̄N (θ∗)

)−1

q̄N (θ∗)
′V̂ff (θ∗)

−1f̄N (θ∗). (19)

Under certain regularity conditions which include global identification and first-order local identifi-
cation, Newey and West (1987) show that the Wald and LM statistics both converge to a χ2

ρ where
ρ is the number of restrictions which is p in our case here.

Kleibergen (2005) introduces a modified version of the LM statistic:

KLM(θ∗) = Nf̄N (θ∗)
′V̂ff (θ∗)

−1D̂N(θ∗)
(
D̂N(θ∗)

′V̂ff (θ∗)
−1D̂N(θ∗)

)−1

D̂N (θ∗)
′V̂ff (θ∗)

−1f̄N (θ∗),

(20)
where D̂N (θ) is a k × p-dimensional matrix and

vec
(
D̂N (θ)

)
= vec (q̄N (θ))− V̂qf (θ)V̂ff (θ)

−1f̄N(θ), (21)

with V̂qf (θ) = N−1
∑N
i=1 vec [qi(θ)− q̄N (θ)]

[
fi(θ)− f̄N (θ)

]′
, where vec(A) is the operator trans-

forming the matrix A into a vector by stacking its columns. Kleibergen (2005) shows thatKLM(θ∗)
converges to a χ2

p distribution under H0 regardless of whether θ0 is first order locally identified or
weakly identified.

We also consider the conditional GMM statistic of Kleibergen (2005) (GMM-M(θ∗)) which is
the GMM version of Moreira’s (2003) conditional likelihood ratio (LR) statistic:

GMM −M(θ∗) =
1
2

(
KLM(θ∗) + J(θ∗)− rk(θ∗)

+
√
[KLM(θ∗) + J(θ∗) + rk(θ∗)]2 − 4J(θ∗)rk(θ∗)

)
,

(22)
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where J(θ) is defined in equation (24) below and rk(θ∗) is a test statistic that tests the hypothesis
of a lower rank value of G(θ∗), Hr : rank(G(θ∗)) = p− 1 and is function of D̂N(θ∗) and the inverse
of V̂22·f (θ∗) ≡ V̂22(θ∗)− V̂2f (θ∗)V̂ff (θ∗)−1V̂f2(θ∗); with V̂ab(θ∗) (a, b = 2, f) a consistent estimator
of Vab(θ∗). Many examples of rank test statistics have this characterization. See Kleibergen (2005).

Stock and Wright (2000) propose using the GAR statistic:11

GAR(θ∗) = Q(θ∗, θ∗), (23)

and Q( ·, ·) is defined in (3). Stock and Wright (2000) show that GAR(θ∗) converges to a χ2
k dis-

tribution under H0 regardless of whether θ0 is first order locally identified or weakly identified.
However, the implicit null of the GAR statistic is larger than H0 : θ0 = θ∗ as we discuss below.

Test statistics for H0 : m(θ0) = 0:

Kleibergen (2005) proposes testing this null using the statistic

J(θ0) = Nf̄N(θ0)
′V̂ff (θ0)

−1/2MV̂ff (θ0)−1/2D̂N (θ0)
V̂ff (θ0)

−1/2f̄N (θ0), (24)

where MA = Ik − A(A′A)−1A′. Kleibergen (2005) shows that under H0 the limiting distribution
of J(θ0) is χ2

k−p irrespective of whether θ0 is first-order locally or weakly identified. The test is
performed by searching to see if there are any values of θ0 for which J(θ0) is less than the appropriate
critical value.

As noted by Kleibergen (2005),

GAR(θ) = KLM(θ) + J(θ)

and so the GAR statistic can be viewed as a joint test of θ0 = θ∗ and m(θ0) = 0.

3.2 Limiting distributions under the null

For our analysis of both types of statistics, the structure of the Jacobian is important. We define
r = rank{G(θ0)}. Since our focus is on cases where θ0 is globally identified and only locally
identified at second order, we assume r < p and that the model satisfies Assumption 1. Note that
if 0 < r < p then there exists a nonsingular p× p matrix R = (R1, R2) such that the p× r matrix
R1 and p× (p− r) matrix R2 satisfy:

rank {G(θ0)R1} = r and G(θ0)R2 = 0. (25)

The matrices R1 and R2 are key to our analysis below because they give respectively the directions
of possible fast convergence estimation and the directions of slower convergence estimation. If r = 0
(as in the CHF example) then we set R = R2 = Ip and R1 = 0. In the subsequent analysis, we set
D = G(θ0)R1.

We also impose the following conditions.

11Anderson and Rubin (1949) introduce the statistic in the context of linear models, and Dufour (1997) and
Staiger and Stock (1997) advocate using this original version of the statistic for inference in linear models with weak
identification.
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Assumption 2. θ0 is an interior point of Θ.

Let Nǫ denote an ǫ-neighbourhood of θ0.

Assumption 3. (i) ‖m(θ)‖ <∞, ‖G(θ)‖ <∞ and ‖Hs(θ)‖ <∞ for s = 1, 2, . . . , k for all θ ∈ Nǫ;
(ii) f̄N (θ) converges uniformly in probability to m(θ) and the partial derivatives up to order 2 of
f̄N (θ) converge in probability uniformly to those of m(θ) over Nǫ.

Assumption 4.
√
N

(
f̄N (θ0)

vec(q̄N (θ0)R2)

)
d−→
(

ψf
vec(ψq)

)
∼ N(0, V ),

where V =

(
Vff (θ0) Vf2(θ0)
V2f (θ0) V22(θ0)

)
, with

V2f (θ) = E {[vec{(qi(θ)− µq(θ))R2}][fi(θ) − µf (θ)]
′} , Vf2(θ) = V2f (θ)

′,

V22(θ) = E {[vec{(qi(θ)− µq(θ))R2}][vec{(qi(θ) − µq(θ))R2}]′} ,
µf (θ) = E(fi(θ)) and µq(θ) = E(qi(θ)).

Assumption 4 is a high-level condition that can apply whether the model involves a random
vector X or a time series process Xt, in the latter case V is the long run variance of the relevant
random vector.

Under Assumptions 1(a) and certain other regularity conditions, θ̂1,s and θ̂N are consistent.
Since this is not the focus of our analysis, we do not document the required conditions here, and
instead adopt the following high-level assumption.12

Assumption 5. θ̂1,s
p→ θ0 and θ̂N

p→ θ0.

Given the consistency of θ̂N , it follows from Assumption 3 that q̄N (θ̂N )R1
p−→ D.

We now present the limiting distributions of the test statistics presented in Section 3.1.

Test statistics for H0 : θ0 = θ∗:

For the Wald statistic, we consider only the case where r = p− 1 because to our knowledge this
is the only case for which the limiting distribution of the GMM estimator is tractable. For what
follows, it is useful to introduce the following additional notation:

P = D̃
(
D̃′D̃

)−1

D̃′, D̃ = Vff (θ0)
−1/2D, Md = Ik − P,

B = (R′
2Hs(θ0)R2)1≤s≤k , B̃ = Vff (θ0)

−1/2B, and α = B̃√
B̃′MdB̃

.

Theorem 1. If Assumptions 1-5 hold, r = p− 1 and θ0 = θ∗ then

WaldN (θ∗)
d→ W

where
W = W0(S, S1) ≡ (S1 + αSI(S ≤ 0))

′
P (S1 + αSI(S ≤ 0)) + 4S2I(S ≤ 0),

and: S1 ∼ N(0, Ik), S ∼ N(0, 1), S1 and S are independent and I(·) is the usual indicator function.

12For example, see Hansen (1982), Newey and McFadden (1994) or Hall (2005)[Chapter 3].

10



The limiting distribution is evidently non-standard, reflecting the non-standard behaviour of
the GMM estimator in this case (see Dovonon and Hall (2018)[Theorem 1] and equation (A.2) in
the appendix). Although non-standard this distribution can easily be simulated, along similar lines
to the method proposed for simulating the distribution of the GMM estimator in Dovonon and Hall
(2018).13 In the special case when r = 0 and p = 1 then the distribution simplifies. In this case,
we set D = 0, P = 0 and B = (Hs(θ0))1≤s≤k, and the distribution of the Wald test is as follows.

Corollary 1. If the conditions of Theorem 1 hold and in addition r = 0 and p = 1 then W =
W0(S) ≡ 4S2I(S ≤ 0) where S is defined in Theorem 1.

Corollary 1 provides the limiting distribution of the Wald test of H0 : θ0 = 1 in our panel data
example in Section 2.1. Notice that this limiting distribution involves a point mass of 0.5 for the
event WaldN (θ∗) = 0. We can use our panel data example to provide some intuition for why the
distribution takes the form it does. In this setting, the Wald statistic is:

WaldN (1) = N(θ̂ − 1)q̄N (θ̂)′V̂ff (θ̂)
−1q̄N (θ̂)(θ̂ − 1). (26)

Using a Mean Value expansion of q̄N (θ̂) around q̄N (1), it can be shown that14

WaldN (1) = N(θ̂ − 1)44σ4V −1
1,1 (27)

where V −1
1,1 is the (1, 1) element of {Vff (1)}−1. If we define ζ via N1/4(θ̂ − 1) = ζ + op(1) and set

e = V −1
1,1 then it is shown in the mathematical appendix that, under H0, the first order conditions

of the GMM estimation imply that ζ satisfies the following condition:

ζ

(
ζ2 +

1

e1/2σ2
S

)
= 0. (28)

If S > 0 then there is no real value of ζ that can set the term in parentheses to zero, and so the
solution must be ζ = 0. However, if S < 0 then

ζ2 =
1

e1/2σ2
|S|,

sets the term in parentheses to zero. Thus, we have

ζ2 = I(S ≤ 0)
1

e1/2σ2
|S|. (29)

Using (29) in (27), it follows that

WaldN (1) = ζ44σ4e + op(1),

WaldN (1)
d→
{
I(S ≤ 0)

1

e1/2σ2
|S|
}2

4σ4e = 4S2I(S ≤ 0). (30)

Note that even though the distribution of W0(S) is nonstandard, its quantiles have a simple
expression. Letting α ∈ (0, 1/2) and c1−α be the (1 − α)-quantile of W0(S), we can show that

13Dovonon and Hall (2018) also discuss at length how to estimate R2.
14See the on-line appendix available from the authors upon request.
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c1−α = 4z21−α, where z1−α is the (1−α)-quantile of the standard normal distribution. The (1−α)-
quantile of the chi-squared distribution with one degree of freedom is χ2

1,1−α = z21−α/2 and we can

verify that c1−α > χ2
1,1−α for all 0 < α < 0.30344. This makes the Wald test based on W0(S)

typically conservative, hence valid, when used for models that are actually locally identified at first
order.

The Wald test principle is based on testing whether the unrestricted estimator satisfies the
restrictions in question. In contrast, the test principles behind the LM, KLM, GMM-M and GAR
statistics are based on the restricted model. In our case here, the null hypothesis completely
specifies the value of θ0 and so calculation of these statistics does not involve GMM estimation per
se. Therefore, while our analysis assumes identification fails locally at first order in an arbitrary
number of directions, it does not require the parameters to be locally identified at second order -
although the results still hold if that is the case.

The following theorem gives the limiting distribution of the LM statistic in (19).

Theorem 2. If Assumption 4 holds, ψ̃′
qψ̃q is nonsingular with probability one, V̂ff (θ0) and q̄N (θ0)R1

converge in probability to Vff (θ0) and D, respectively, and θ0 = θ∗ then:

LM(θ∗)
d−→ L ≡ ψ′

fVff (θ∗)
−1ψ̃q

(
ψ̃′
qVff (θ∗)

−1ψ̃q

)−1

ψ̃qVff (θ∗)
−1ψf ,

where ψ̃q = (D
... ψq). If in addition ψf and ψq are uncorrelated, then L = χ2

p.

Theorem 2 gives the asymptotic distribution of the LM statistic underH0 when the first order lo-
cal identification condition is violated. Only in the special case where

√
Nq̄N (θ0)R2 and

√
Nf̄N(θ0)

are asymptotically uncorrelated (and hence independent) is this distribution χ2
p and so the same

as would be the case if θ0 is identified locally at first order. A comparison of Theorems 1 and 2
indicates that the limiting distributions of the Wald and LM statistics are different if identification
fails locally at first order but holds at second order. In contrast, Newey and West (1987) show the
two statistics are asymptotically equivalent under the null when θ0 is first order locally identified.

The following theorem gives the limiting distributions of the KLM and GAR statistics in (20)

and (23) respectively. We first introduce some notation. Let ψ̂q be the k × p matrix with its
(l,m)-entry given by

ψ̂q,lm = Cov[qi,lm(θ0), fi(θ0)]{Vff (θ0)}−1ψf ,

l = 1, . . . , k and m = 1, . . . , p. Let εq = ψq − ψ̂qR2,

ψ̄q =

{
εq if r = 0

(D
... εq) if r > 0

and V̂2f (θ0) be the sample counterpart of V2f (θ0) as defined in Assumption 4. Related to the
asymptotic behaviour of GMM-M(θ∗), for any ρ ∈ R+, let

Ψ(ρ) =
1

2

(
ψJ + ψK − ρ+

√
(ψJ + ψK + ρ)2 − 4ρ× ψJ

)
,

where ψJ and ψK are independent χ2
k−p and χ2

p random variables. We have the following result:
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Theorem 3. (i) If Assumption 4 holds, ψ̄′
qψ̄q is nonsingular with probability one, V̂2f (θ0), V̂ff (θ0)

and q̄N (θ0)R1 converge in probability to V2f (θ0), Vff (θ0) and D, respectively, and θ0 = θ∗ then

KLM(θ∗)
d→ χ2

p; also, for any ρ ∈ R+, GMM-M(θ∗) converges in distribution to Ψ(ρ) conditionally

on rk(θ∗) = ρ, i.e. GMM-M(θ∗)
∣∣(rk(θ∗) = ρ)

d→ Ψ(ρ); (ii) If
√
Nf̄N (θ0)

d→ N ( 0, Vff (θ0) ),

V̂ff (θ0) converges in probability to Vff (θ0) and θ0 = θ∗ then GAR(θ∗)
d→ χ2

k.

From Theorem 3 it follows that the limiting distributions of the KLM, GMM-M and GAR statis-
tics under second-order local identification are the same as under first-order local identification and
weak identification. Therefore all three statistics are robust to all three forms of identification.

Test statistics for H0 : m(θ0) = 0:

The following theorem presents the limiting distributions of J(θ0) and GAR(θ0) under this null
hypothesis.

Theorem 4. (i) If Assumptions 4 holds, ψ̄′
qψ̄q is nonsingular with probability one, V̂2f (θ0), V̂ff (θ0)

and q̄N (θ0)R1 converge in probability to V2f (θ0), Vff (θ0) and D, respectively, then J(θ0)
d→ χ2

k−p;

(ii) If
√
Nf̄N(θ0)

d→ N ( 0, Vff (θ0) ) and V̂ff (θ0) converges in probability to Vff (θ0) then GAR(θ0)
d→

χ2
k.

From Theorem 4 it follows that the limiting distribution of the K-J statistic under second-order
local identification is the same as under first-order local identification and weak identification, and so
it is robust to all three forms of identification. This contrasts with Hansen’s (1982) overidentifying
restrictions test statistic which Dovonon and Renault (2013) show converges in distribution to a
mixture of χ2

k−q, q = 0, 1, . . . , p, distributions if θ0 is only locally identified at second order. The

limiting distribution of the GAR(θ0) follows trivially from the asymptotic normality of
√
Nf̄N(θ0).

4 The large sample behaviour of the test statistics under

local alternatives

In this section, we explore the local power properties of the tests. To this end, we index the data
generation process by N and so now replace X by XN . The distribution of XN is denoted by PN
and this distribution implies the population moment condition

EN [f(XN , θN )] = µN , (31)

where EN [ · ] denotes expectation under PN , {θN} is a sequence of parameter values and {µN} is a
sequence of k × 1 vectors. It is assumed that as N → ∞ the following all hold: PN → P , θN → θ0
and µN → 0k×1. Recall that P is the probability distribution of X in Section 2, and so the limit
process satisfies the population moment condition (1). As in Section 2, it is assumed further that
under P , θ0 is identified locally at second order.

To analyze the behaviour of the tests under local alternatives, we must also modify certain of
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the assumptions. To this end, we introduce the following definitions:

mN(θ) = EN [f(XN , θ)] , GN (θ) = EN [q(XN , θ)] , HN (θ) = EN [h(XN , θ)] ,

H(θ) = E [h(X, θ)] , h(XN , θ̇) =
∂vec{q(XN , θ)}

∂θ′

∣∣∣∣
θ=θ̇

, h̄N (θ) = N−1
N∑

i=1

h(xi, θ).

We replace Assumption 3 by the following condition.

Assumption 6. (i) ‖mN(θ)‖ < ∞, ‖GN(θ)‖ < ∞, ‖HN(θ)‖ < ∞ for θ ∈ Nǫ; (ii) over a
neighborhood Nǫ, the following hold: f̄N (θ), mN (θ) converge uniformly (in probability PN for the
former) to m(θ); q̄N (θ), GN (θ) converge uniformly (in probability PN for the former) to G(θ),
h̄N (θ), HN (θ) converge uniformly (in probability PN for the former) to H(θ).

We must also modify our assumptions about the behaviour of the Jacobian. It is worth mentioning
that, even if the rank property of the Jacobian at θ0 under P (the data distribution under the
null) is known, this does not necessarily imply the rank property under θN because of the lack of
continuity of the rank function.

Assumption 7.

GN (θN )R1 = D + o(1), and GN (θN )R2 = N−ξA+ o
(
N−ξ) ,

where R ≡ (R1, R2) is the nonsingular p× p matrix partitioned into r and (p− r)-column matrices
R1 and R2 as defined by (25). D = G(θ0)R1 is a p× r matrix of rank r, A is a k × (p− r) matrix
and ξ > 0.

Under this assumption, the Jacobian is local to zero in the directions of the parameter that are
identified locally only at the second order. The specific choice of ξ likely depends on the model in
question. We show below that ξ = 1/4 is the appropriate choice in the panel data model in Section
2.1 while ξ = 1/2 is appropriate in the CHF model in Section 2.2. Under some mild smoothness
condition, ξ is not expected to be smaller than 1/4. For our analysis of tests of H0 : θ0 = θ∗, we
restrict ξ ≥ 1/4 to ensure that the drift in the Jacobian decreases at least as fast as the rate of
convergence of the second-order identified parameters. Such a restriction is particularly useful to
derive the asymptotic distribution of the Wald test statistic. Finally, we replace Assumption 4 by
the following condition.

Assumption 8.

√
N

(
f̄N (θN ) − µN

vec [q̄N (θN )R2 −GN (θN )R2]

)
d−→
(

ψf
vec(ψq)

)
∼ N(0, V )

under PN , with V given in Assumption 4.

Section 4.1 covers tests of H0 : θ0 = θ∗; Section 4.2 considers the tests of H0 : m(θ0) = 0.

4.1 Local power of tests of H0 : θ0 = θ∗

For this null hypothesis, the natural sequence of local alternatives is given by (31) with µN = 0 for
all N . In this case, the population moment condition is satisfied at a different parameter value for
each N that is,

mN (θN ) = 0. (32)
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To explicitly define the sequence of parameters θN under the local alternative, we take into account
the rate of convergence of estimators under the null. Under the second-order identification condition,
we know that the directions of the parameters that are identified at the first order are estimated
at the standard

√
N -rate whereas the directions that are identified only at the second order are

estimated at a slower N1/4-rate. In particular, considering R as defined by Equation (25), we know
that the first r components of R−1θ are estimated at

√
N -rate whereas the remaining components

are estimated at the N1/4-rate; see equation (A.2) in the appendix. In the light of this, we define
θN such that:

θN − θ∗ = ReN , (33)

where the first r and the last (p − r) components of eN ∈ Rp, denoted respectively eN,1 and eN,2
are such that:

eN,1 =
e1√
N

and eN,2 =
e2
4
√
N
,

with e1 and e2 are nonzero vectors of size r and p− r, respectively.
Before presenting the limiting distributions of our test statistics, it is instructive to use our

panel data example to motivate the behaviour of the Jacobian specified in Assumption 7. Recall
from Section 2.1 that θ is a scalar and is only locally identified at second order. Therefore, in view
of the remarks in the preceding paragraph, we set θN = 1 − c

2 4
√
N
. In this case, it can be shown

that15

GN (θN ) = c
4
√
N
σ2

(
0
1/2

)
+O(1/

√
N),

GN (θ0) = c
4
√
N
σ2

(
1
1/2

)
+O(1/

√
N),

HN (θN ) = HN (θ0) = 2σ2

(
1
0

)
+O(1/

√
N).

(34)

This setting is covered by Assumption 7 with ξ = 1/4 and A = (σ2c/2)[0, 1]′.

Theorem 5. If Assumptions 1, 2, 6-8 (with µN = 0 and ξ ≥ 1/4) hold, Assumption 5 holds under
PN , θ0 = θ∗ and r = p − 1 then: any subsequence of WaldN (θ∗) has a further subsequence with
index say, s(N), that converges in distribution under PN to Ws, defined by:

Ws(e) = (a(ζs) + e1)
′D̃′D̃(a(ζs) + e1) + (Ã+ B̃ζs)

′(Ã+ B̃ζs)(ζs + e2)
2

+2(a(ζs) + e1)
′D̃′(Ã+ B̃ζs)(ζs + e2),

with

a(ζ) = −(D̃′D̃)−1D̃′
(
X̃ + Ãζ + 1

2 B̃ζ
2
)

ζs ∈ argmin
u∈R

(
X̃ + Ãu+ 1

2 B̃u
2
)′
Md

(
X̃ + Ãu+ 1

2 B̃u
2
)

X̃ ∼ N(0, Ik)

Ã = Vff (θ0)
−1/2AI(ξ = 1/4)

and Md, B̃ and D̃ given just before Theorem 1.

15See on-line appendix available from the authors upon request.
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In this theorem and as established by Theorem B.1, ζs represents the asymptotic distribution
under PN (along suitable subsequences) of θ̂−θN in the direction that is identified at second order,

i.e. the last component of R−1(θ̂− θN ) scaled by N1/4 while a(ζs) is the asymptotic distribution of

θ̂−θN in the directions that are first-order identified, i.e. the first p−1 components of R−1(θ̂−θN )
scaled by

√
N . These two sets of components are the key ingredients of the asymptotic distribution

of the Wald test statistic under local alternatives.

For the case in which r = 0 and p = 1, this results specializes as follows.

Corollary 2. If the conditions of Theorem 5 hold and in addition, r = 0 and p = 1, then

Ws(e2) = (Ã+ B̃ζs)
′(Ã+ B̃ζs)(ζs + e2)

2,

with

ζs ∈ argmin
u∈R

(
X̃ + Ãu+

1

2
B̃u2

)′(
X̃ + Ãu+

1

2
B̃u2

)
. (35)

If, in addition ξ > 1/4, then
Ws(e2) = B̃′B̃ζ2s (ζs + e2)

2,

with ζ2s = − B̃′X̃
B̃′B̃

I(B̃′X̃ ≤ 0).

The panel data example in Section 2.1 fits into the setting of this corollary. From (34), we can
claim that

ξ = 1/4, Ã = Vff (θ0)
−1/2(σ2c/2)

(
0
1

)
, B̃ = Vff (θ0)

−1/2(2σ2)

(
1
0

)
, and X̃ ∼ N(0, I2).

As we shall see in Proposition 1 below, the fact that Ã and B̃ are not proportional ensures that the
Wald test has discriminatory power.

The asymptotic distributions presented by Theorem 5 and Corollary 2 extend the results in
Theorem 1 and Corollary 1 to local alternatives. Setting A and e to 0 in Theorem 5 and Corollary
2 yields the asymptotic distribution of the Wald statistic under the null as presented in the pre-
vious section. Corollary 2 sheds some light on a peculiar behaviour of the Wald test under local
alternatives. It appears that the power of this test in large samples is not mainly determined by
the distance between the parameter values under the null and the alternative but also by how fast
the Jacobian matrix of the moment function evaluated under the alternative converges to 0. In the
case of fast convergence of the Jacobian (ξ > 1/4), the asymptotic distribution of the test statistic
has an atom mass at 0 regardless of the value of the localization parameter value e2. This implies
in particular that asymptotically, the probability of rejecting the null under local alternatives is
always smaller than or equal to the atom mass P (B̃′X̃ > 0) = 0.5 for all e2 ∈ R whereas one
should expect this rejection probability to tend to 1 as e2 gets larger. When ξ = 1/4 so that the
Jacobian drifts towards 0 at the rate N−1/4, Ws(e2) can still exhibit an atom mass at 0 but in
more restrictive settings made precise by the following proposition.

Proposition 1. Assume that the same conditions as in Theorem 5 hold with r = 0 and p = 1 and
ξ = 1/4. Then,
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(a) [∀e2 ∈ R, P (Ws(e2) = 0) > 0] if and only if [A = 0 or A = δB for some δ ∈ R \ {0}].

(b) If A = 0 then, ∀e2 ∈ R, P (Ws(e2) = 0) ≥ 1/2.

(c) If A = δB for some δ ∈ R \ {0} then, ∀e2 ∈ R, P (Ws(e2) = 0) ≥ 1−Φ
(
δ2

2

√
B̃′B̃

)
, where

Φ is the standard normal cumulative distribution function.

This proposition shows that when ξ = 1/4, the Wald test statistic has an atom at 0 asymptot-
ically if and only if the localization vector A of the Jacobian matrix is 0 or is proportional to the
vector of second-order derivatives B of the moment function at the true value. In any other case,
Ws(e2) shifts towards infinity as e2 gets large; hence, showing evidence of power. The cases A = 0
and A proportional to B occur in a small set of nil Lebesgue measure in Rk. Therefore, the power
issue raised can be considered irrelevant when ξ = 1/4.

To present the limiting behaviour of the LM, KLM and GAR tests, we introduce some notation.
Let

C(θ) =
(
vec

(
∂2m1(θ)
∂θ∂θ′

)
vec

(
∂2m2(θ)
∂θ∂θ′

)
. . . vec

(
∂2mk(θ)
∂θ∂θ′

) )′
,

µθ = Vff (θ∗)−1/2
{
−De1 + 1

2 [(R2e2)
′ ⊗ Ik]H(θ∗)(R2e2)−Ae2I(ξ = 1/4)

}

Q(e2) = Vff (θ∗)−1/2
(
D

... − C(θ∗) [Ip ⊗ (R2e2)]R2 +AI(ξ = 1/4)

)
, and

P(e2) = Q(e2) (Q(e2)
′Q(e2))

−1
Q(e2)

′

whenever this expression is well-defined.
Q(e2) is the probability limit under PN of the Jacobian matrix at θ∗ of f̄N suitably scaled and

µθ represents the (normalized) deviation from 0 of the population mean of f̄N (θ∗) under PN . In
the expression of µθ, the first and second terms in curly brackets are the deviations induced by
the first and second-order identified directions, respectively whereas the last term represents the
shift induced by the rate of convergence to 0 of the population mean of the Jacobian matrix. (See
Assumption 7.) Note that this term is present only if ξ = 1/4.

Theorem 6. If Assumptions 1(b), 2, 6-8 (with µN = 0 and ξ ≥ 1/4) hold, and θ0 = θ∗ then:

(a) If Q(e2) is full column rank,

LM(θ∗),KLM(θ∗)
d−→ χ2

p(λθ)

and, for any ρ ∈ R+,

GMM-M(θ∗)
∣∣(rk(θ∗) = ρ)

d−→ Ψ̃(ρ) ≥ χ2
p(λθ)

under PN , with λθ = µ′
θP(e2)µθ,

Ψ̃(ρ) =
1

2

(
ψ̃J + ψ̃K − ρ+

√
(ψ̃J + ψ̃K + ρ)2 − 4ρ× ψ̃J

)
,
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and ψ̃J ∼ χ2
k−p(µ

′
θµθ − λθ) independent of ψ̃K ∼ χ2

p(λθ).
If in addition, ξ > 1/4 or A = 0, then λθ = µ′

θµθ > 0. Otherwise, if in addition, ξ = 1/4 and

A 6= 0, then λθ > 0 for all e ∈ Rp such that P(e2)Vff (θ∗)−1/2Ae2 6= Q(e2)

(
2e1
e2

)
.

(b)

GAR(θ∗)
d−→ χ2

k(ℓθ)

under PN with ℓθ = µ′
θµθ. If in addition,

(
ξ = 1/4 and A /∈

〈
D

... − C(θ∗) [Ip ⊗ (R2e2)]R2

〉)

or (ξ > 1/4) or (A = 0) then ℓθ > 0 for all e 6= 0; where 〈M〉 is the space spanned by the
columns of the matrix M .

This theorem shows that the LM and KLM statistics have the same limiting distribution under
this sequence of local alternatives and this common distribution is a lower bound of the asymptotic
distribution of GMM-M statistic. The full rank condition on Q(e2) ensures that all these test statis-
tics are well-defined with probability approaching one as the sample size grows. Since, except for
some marginal configuration, both λθ and ℓθ are positive, it follows automatically from Theorems
3 and 6 and the properties of the chi-squared distribution that KLM, GMM-M and GAR statistics
have non-trivial power against this alternative. The relative performance of the LM statistic is
less clear. Theorem 2 indicates that in general the LM statistic has a non-standard limiting dis-
tribution under the null, but does have the (standard) limiting χ2

p distribution in the special case

where
√
Nq̄N (θ0)R2 and

√
Nf̄N (θ0) are asymptotically independent. In the former case, it is not

possible to make a power comparison with the KLM and GAR statistics analytically. It is worth
noting that the differences in the distributions of the LM statistic under null and local alternative
can be rationalized as follows. Under the null, the large sample behaviour of LM(θ∗) depends on√
Nq̄N (θ0)R2 which is random in the limit, and may or (most likely) may not be asymptotically

independent of
√
Nf̄N(θ0). Under the local alternative, the large sample behaviour of LM(θ∗) de-

pends on N1/4q̄N (θ0)R2 which converges in probability to a constant, and so is trivially independent
of

√
Nf̄N(θ0).

4.2 Local power of tests of H0 : m(θ0) = 0

For this null hypothesis, the natural sequence of local alternatives is given by (31) with θN = θ0
and µN = c/

√
N for all N so that

mN (θ0) =
c√
N
. (36)

However, as noted above, the appropriate choice of ξ in Assumption 7 depends on the model in
question. To illustrate, we consider the CHF model in Section 2.2 with two assets.

Under the alternative of no-common conditionally heteroskedastic factors structure, each asset
brings a specific dimension for conditional heteroskedasticity so that two factors are present. The
volatility factor model in (12) can then be written as:

E
[
Yt+1Y

′
t+1|Ft

]
= λ1λ

′
1σ

2
1,t + λ2,Nλ

′
2,Nσ

2
2,t +Ω.

A natural way to create a local alternative to a single common factor is to assume that the return
process is generated for a given sample size N from a probability distribution PN such that, as
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N → ∞, λ2,N → 0. Therefore, the common conditionally heteroskedastic factor structure holds in
the limit but not in finite samples. Let θ0 be the co-feature vector associated to the limit model.
Then θ′0λ1 = 0 and under PN , we have:16

mN (θ0) = (θ′0λ2,N )2Cov[σ2
2,t, zt], (37)

where Cov[ ·, · ] here denotes the covariance operator relative to PN . Suppose now that λ2,N = λ/N δ,
with λ ∈ R2. The right hand side of (37) may be of order O

(
N−2δ

)
so long as θ′0λ2,N 6= 0 and

Cov[σ2
2,t, zt] 6= 0. However, the order of magnitude of this latter term depends on that of λ2,N

through the choice of the vector of instruments zt. The most common choice of instruments is
zt =

(
vech(Yt−τY ′

t−τ ) : τ = 0, . . . , h
)′
, for some h ∈ N. To simplify, let us consider zt = (Y 2

1t, Y
2
2t)

′.
Under certain commonly invoked assumptions about the asset return process, it can be shown
that:17

mN(θ0) =

(
λ22,N,1
λ22,N,2

)
(θ′0λ2,N )2Cov

[
F 2
2,t+1, F

2
2,t

]
, (38)

where λ2,N = (λ2,N,1, λ2,N,1)
′, and

GN (θ0) = 2Cov[F 2
2,t+1, F

2
2,t](θ

′
0λ2,N )

(
λ22,N,1
λ22,N,2

)
λ′2,N . (39)

Assuming Cov
[
F 2
2,t+1, F

2
2,t

]
6= 0 - a reasonable assumption as the factors are assumed condi-

tionally heteroskedastic - it follows that:

mN(θ0) =
c

N4δ
, and GN (θ0) =

A

N4δ
,

where c is a 2× 1 non-zero vector of constants, and A is a non-null 2× 2 matrix of constants. Thus
setting δ = 1/8 to ensure µN = c/N4δ = c/

√
N , we also obtain ξ = 1/2.

While the
√
N -rate for the drifting sequence in (36) is convenient to obtain a non-trivial be-

haviour of the test statistics of interest under local alternatives as we shall see, the following result
allows for the Jacobian of the moment function at θ0 under PN to converge to 0 in some directions
at any rate N ξ, ξ > 0. To derive the asymptotic distribution of the specification test statistics
J(θ0) and GAR(θ0) under local alternatives, we introduce some notation.

Let ψ̂aq be the k × p matrix with its (l,m)-entry given by

ψ̂aq,lm = Cov[qi,lm(θ0), fi(θ0)]{Vff (θ0)}−1(ψf + c),

l = 1, . . . , k and m = 1, . . . , p. Let

εaq =





ψq +A− ψ̂aqR2 if ξ = 1
2

A if 0 < ξ < 1
2

ψq − ψ̂aqR2 if ξ > 1
2

, ψ̄aq =

{
εaq if r = 0

(D
... εaq) if r > 0

and λm = c′Vff (θ0)−1/2MVff (θ0)−1/2ψ̄a
q
Vff (θ0)

−1/2c. Letting 〈M〉 denote the column span of M ,

We have:
16See the on-line appendix available from the authors upon request.
17Note that due to the necessary normalization only one element of θ has to be estimated; see discussion in Section

2.2. See the on-line appendix available from the authors upon request.
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Theorem 7. (i) Assume that GN (θ0) → G(θ0) as N → ∞ and rank(G(θ0)) = r < p. If As-
sumptions 7 and 8 (with θN = θ0, µN = c/N1/2, c ∈ Rk) hold, V̂2f (θ0), V̂ff (θ0) and q̄N (θ0)R1

converge in probability (under PN ) to V2f (θ0), Vff (θ0) and D, respectively, ψ̄aq is full column rank

with probability one and P (c ∈ 〈ψ̄aq 〉) = 0, then: J(θ0)
d→ χ2

k−p(λm) under PN , with λm > 0 al-

most surely; (ii) If
√
N
(
f̄N (θ0)− c/

√
N
)

d→ N(0, Vff (θ0)), under PN , and V̂ff (θ0) converges in

probability (under PN ) to Vff (θ0) then GAR(θ0)
d→ χ2

k(ν) under PN , with ν = c′Vff (θ0)−1c.

The first part of this theorem shows that the K-J statistic is asymptotically distributed as
a noncentral chi-squared with k − p degrees of freedom and non-centrality λm which is random
if ξ ≥ 0.5. The randomness of λm stems from the fact that the estimated Jacobian matrix of
the estimating function in the parameter directions that are not (locally) identified at first order
is asymptotically random. This non-centrality parameter is almost surely positive and therefore
warrants non trivial power for the test under local alternatives if the drift parameter c does not
fall into the column-span of the limiting distribution of the Jacobian with positive probability. The
second part of the theorem establishes that the GAR test also has non-trivial power against local
alternatives since ν > 0 so long as c 6= 0.

5 Simulation evidence

In this section we explore the finite sample power properties of the tests analyzed in Section 3 and
4. Section 5.1 explores the power properties of the Wald, LM, KLM, GMM-M and GAR statistics
for testing H0 : θ0 = 1 in the panel data example in Section 2.1. Section 5.2 explores the power
properties of the K-J and GAR statistics for testing H0 : m(θ0) in the CHF model in Section 2.2,
and also compares their properties to those of Hansen’s (1982) overidentifying restrictions statistic.

5.1 Testing for a unit root in the panel data model

We study inference on the autoregressive parameter of a panel autoregressive model of order one
identified by the moment conditions from Section 2.1 under local alternatives to θ0 = 118, the point
of second order identification. We specify the local alternative as

θN = 1− c

2 4
√
N
, (40)

with c > 0.
Corollary 2 characterizes the asymptotic distribution of the Wald statistic testing the null hy-

pothesis that θ0 = 1. It is shown in the Supplementary appendix that under the local alternative

18In Bun and Kleibergen (2016), the maximal attainable power for testing a local alternative while the true value
is one so the autoregressive parameter is second order identified is studied. This differs from the usual notion of
power which we analyze here. The important difference between these two settings is that the Jacobian equals zero
in the setting analyzed by Bun and Kleibergen (2016) while it is of the order Op(N−1/4) in our setting. The maximal
attainable power curve from Bun and Kleibergen (2016) does therefore not apply to our setting.
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in (40) the distribution of Wald∗N (1) is given by:

WaldN (1)
d−→ ζ2







σ2c





1
1
2



+2σ2





1
0



ζ





′


σ2c





1
1
2



+2σ2





1
0



ζ









2



σ2c





1
1
2



+2σ2





1
0



ζ





′

Vff (1)



σ2c





1
1
2



+2σ2





1
0



ζ





(41)

where ζ is a root of the third order polynomial equation (D.13) stated in the Supplementary
appendix. We compute the rejection frequency of H0 under local alternatives for different sample
sizes alongside the rejection frequency that results from the asymptotic distribution. Figure 1
shows the distribution of the Wald statistic for different sample sizes as a function of the localizing
parameter c. It uses 104 simulations and a value of σ2 equal to one with normal errors.

The local power curves of the Wald statistic in Figure 1 show that the finite sample discrimi-
natory power slowly converges to the asymptotic one which lies (primarily) on the right-hand side
of the finite sample power curves. The moderate convergence of the finite sample distributions of
the Wald statistic results from the quartic root convergence rate. Interestingly, the convergence
towards the limiting distribution when the null hypothesis holds is much faster since we do not
observe any size distortions. The power curves are all very similar and show that the Wald statistic
has low power at small sample sizes which is as expected given the quartic root convergence rate.
This can be further inferred from the values of θ when the drifting parameter c equals four. The
power then exceeds 50%. A value of c equal to four corresponds with a value of θ of 0.25 (N = 50),
0.37 (100), 0.58 (500), 0.65 (1000), 0.77 (5000), 0.80 (10000) and 0.83 (20000).

Specializing Theorem 6 to the model here, it follows that the KLM and LM statistics both
converge to the χ2

1(λθ) distribution, and the GAR statistic converges to the χ2
2(ℓθ) distribution. In

the Supplementary appendix, it is shown that the non-centrality parameters are given by:

λθ =
c2σ2

16

(
1
1

)′
Vff (1)

−1
(

1
1/2

) [(
1

1/2

)′
Vff (1)

−1
(

1
1/2

)]−1 (
1

1/2

)
Vff (1)

−1/2
(
1
1

)

ℓθ =
c2σ2

16

(
1
1

)′
Vff (1)

−1
(
1
1

)
.

(42)

Figures 2-5 show the finite sample and local asymptotic power curves of the GAR, KLM, GMM-
M and LM tests for increasing number of observations. Figure 6 shows finite sample power curves
of the GAR and Wald tests. The finite sample power curves of the GAR, KLM and LM tests
all slowly move to the local asymptotic one when the number of observations increases. The slow
convergence results from the quartic root convergence rate. All statistics are size correct under
the null hypothesis where their limiting distributions are standard χ2

1 or χ2
2, in case of the GAR

statistic, distributions. We did not show the local asymptotic power curve of the GMM-M statistic
because of its conditional limiting distribution.

The power curve of the GAR statistic shows that it has decent power while the power of the
KLM and LM statistics only becomes reasonable when there are many observations. It is interesting
to relate the behaviour of the KLM and GAR statistics to previous analyses of these tests in other
identification scenarios. If identification is weak then it has been found that the KLM statistic is
size correct but has low power, and the GAR statistic is both size correct and also has good power
compared to other weak identification robust procedures, see e.g. Andrews, Moreira, and Stock
(2006) and Kleibergen (2005). However, if identification is strong then the KLM test dominates.
Therefore, the relative performance of the KLM and GAR tests under second-order identification
is more in line with what has been observed under weak identification. This is also revealed by
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the finite sample power curves of the GMM-M statistic. It is known that the GMM-M statistic
resembles the KLM statistic when identification is strong and the GAR statistic when identification
is weak. Figure 4 shows that the GMM-M statistic has power more similar to the GAR statistic
when sample size is small so identification is weak and power comparable to the KLM statistic
when the sample size is large so the identification has improved. This combined effect leads to an
oddly behaved power curve which suggests that the weighting on the conditioning statistic in the
GMM-M statistic, which is optimal for the i.i.d. linear instrumental variables regression model,
could be improved to obtain better power since now the GMM-M statistic has more power for small
N, when it resembles the GAR statistic, compared to intermediate N, when it resembles the KLM
statistic.

To our reading, the most striking feature of these results is the good performance of the Wald
test as further reflected by Figure 6. It not only dominates the others but exhibits reasonable
power as a test for a unit root in this model. These results also show an advantage to basing
inference about a unit root value of the autoregressive parameter on the moment conditions in Bun
and Kleibergen (2016) as opposed to more popular choices of moments such as those proposed by
Arellano and Bond (1991) or Blundell and Bond (1998) with which identification either fails or is
problematic at θ0 = 1.

It does have to be traded off though with the generality of the limiting distribution of the GAR
statistic, which applies under a variety of settings of the nuisance parameters, while the limiting
distribution of the Wald statistic is specific to the setting of the nuisance parameters at hand, i.e.
constant variance over time and mean stationarity.

5.2 Testing for common conditionally heteroskedastic factors

In this section, we explore the finite sample performance of the K-J statistic under the null of correct
model specification and under local alternatives. We also consider the Hansen-Sargan’s overidenti-
fication test (HS-J test, hereafter) and the GAR test. Example 2 on conditionally heteroskedastic
factor models offers a suitable framework for this investigation. We consider a bi-variate vector Yt
of two asset return processes with the representation

Yt+1 = ΛNFt+1 + Ut+1,

where ΛN is the 2 × 2 matrix of factor loadings, Ft+1 is the bivariate vector of conditionally
heteroskedastic and mutually independent factors and Ut+1, the bivariate vector of idiosyncratic
shocks. We let Ut+1 ∼ i.i.d.N(0, 0.5I2), where I2 denotes the identity matrix of size 2. The generic
component ft+1 of Ft+1 follows a Gaussian-GARCH model,

ft+1 = σtεt+1, σ2
t = ω + αf2

t + βσ2
t−1; ω, α, β > 0 and εt ∼ i.i.d. N(0, 1).

The processes εt and Ut are mutually independent and independent of {Fτ , Yτ : τ ≤ t}. We set
(ω, α, β) = (0.2, 0.2, 0.6) and (0.2, 0.4, 0.4), respectively for the first and second component of Ft+1.
With N being the sample size, we set

ΛN =

(
1 0
0.5 c

N1/8

)
; c = 0, 0.2, 0.4, . . . , 10.

The case of c = 0 corresponds to the null hypothesis of the existence of a common conditionally
heteroskedastic factor structure for the components of Yt that can be tested by either of the three

22



tests under consideration when applied to the moment restriction (13). We use zt = (Y 2
1,t, Y

2
2,t)

′

as vector of instruments in the simulations. The local approximation to the null value is given by
λN = c/N1/8; c 6= 0. The rate N1/8 is chosen such that the resulting moment function under local
alternatives is proportional to N−1/2, the local approximation of the moment function under which
the local alternative distribution of K-J test statistic is derived in Theorem 7.

For global identification of the moment condition model, we follow Dovonon and Renault (2013)
and re-parameterize the co-feature vector as (θ0, 1 − θ0), θ0 ∈ R. Under H0 in our simulations,
θ0 = −1 . The test statistics considered are specifically: J(θ0) for the K-J test, the two-step GMM
overidentification test statistic for HS-J test and minθ GAR(θ) for the GAR test that we denote min-
GAR. From Dovonon and Renault (2013), the last two test statistics are asymptotically distributed
as a 50-50 mixture of χ2

1 and χ2
2 under the null whereas Theorem 4 states that the first one is

asymptotically distributed as a χ2
1.

Figure 7 shows the simulated rejection rates for the three tests under the null while Figure 8
plots the power curves of these tests for sample sizes N = 100; 200; 500; 1000; 5000; 10000; 20000
and 50000. Rejection rates are obtained for 10000 Monte Carlo replications.

It appears from the display in Figure 7 that if the null hypothesis is true then all the three
tests have rejection rates closer to nominal (α = 0.05) as the sample size increases. The HS-J and
min-GAR tests are significantly below the nominal rejection level for small sample sizes but the
HS-J test seems to converge to nominal rejection rate faster than the min-GAR. For instance, for
N = 1000 and 5000, the rejection rate of the HS-J test is 3.9% and 4.88%, respectively whereas
that of the min-GAR test is 0.064% and 1.79%, respectively. For N as large as 100000, the rejection
rate of the min-GAR is about 4.0%. The reality is different for the K-J test which has rejection
rates closer to 5% across the sample sizes considered. For N = 50 and 100, this rate is at 6.31 and
6.22%, respectively and falls below 6% from N = 500 onwards.

The power curves of these tests displayed by Figure 8 show contrasting performance of the three
tests depending on sample sizes. For sample sizes equal or below 200, the power curves of the
HS-J and min-GAR tests are flat and even below nominal level (recall that these two tests barely
reject the null under H0 for such sample sizes) whereas the K-J test shows some moderate power.
For N = 500 and 1000, the K-J test seems to outperform the other tests which now show some
power for large values of c even though the rejection rates do not exceed 50%. From N = 5000 the
performance ranking is reversed with the HS-J test performing slightly better than the min-GAR
test, and both having higher rejection rates than the K-J test. For c = 10, with N = 5000 and
50000, this latter test has 84.0% and 90.84% rejection rates, respectively while the HS-J test has
98.93% and 99.95%, respectively and the min-GAR 93.6% and 97.43%, respectively.

These results suggest that in small samples, these tests are not reliable and even more so for
the HS-J and min-GAR tests compared to the K-J test evaluated at the true value. This may
be connected to the local identification pattern of the model under the null. As the sample size
increases, all the three tests show evidence of power against local alternatives as expected from our
asymptotic theory in Section 4.2 for the K-J test. It is worth mentioning that the powers of the
HS-J and min-GAR tests seem to converge to one faster than that of the K-J test.

To conclude this section, we would like to reiterate that, unlike HS-J and min-GAR tests, K-J
test is evaluated at the true parameter value. In empirical applications, this test can be used in
this form only if there is a particular parameter value that arises from some theory supporting the
moment condition model specification being tested.

23



6 Concluding remarks

We explore how to perform inference in moment condition models that only identify the parameters
locally to second order. For inference on the parameters, we consider the conventional Wald and
LM statistics, and also the identification-robust GAR, KLM and GMM-M statistics. For inference
about the model specification, we consider the identification-robust K-J statistic and the GAR
statistic. In each case, we derive the limiting distributions under both null and local alternative
hypotheses. The Wald statistic is shown to have a non-standard distribution under both null and
local alternatives, which depends on the convergence rate of the Jacobian, but the distribution under
the null is easily simulated making inference practicable. The LM statistic also has a non-standard
distribution under the null in the general case, but has a non-central chi-squared distribution
under local alternatives. Unlike in the case of strong (first-order) local identification, the Wald
and LM statistics have different distributions in the limit. The GAR, KLM and K-J GMM-M
statistics have a chi-squared distribution and non-central chi squared distribution under the null
and alternatives respectively. The GMM-M statistic has a conditional distribution which mimicks
the limit distribution of the KLM statistic under strong identification and that of the GAR statistic
under weak identification. These distributions are exactly the same as those obtained under weak
or strong identification, and thus the identification robustness of these tests extends to second-order
identified models.

We also explore the finite sample behaviour of the tests in detail in two empirically relevant
models with second-order identification: the panel autoregressive model of order one estimated
from a set of non-linear moment conditions, and the conditionally heteroskedastic factor model. In
the panel autoregressive model with a unit root, the autoregressive parameter is only identified at
second order, and we consider the use of Wald, LM, KLM, GMM-M and GAR statistics to test
whether the autoregressive coefficient is one. Our results indicate that the Wald test has the best
power properties, being matched by the GAR statistic in large samples and with both these tests
exhibiting greater power than the KLM, GMM-M and LM. In the conditionally heteroskedastic
factor model, the moment condition in question only identifies the parameters at second order over
the entire parameter space. In this context, the key issue is testing whether the moment condition
is valid. In this context, we examine the power properties of the K-J and GAR statistics, and
compare them to those of Hansen’s (1982) overidentifying restrictions test (previously analyzed in
this setting by Dovonon and Renault, 2013). Here the ranking of the tests is sensitive to the sample
size: the K-J test dominates in moderate sized samples, but the overidentifying restrictions test
dominates in large samples.

Comparing our theoretical results with the simulations, we find that under the local alternative
the finite sample distributions of the Wald, GAR, KLM and LM statistics slowly converge to
their limiting distributions. We conjecture this results from the quartic root convergence rate.
Nevertheless, our results show that it is possible to conduct tests with meaningful power in second-
order locally identified models.

A Proofs of results in Section 3: null hypothesis

Proof of Theorem 1. Consider model (1) with the re-parameterization θ = Rη, with parameter
η:

E[f(X,Rη)] = 0. (A.1)
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The true parameter value is clearly η0 = R−1θ0. Also, so long as the same weighting matrix is used
at the first step, the two-step GMM estimators satisfy the relation : η̂ = R−1θ̂, where for notational
brevity we have set θ̂ = θ̂N . Note that

rank

(
E

(
∂

∂η′
f(xi, Rη)

∣∣∣∣
η=η0

))
= rank{G(θ0)R} = rank{G(θ0)}) = r.

Partitioning η into η1 and η2, its first r and last p− r components, we have:

Rank

(
E

(
∂

∂η′1
f(xi, Rη)

∣∣∣∣
η=η0

))
= rank{G(θ0)R1} = r

and

E

(
∂

∂η′2
f(xi, Rη)

∣∣∣∣
η=η0

)
= G(θ0)R2 = 0.

Using Assumption 1(b), it is not hard to verify that (A.1) identifies η0 at the second order. If
r = p− 1, we can apply Theorem 1(b) of Dovonon and Hall (2018) and claim that:

√
N

(
η̂1 − η0,1

(η̂2 − η0,2)
2

)
d−→
(

HZ0 +HBV/2
V

)
, (A.2)

with H = −(D′Vff (θ0)−1D)−1D′Vff (θ0)−1, V = −2ZI(Z<0)

B̃′MdB̃
, Z = B̃′MdVff (θ0)

−1/2Z0, and

Z0 ∼ N(0, Vff (θ0)).

We can write:

WaldN (θ0) = N(η̂ − η0)
′R′q̄N (θ̂)′V̂ff (θ̂)

−1q̄N (θ̂)R(η̂ − η0)

= N
(
(η̂1 − η0,1)

′R′
1q̄N (θ̂)′ + (η̂2 − η0,2)

′R′
2q̄N (θ̂)′

)
V̂ff (θ̂)

−1×
(
q̄N (θ̂)R1(η̂1 − η0,1) + q̄N (θ̂)R2(η̂2 − η0,2)

)
. (A.3)

By first-order mean-value expansions, we have:

q̄N (θ̂) = q̄N (θ0) + C̄N (θ̇) (Ip ⊗ [R(η̂ − η0)]) , (A.4)

where θ̇ ∈ (θ̂, θ0) and may differ from row to row and C̄N (θ) is the k × p2 matrix defined by:

C̄N (θ) =
(
vec

(
∂2f̄N,1(θ)
∂θ∂θ′

)
vec

(
∂2f̄N,2(θ)
∂θ∂θ′

)
. . . vec

(
∂2f̄N,k(θ)
∂θ∂θ′

) )′
.

Under Assumption 3, C̄N (θ̇) converges in probability to C(θ0) where C(θ) is defined like C̄N (θ) but

with sample means replaced by population means. Using (A.2), the expression of q̄N (θ̂) in (A.4)
can be written as:

q̄N (θ̂) = q̄N (θ0) + C(θ0) (Ip ⊗R2) (η̂2 − η02) + oP (N
−1/4).

25



By the law of large number and also noting that [C(θ0) (Ip ⊗R2)]R2 = B, we have:

q̄N (θ̂)R1 = D + oP (1), and q̄N (θ̂)R2 = B(η̂2 − η0,2) + oP (N
−1/4).

Substituting the latter results into (A.3) and after some simple calculations, we obtain:

WaldN (θ0) =
√
N(η̂1 − η0,1)

′D′V −1
ff D

√
N(η̂1 − η0,1) + 2B′V −1

ff D
√
N(η̂1 − η0,1)

√
N(η̂2 − η0,2)

2

+B′V −1
ff BN(η̂2 − η0,2)

4 + oP (1),

where Vff ≡ Vff (θ0). From (A.2), this converges in distribution to

W = (Z0 +BV/2)
′ H′D′V −1

ff DH (Z0 +BV/2) + 2B′V −1
ff DH (Z0 +BV/2)V+B′V −1

ff BV2.

After some simple algebra, we have
W = W1 +W2,

with

W1 =
(
V

−1/2
ff Z0 − B̃V/2

)′
P
(
V

−1/2
ff Z0 − B̃V/2

)
and W2 = B̃′MdB̃V2. (A.5)

It is easily verified that

W2 = 4S2I(S ≤ 0), with S =
B̃′MdV

−1/2
ff Z0√

B̃′MdB̃
∼ N(0, 1),

and
V

−1/2
ff Z0 − B̃V/2 = V

−1/2
ff Z0 + αSI(S ≤ 0).

Thus, we have

W1 =
(
V

−1/2
ff Z0 + αSI(S ≤ 0)

)′
P
(
V

−1/2
ff Z0 + αSI(S ≤ 0)

)
.

Since PV
−1/2
ff Z0 is independent of MdV

−1/2
ff Z0, it is also independent of S and we can claim that:

W1 = (S1 + αSI(S ≤ 0))
′
P (S1 + αSI(S ≤ 0)) ,

with S1 = V
−1/2
ff Z0 ∼ N(0, Ik) independent of S. �

Proof of Theorem 2. Notice that the value of LMN(θ∗) is unchanged by replacing q̄N (θ∗) by
q̄N (θ∗)A with A any nonsingular matrix. In particular, this statistic stays the same when this

quantity is replaced by q̄N (θ∗)

(
R1

...
√
NR2

)
. Note also that, by Assumption 4, we have:

q̄N (θ∗)

(
R1

...
√
NR2

)
=

(
q̄N (θ∗)R1

...
√
Nq̄N (θ∗)R2

)
d−→ ψ̃q ≡

(
D

... ψq

)
,

where D is constant and ψq is a Gaussian matrix defined in Assumption 4. The result then follows
directly. �

26



Proof of Theorem 3. (i) Similarly to the LM test statistic, KLM(θ∗) in (20) stays unchanged if
D̂N (θ0) is replaced by

D̂N(θ∗)
(
R1,

√
NR2

)
=
(
D̂N(θ∗)R1,

√
ND̂N (θ∗)R2

)
.

From Assumption 4, we have:

D̂N (θ∗)R1
P−→ D, and

√
ND̂N(θ∗)R2

d−→ εq.

Since (ψq, ψf ) is Gaussian, εq is independent of ψf . Under the non-singularity assumption for ψ̄′
qψ̄q,

V̂ff (θ∗)−1/2D̂N (θ∗)
(
D̂N (θ∗)′V̂ff (θ∗)−1D̂N (θ∗)

)−1

D̂N (θ∗)′V̂ff (θ∗)−1/2 is well-defined in large sam-

ples and the continuous mapping theorem ensures that KLM(θ∗) converges in distribution to

ψ′
fVff (θ∗)

−1/2
(
Ik −MVff (θ∗)−1/2ψ̄q

)
Vff (θ∗)

−1/2ψf .

Conditionally on ψ̄q, this limit follows χ2
p distribution and the independence of ψ̄q and ψf implies

that this limit is unconditionally distributed as χ2
p. The proof of the second part of (i) is given by

Kleibergen (2005) and follows from the fact that J(θ∗), KLM(θ∗) and D̂N (θ∗) converge jointly in
distribution and are pairwise asymptotically independent. (ii) The result for the GAR statistic is
immediate under the stated conditions. �

Proof of Theorem 4. (i) Similarly to the proof of Theorem 3, we can claim that J(θ0) converges
in distribution to

ψ′
fVff (θ0)

−1/2MVff (θ0)−1/2ψ̄q
Vff (θ0)

−1/2ψf .

Conditionally on ψ̄q, this limit follows χ2
k−p distribution and the independence of ψ̄q and ψf implies

that this limit is unconditionally distributed as χ2
k−p. (ii) See the proof of Theorem 3(ii). �

B Proofs of results in Section 4: local alternatives

Theorem B.1. Let η̂ = R−1θ̂, ηN = R−1θN and write η = (η′1, η2)
′ ∈ Rp−1 × R. If Assumptions

1, 2, 6-8 (with µN = 0 and ξ ≥ 1/4) hold, Assumption 5 holds under PN and r = p− 1 then: any
subsequence of η̂ has a further subsequence with index say, s(N) along which

( √
N(η̂1 − ηN,1)

N1/4(η̂2 − ηN,2)

)
d−→
(
a(ζs)
ζs

)

under PN , with a(ζs) and ζs given in Theorem 5.

Proof of Theorem B.1. We proceed in two steps. First, we show that

√
N(η̂1 − ηN,1) = OP (1) and N1/4(η̂2 − ηN,2) = OP (1)

under PN . These orders of magnitude are then used in a second step to derive the claimed asymp-
totic distribution.
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Step 1: The identification conditions in Assumption 1 along with the maintained regularity con-
ditions are sufficient to show that the GMM estimator θ̂ is consistent under PN . See Newey and

McFadden (1994). As a result, η̂ − ηN
P→ 0 under PN . By definition,

η̂ = arg min
η∈{R−1θ:θ∈Θ}

ḡN (η)′V̂ff (θ̂1)
−1ḡN(η),

with ḡN (η) = f̄N (Rη) = f̄N (θ).

By a mean-value expansion of η1 7→ ḡN (η1, η̂2) at η̂1 around ηN,1 and a second-order Taylor
expansion of η2 7→ ḡN(ηN,1, η2) at η̂2 around ηN,2, we have:

ḡN(η̂) = ḡN(ηN ) +
∂ḡN
∂η′1

(η̄1, η̂2)(η̂1 − ηN,1) +
∂ḡN
∂η2

(ηN )(η̂2 − ηN,2) +
1

2

∂2ḡN
∂η22

(ηN,1, η̄2)(η̂2 − ηN,2)
2,

where η̄1 ∈ (ηN,1, η̂1) and η̄2 ∈ (ηN,2, η̂2) and both may differ by row. Let

D̄ = q̄N (θ̃)R1, B̄ =

(
R′

2

∂2f̄N,i
∂θ∂θ′

(θ̄)R2

)

i≤i≤k
and WN = V̂ff (θ̂1)

−1,

with θ̃ = R(η̄′1, η̂2)
′ and θ̄ = R(η′N,1, η̄2)

′. Thanks to Assumption 8, we have:

ḡN (η̂) = f̄N (θN )+D̄(η̂1−ηN,1)+N−ξA(η̂2−ηN,2)+
1

2
B̄(η̂2−ηN,2)2+oP (N−1/2)+oP (N

−ξ)(η̂2−ηN,2).

By pre-multiplying by D̄′WN and solving in η̂ − ηN,1, we have:

η̂1 − ηN,1 =
(
D̄′WN D̄

)−1
D̄′WN

(
ḡN (η̂)− f̄N(θN )−N−ξA(η̂2 − ηN,2)− 1

2 B̄(η̂2 − ηN,2)
2
)

+oP (N
−1/2) + oP (N

−ξ)(η̂2 − ηN,2).
(B.1)

Plugging this back into the expression of ḡN(η̂) above yields:

ḡN (η̂) = W
−1/2
N MN

(
N−ξÃN (η̂2 − ηN,2) +

1
2 B̃N (η̂2 − ηN,2)

2
)

+f̄N(θN ) + D̄
(
D̄′WN D̄

)−1
D̄′WN

(
ḡN(η̂)− f̄N(θN )

)

+oP (N
−ξ)(η̂2 − ηN,2) + oP (N

−1/2),

(B.2)

with ÃN =W
1/2
N A, B̃N =W

1/2
N B̄ and MN = Ik −W

1/2
N D̄(D̄′WN D̄)−1D̄′W 1/2

N . By definition,

ḡN(η̂)
′WN ḡN(η̂) ≤ f̄N(θN )′WN f̄N (θN ) = OP (N

−1),

where the order of magnitude is obtained from Assumption 8. Since WN converges to a positive
definite matrix, we can claim that ḡN (η̂) = OP (N

−1/2). Hence, by letting zN = N1/4(η̂2 − ηN,2),
we have:

(
N−ξ− 1

4 ÃNzN + 1
2N

− 1

2 B̃Nz
2
N

)′
MN

(
N−ξ− 1

4 ÃNzN + 1
2N

− 1

2 B̃Nz
2
N

)

+
(
N−ξ− 1

4 ÃNzN + 1
2N

− 1

2 B̃Nz
2
N

)′
MN

(
OP (N

− 1

2 ) + oP (N
−ξ− 1

4 )zN

)

+ oP (N
−ξ− 3

4 )zN + oP (N
−2ξ− 1

2 )z2N = OP (N
−1).
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By multiplying each side by N and after some simple expansions, we obtain:

1
4 B̃

′
NMN B̃Nz

4
N ≤ N

1

2
−2ξOP (1)z

2
N +N

1

4
−ξOP (1)|zN |3 +N

1

4
−ξOP (1)|zN |+OP (1)z

2
N +OP (1).

Thanks to the second-order local identification condition in Assumption 1, [D B] is full-column
rank therefore, B̃′MdB̃ > 0; where B̃ and Md are probability limits of B̃N and MN , respectively.
This implies that, for γ = B̃′MdB̃/4,

(γ + oP (1))z
4
N ≤ N

1

2
−2ξOP (1)z

2
N +N

1

4
−ξOP (1)|zN |3 +N

1

4
−ξOP (1)|zN |+OP (1)z

2
N +OP (1).

Since the right hand side of this inequality is a polynomial function of |zN | of order less than 4 and
with coefficients all of magnitude OP (1) by the fact that ξ ≥ 1/4, we can claim that zN = OP (1),

i.e. η̂2 − ηN,2 = OP (N
− 1

4 ). Then, using (B.1), we can claim that η̂1 − ηN,1 = OP (N
− 1

2 ).

Step 2: Let us consider the parameterization η1 = ηN,1+
u1√
N
, η2 = ηN,2+

u2

N1/4 , (u1, u2) ∈ Rp−1×R

and write

h̄N(u) = ḡN

(
ηN,1 +

u1√
N
, ηN,2 +

u2
N1/4

)
= ḡN (η).

By definition,

ûN ≡
(√

N(η̂1 − ηN,1), N
1/4(η̂2 − ηN,2)

)
∈ argmin

u
Nh̄N(u)

′WN h̄N (u) (≡ HN(u)) .

Let ZN =
√
NḡN (ηN ). Similar expansions to those in Step 1 of h̄N (u) around 0 yield:

√
Nh̄N (u) = ZN +AI(ξ = 1/4)u2 +Du1 +

1

2
Bu22 + oP (1) ≡ h(ZN , u) + oP (1), (B.3)

where the oP (1) term is uniformly negligible under PN over u ∈ K, any compact subset of Rp.
Using (B.3), we can claim that HN(u) = H(ZN , u) + oP (1), with

H(ZN , u) = h(ZN , u)
′Vff (θ0)

−1h(ZN , u)

where the oP (1) term is uniformly negligible under PN over any compact subset. Hence, if ūN and
ũN belong to the union of the sets of arguments of the minimum of HN(u) and H(ZN , u), and both
are asymptotically stochastically bounded, we can claim that

HN (ūN) = H(ZN , ũN) + oP (1). (B.4)

Note that, from Step 1, any sequence in the set of arguments of the minimum of HN (u) is OP (1)
and we can also proceed by the same way to show that any sequence in the set of arguments of the
minimum of H(ZN , u) is OP (1).

We can proof along similar lines to Dovonon and Renault (2013b, Lemma B.6) that:

H(ZN , •) d−→ H(Z, •)

under PN , uniformly over any compact subset, where Z ∼ N(0, Vff (θ0)). We can proceed along
similar lines to Step 1 to show that the arguments of the minimum of u 7→ H(Z, u) are all stochas-
tically bounded. Therefore, by, Lemma B.5 of Dovonon and Renault (2013b), we can claim that

min
u

H(ZN , u)
d−→ H(Z, u).
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Since ûN = OP (1), any subsequence of ûN has a further subsequence, say ûs(N) along which, we
have: 


minuH(ZN , u)

ZN
ûN


 d−→




minuH(Z, u)
Z
ûs


 ,

under PN . From (B.4), we have H(ZN , ûN) = minuH(ZN , u) + oP (1) and we can claim by the
continuous mapping theorem that:

min
u

H(Z, u)−H(Z, ûs) = 0,

that is ûs ∈ argminuH(Z, u). Exploiting the first-order condition of this program in the direction
of u1, we can claim that any (û1, û2) ∈ argminuH(Z, u) can be written:

û1 = −(D′WD)−1D′W

(
Z +AI(ξ = 1/4)û2 +

1

2
Bû2

)
= a(û2)

and

û2 ∈ argmin
u∈R

(
Z +AI(ξ = 1/4)u+

1

2
Bu2

)′
W 1/2MdW

1/2

(
Z +AI(ξ = 1/4)u+

1

2
Bu2

)
,

with W = Vff (θ0)
−1

�

Proof of Theorem 5. Similar derivations as those in Theorem 1 yield:

WaldN (θ0) = N(η̂ − η0)
′R′q̄N (θ̂)′V̂ff (θ̂)

−1q̄N (θ̂)R(η̂ − η0)

and

q̄N (θ̂)R1 = D + oP (1), and N1/4q̄N (θ̂)R2 = AI(ξ = 1/4) +BN1/4(η̂2 − ηN,2) + oP (1).

It follows that
WaldN (θ0) =WN,a +WN,b +WN,c + oP (1),

with
WN,a =

√
N(η̂1 − η0,1)

′D̃′D̃
√
N(η̂1 − η0,1),

WN,b = 2
√
N(η̂1 − η0,1)

′D̃′
(
Ã+ B̃N1/4(η̂2 − ηN,2)

)
N1/4(η̂2 − η0,2),

and

WN,c =
(
Ã+ B̃N1/4(η̂2 − ηN,2)

)′ (
Ã+ B̃N1/4(η̂2 − ηN,2)

)√
N(η̂2 − η0,2)

2,

where (as before) D̃ = Vff (θ0)
−1/2D and B̃ = Vff (θ0)

−1/2B. The expected result follows easily
using the asymptotic distribution given by Theorem B.1 for the relevant subsequences of(√

N(η̂1 − ηN,1), N
1/4(η̂2 − ηN,2)

)
. �

Proof of Proposition 1. (a) Let us assume that P (Ws(e2) = 0) > 0 for all e2 ∈ R and A 6= 0 and
show that A = δB for some δ 6= 0. We have: Ws(e2) = 0 if and only if Ã+ B̃ζs = 0 or ζs + e2 = 0.
That is

P (Ws(e2) = 0) > 0 ⇔ P (Ã+ B̃ζs = 0) > 0 or P (ζs = −e2) > 0.
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Note that P (ζs = −e2) > 0 can hold only for at most a countably infinite number of values e2.
Thus for P (Ws(e2) = 0) > 0 to hold for all e2 ∈ R, we necessarily have P (Ã+ B̃ζs = 0) > 0. This
means that there exists δ 6= 0 such that Ã = δB̃ and P (ζs = −δ) > 0. This implies in particular
that A = δB. The proofs of (b) and (c) below also establish the converse.

(b) If A = 0, simple derivations show that

Ws(e2) = B̃′B̃ζ2s (ζs + e2)
2 with ζ2s = −B̃′X̃I(B̃′X̃ < 0)/B̃′B̃ and X̃ ∼ N(0, Ik).

Thus, for all e2 ∈ R, P (Ws(e2) = 0) ≥ P (ζs = 0) = 1/2.

(c) If A = δB, δ 6= 0, by some simple derivations, we have

Ws(e2) = B̃′B̃(ζs + e2)
2(ζs + δ)2 and (ζs + δ)2 = −B

′
0X0

B′
0B0

I(B′
0X0 < 0),

with B0 = B̃/2 and X0 = X̃ − (δ2/2)B̃. Hence, for any e2 ∈ R,

P (Ws(e2) = 0) ≥ P (B′
0X0 ≥ 0) = 1− Φ

(
(δ2/2)

√
B̃′B̃

)
. �

Proof of Theorem 6. As noted in the proof of Theorem 2, the value of LM(θ∗) is unchanged
by replacing q̄N (θ∗) by q̄N (θ∗)∆ with ∆ any nonsingular matrix. Here, we replace q̄N (θ∗) by
q̄N (θ∗)

(
R1 N

1/4R2

)
. A first-order mean value expansion of q̄N (θ∗) around θN similar to (A.4)

gives:

q̄N (θ∗) = q̄N (θN ) + C̄N (θ̇) [Ip ⊗ (θ∗ − θN)] = q̄N (θN )− C̄N (θ̇) [Ip ⊗ (R1eN,1 +R2eN,2)] ,

where θ̇ ∈ (θ∗, θN ) and may differ by entry of q̄N (θ∗) and with C̄N (θ) defined as in (A.4). Under
Assumption 6, C̄N (θ̇) converges in probability PN to C(θ∗) and thanks to Assumptions 6 and 7,
we have:

q̄N (θ∗)R1 = D + oP (1).

Also,

q̄N (θN )R2 = (q̄N (θN )R2 −GN (θN )R2) +N−ξA+ o(N−ξ) = N−ξA+ o(N−ξ) +OP (N
−1/2),

where the stochastic orders are with respect to PN . As a result, we also have, with respect to PN ,

N1/4q̄N (θ∗)R2 = −C(θ∗)[Ip ⊗ (R2e2)]R2 +AI(ξ = 1/4) + oP (1).

Thus
q̄N (θ∗)

(
R1, N

1/4R2

)
= Q(e2) + oP (1).
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By a second-order mean-value expansion of f̄N(θ∗) around θN , we have:

f̄N (θ∗) = f̄N (θN )− q̄N (θN )(θN − θ∗) +
1
2 [(θN − θ∗)′ ⊗ Ik] h̄N (θ̄)(θN − θ∗),

= f̄N (θN )− q̄N (θN )R1eN,1 − q̄N (θN )R2eN,2

+ 1
2 [(R1eN,1 +R2eN,2)

′ ⊗ Ik] h̄N (θ̄)(R1eN,1 +R2eN,2)

= f̄N (θN )−N−1/2De1 −N−ξ−1/4Ae2 +
1
2N

−1/2 ((R2e2)
′ ⊗ Ik)H(θ∗)(R2e2)

+oP (N
−1/2) + o(N−ξ−1/4),

where θ̄ ∈ (θ∗, θN ) and may differ by equation. We use in this expansion the fact that H̄N (θ̄)
converges in probability PN to H(θ∗) and the fact that q̄N (θN )R2 = N−ξA+oP (N

−1/4) under PN .
Thus

√
N(Vff (θ∗)−1/2f̄N(θ∗)) converges in distribution under PN to N(µθ, Ik) with

µθ = Vff (θ∗)
−1/2

(
−De1 +

1

2
((R2e2)

′ ⊗ Ik)H(θ∗)(R2e2)−Ae2I(ξ = 1/4)

)
.

Alternatively, we can write

µθ = −Q(e2)

(
e1
1
2e2

)
− 1

2
Vff (θ∗)

−1/2Ae2I(ξ = 1/4).

To prove (a), letting Vff = Vff (θ∗), note that

LM(θ∗) =
√
N(V

−1/2
ff f̄N (θ∗))

′P(e2)
√
N(V

−1/2
ff f̄N(θ∗)) + oP (1).

Hence, we can claim that LM(θ∗) converges in distribution under PN to χ2
p(λθ), with λθ =

µ′
θP(e2)µθ.
Regarding KLM(θ∗), since f̄N (θ∗) = OP (N

−1/2) under PN , q̄N (θ∗) is the leading term of
D̂N (θ∗). Thus, KLM(θ∗) = LM(θ∗) + oP (1) under PN and this concludes (a).

If ξ > 1/4 or A = 0, we can use the identity : (e′ ⊗ Ik)H(θ∗)e = C(θ∗)(Ip ⊗ e)e, for all e ∈ Rp

to show that µθ = −Q(e2) ×
(

e1
1
2e2

)
. As a result, λθ = µ′

θµθ. Note also that the second-order

identification condition in Assumption 1(b), ensures that µθ 6= 0 if e 6= 0. The latter is warranted
by the full-rank condition on Q(e2).

If ξ = 1/4 and A 6= 0, to conclude that λθ 6= 0, it suffices to show that P(e2)µθ 6= 0. This latter
holds if and only if

P(e2)Vff (θ∗)
−1/2Ae2 6= Q(e2)

(
2e1
e2

)
.

The asymptotic distribution of GMM-M(θ∗) under PN is obtained along similar lines as in the
proof of Theorem 3. The asymptotic independence of KLM(θ∗), J(θ∗) and D̂N (θ∗) continues to
hold under PN with KLM(θ∗) and J(θ∗) asymptotically distributed as ψ̃K and ψ̃J , respectively.
To obtain the stochastic dominance claimed, note that

(ψ̃J + ψ̃K + ρ)2 − 4ρψ̃J = (ρ− ψ̃J)
2 + ψ̃2

K + 2ψ̃J ψ̃K + 2ρψ̃K .
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Since ψ̃J and ψ̃K are nonnegative, this quantity is larger than or equal to

(ρ− ψ̃J)
2 + ψ̃2

K + 2(ρ− ψ̃J )ψ̃K = (ρ− ψ̃J + ψ̃K)2

and the result follows.

(b) From the asymptotic distribution of
√
Nf̄N(θ∗) derived above, it is obvious that GAR(θ∗)

converges in distribution under PN to χ2
k(ℓθ), where ℓθ = µ′

θµθ.
If ξ > 1/4 or A = 0, µθ 6= 0 for any e 6= 0 as already shown. If ξ = 1/4 and A 6= 0, it is not hard

to see that if A /∈
〈
D

... − C(θ∗) [Ip ⊗ (R2e2)]R2

〉
, −De1+ 1

2 ((R2e2)
′ ⊗ Ik)H(θ∗)(R2e2)−Ae2 6= 0

for all e 6= 0. Hence µθ 6= 0 for all e 6= 0. �

Proof of Theorem 7. (i) Note that

D̂N(θ0) = q̄N (θ0)−
[
Ĉov (qi,lm(θ0), fi(θ0)) V̂ff (θ0)

−1f̄N (θ0)
]
1≤l≤k,1≤m≤p

,

with Ĉov (qi,lm(θ0), fi(θ0)) =
1
N

N∑
i=1

qi,lm(θ0)fi(θ0)
′ − q̄N,lmf̄N (θ0)

′.

But, f̄N (θ0) =
(
f̄N (θ0)− c√

N

)
+ c√

N
= OP (N

−1/2) under PN . In fact,

√
Nf̄N (θ0)

d→ ψf + c ∼ N(c, Vff (θ0)) (B.5)

under PN . Thus, D̂N (θ0)R1 = q̄N (θ0)R1 + oP (1) = D + oP (1), under PN . Also,

D̂N (θ0)R2 =

(
q̄N (θ0)R2 −

A

N ξ

)
+

A

N ξ
−
[
Ĉov (qi,lm(θ0), fi(θ0)) V̂ff (θ0)

−1f̄N (θ0)
]
1≤l≤k,1≤m≤p

R2.

Letting δ = 1
2 I(ξ ≥ 1

2 ) + ξI(0 < ξ < 1
2 ), it is not hard to see that

N δD̂N(θ0)R2
d→ εaq

under PN . The statistic J(θ0) is unchanged if D̂N(θ0) is replaced by D̂N(θ0)
(
R1, N

δR2

)
which

converges in distribution to ψ̄aq under PN . Under the full column rank assumption, MVff (θ0)−1/2ψ̄a
q

is well-defined and the continuous mapping theorem ensures that

J(θ0)
d→ (ψf + c)′Vff (θ0)

−1/2MVff (θ0)−1/2ψ̄a
q
Vff (θ0)

−1/2(ψf + c)

under PN . From the independence of ψf and ψ̄aq , we can claim that

J(θ0)
d→ χ2

k−p(λm)

under PN with random non-centrality parameter λm = c′Vff (θ0)−1/2MVff (θ0)−1/2ψ̄a
q
Vff (θ0)

−1/2c.

Clearly, if c /∈ 〈ψ̄aq 〉 almost surely, then λm > 0 almost surely. (ii) Follows readily from (B.5). �
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Figure 1: Local power curve of 5% tests of H0 : θ = 1 while the true value of θ = 1 − c

2 4
√
N

using

the Wald statistic: Dashed: N = 50; Dash-dot: 500; Solid: 5000; Dash-dot: 20000 and Solid:
asymptotic. For each type of line the one associated with the smaller sample size lies to the left.
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Figure 2: Local power curve of 5% tests of H0 : θ = 1 while true value of θ = 1 − c

2 4
√
N

using

the GAR statistic: Dashed: N = 50; Dash-dot: 500; Solid: 5000; Dash-dot: 20000 and Solid:
asymptotic. For each type of line the one associated with the smaller sample size lies to the right.
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Figure 3: Local power curve of 5% tests of H0 : θ = 1 while true value of θ = 1 − c

2 4
√
N

using

the KLM statistic: Dashed: N = 50; Dash-dot: 500; Solid: 5000; Dash-dot: 20000 and Solid:
asymptotic. For each type of line the one associated with the smaller sample size lies to the right.
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Figure 4: Local power curve of 5% tests of H0 : θ = 1 while true value of θ = 1 − c

2 4
√
N

using the

GMM-M statistic: Dashed: N = 50; Dash-dot: 500; Solid: 5000 and Dash-dot: 20000. For each
type of line the one associated with the smaller sample size lies to the right.
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Figure 5: Local power curve of 5% tests of H0 : θ = 1 while true value of θ = 1− c

2 4
√
N

using the LM

statistic: Dashed: N = 50; Dash-dot: 500; Solid: 5000; Dash-dot: 20000 and Solid: asymptotic.
For each type of line the one associated with the smaller sample size lies to the right.
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Figure 6: Local power curve of 5% tests of H0 : θ = 1 while true value of θ = 1 − c

2
4
√
N

using the

Wald (dashed) and GAR statistics (solid) for N = 50, 1000, 20000. For the Wald (GAR) smaller
sample sizes lie to the left (right).
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Figure 7: Rejection rates of the HS-J, K-J and min-GAR tests under the null; 10, 000 replications; c = 0.

(α = 0.05)
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Figure 8: 10,000 replications; c = 0 : 0.2 : 10 (α = 0.05)
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D Supplementary appendix

This appendix contains supplementary material that will be made available on line and is not to
be included in the paper.

Derivation of equation (34). If θN = 1− c

2 4
√
N

then it can be shown that

E(a) = σ2




1 + c2

4
√
N

0


 , E(b) = −σ2




2− c
4
√
N

+ 5c2

4
√
N

+ c4

16N − c3

2N3/4

− c

2 4
√
N

+ c2

4
√
N

− c3

8N3/4




E(d) = σ2




1− c
4
√
N

+ 5c2

4
√
N

− 7c3

8n3/4 + c4

4N − c5

32N5/4

− c
2 4
√
N

+ c2

2
√
N

− c3

4N3/4 + c4

16N




(D.1)

where a, b and d are defined in Section 2.1, and so

mN (θN ) =

(
0
0

)
, GN (θN ) = σ2

(
− 3c2

4
√
N

+ c3

4n3/4 − c4

16N
c

2N1/4 − c2

4
√
N

+ c3

8N3/4

)
, HN(θN ) = 2σ2

(
1 + c2

4
√
N

0

)

(D.2)
It is also instructive to explore the population moment, Jacobian and Hessian evaluated at θ0 under
PN . Using similar arguments, it can be shown that

mN(θ0) =
σ2c2

4
√
N

(
1− 3c

2N1/4 + 3c2

4
√
N

− c3

8N3/4

1− c
2N1/4 + c2

4
√
N

)
, GN (θ0) =

σ2c
N1/4

(
1− 3c

4N1/4 + c2

2
√
N

− c3

16N3/4

1
2 − c

4N1/4 + c2

8
√
N

)
,

HN (θ0) = HN (θN ).
(D.3)

Therefore, under this sequence of local alternatives, the rate of decrease of EN [f(θ0)] is proportional
to the random component in the sample moment. If we set the rate differently say at θN = 1− c

2
√
N
,

the expected values of a, b and d equal

E[a] = σ2

(
1 + c2

4N
0

)
, E[b] = σ2

(
−2− c4

16N2 + c3

2N3/2 − 5c2

4N + c√
N

c3

8N3/2 − c2

4N + c
2
√
N

)

E[d] = σ2

(
1− c5

32N5/2 + c4

4N2 − 7c3

8N3/2 + 5c2

4N − c√
N

c4

16N2 − c3

4N3/2 + c2

2N − c
2
√
N

)
,

(D.4)

so

EN [f(θ0)] = σ2

(
− c5

32N5/2 + 3c4

16N2 − 3c3

8N3/2 + c2

4N
c4

16N2 − c3

8N3/2 + c2

4N

)
, (D.5)
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which shows that the rate is too fast as it sits below the rate of the random component of the
sample moment.

Derivation of equation (39). We first derive equation (37). Using θ′0λ1 = 0, we have under PN
that:

EN
[
θ′0Yt+1Y

′
t+1θ0|Ft

]
= (θ′0λ2N )

2
σ2
2,t + θ′0Ωθ0. (D.6)

As in Section 2.2, let zt be a relevant vector of instruments, then it follows from (D.6) that

EN
[
zt(θ

′
0Yt+1)

2
]
= (θ′0λ2N )

2
EN

[
ztσ

2
2,t

]
+θ′0Ωθ0EN [zt]; θ′0Ωθ0 = EN

[
(θ′0Yt+1)

2
]
−(θ′0λ2N )

2
EN

[
σ2
2,t

]

which, together, imply
Cov

(
zt, (θ

′
0Yt+1)

2
)
= (θ′0λ2N )2Cov(zt, σ

2
2,t), (D.7)

where Cov[ ·, · ] is relative to PN . Using (14) and (D.7), we obtain (37). To evaluate Cov(zt, σ
2
2,t),

it is useful to consider a factor representation of the returns that is in line with (11)-(12):

Yt+1 = ΛNFt+1 + Ut+1,

where V ar(Ft+1|Ft) = Dt, Cov(Ft+1, Ut+1|Ft) = 0, E(Ft+1|Ft) = 0, E(Ut+1|Ft) = 0. We set ΛN =
(λ1, λ2,N ). Following Doz and Renault (2006), we further assume that (F 2

1,t, U
2
1,t, U

2
2,t, F1,tU1,t, F1,tU2,t)

is uncorrelated with σ2
2,t and (U ′

t , F1,t) is uncorrelated with σ2
2,tF2,t. After some simple expansions,

we have:
Cov

[
σ2
2,t, Y

2
j,t

]
= λ22,N,jCov

[
σ2
2,t, F

2
2,t

]
= λ22N,jCov

[
F 2
2,t+1, F

2
2,t

]
,

and so, using zt = (Y 2
1t, Y

2
2t)

′, obtain (38). Combining these results with (15), we obtain (39). �

Derivation of equations (30), (41) and (42)
We consider the behaviour of the Wald test under PN with θN = 1 − c

2 4
√
N
. Assume that

N1/2 ( a− EN [a], b− EN [b], c− EN [c] )′
d→ (ψa, ψb, ψd)

′ under PN where (ψa, ψb, ψd)
′ have a nor-

mal distribution with mean zero. Define ψ = ψa + ψb + ψd and let ψi denote the ith element of ψ.
For brevity but with an abuse of notation, let Vff (θ0) = V .

For ease of notation, let V̂ = V̂ff (θ̂1,s) and V = Vff (θ0). The two-step GMM estimator is
defined as:

θ̂ = argmin
θ∈Θ

N × f̄N (θ)′V̂ −1f̄N (θ),

and the associated first order conditions are

Nq̄N (θ̂)′V̂ −1f̄N (θ̂) = 0,

where

f̄N (θ) = aθ2 + bθ + d = a+ b + d+ a(θ − 1)2 + (b+ 2a)(θ − 1),

q̄N (θ) = 2aθ + b = 2a(θ − 1) + b+ 2a.

Note that under PN , we have:

√
N

[
(b+ 2a)− cσ2

4
√
N

(
1
1
2

)]
→
d

1

4
c2σ2

(−3

−1

)
+ ψb + 2ψa (D.8)

√
Nf̄N(1) =

√
N (a+ b+ d) →

d

1

4
c2σ2

(
1

1

)
+ ψa + ψb + ψd. (D.9)

43



Taking a mean value expansion of q̄N (θ̂) around q̄N (1) (and recalling that θ0 = 1)

q̄N (θ̂) = q̄N (1) +HN (θ̄)(θ̂ − 1),

with θ̄ an intermediate value between 1 and θ̂. From (D.3), it follows that under PN , we have:

HN (θ̄)
p−→ 2σ2

(
1
0

)
,

and
4
√
Nq̄N (1)

p−→ σ2c

(
1
1
2

)
. (D.10)

Therefore, since θ̂ = Op(N
−1/4), we have

q̄N (θ̂) = Op(N
−1/4),

and so19

4
√
Nq̄N (θ̂)

a
= σ2c

(
1
1
2

)
+ 2σ2c

(
1

0

)
ζ, (D.11)

where, as in the text, 4
√
N(θ̂1,s − 1) = ζ + op(1). Similarly, using (D.8), we have

√
Nf̄N (θ̂)

a
= ψ +

c2

4
σ2

(
1
1

)
+ σ2

(
1
0

)
ζ2 + σ2c

(
1
1
2

)
ζ, (D.12)

with ψ = ψa+ψb+ψd. Combining (D.11)-(D.12) with the first order condition for one step GMM,
it can be seen that ζ is implicitly characterized by:

[
σ2c

(
1
1
2

)
+ 2σ2

(
1
0

)
ζ

]′ [
ψ +

c2

4
σ2

(
1
1

)
+ σ2

(
1
0

)
ζ2 + σ2c

(
1
1
2

)
ζ

]
= 0,

(D.13)
which can be re-written as

c1ζ
3 + c2ζ

2 + c3ζ + c4 = 0, (D.14)

with
c1 = 2σ4

c2 = 2σ4c

(
1
0

)′ (
1
1
2

)
+ σ4c

(
1
1
2

)′ (
1
0

)

= 3σ4c
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1
0

)′ [
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4 σ
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(
1
1
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+ σ4c2

(
1
1
2

)′(
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1
2
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(
1
0
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ψ + 7
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2σ4
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(
1
1
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)′ [
ψ + c2

4 σ
2

(
1
1
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= σ2c
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1
1
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)′
ψ + 3

8c
2σ2

]
.

19Using
a
= to denote equality up to op(1).
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The first order condition results from the fourth order polynomial, which is just the quadratic form

of the moment equation, where the zero-th term equals the quadratic form of

[
ψ + c2

4 σ
2

(
1
1

)]
.

When c = 0, the above polynomial simplifies to

c1ζ
3 + c3ζ = 0 ⇔

ζ(ζ2 + c3
c1
) = 0

(D.15)

with c3
c1

= ψ1

σ2 , so we can specify ζ as

ζ = I(ψ1 < 0)
1

σ

√
|ψ1|.

For values of c different from zero, we have to solve for the root of the third order polynomial that
minimizes the fourth order polynomial numerically or use an explicit for the roots of third order
polynomials.

The expression for the one step Wald statistic is

Wald∗N (θ̂) = N(θ̂ − 1)
(
q̄N (θ̂)′q̄N (θ̂)

) [
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1
2
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′

Vff (1)



σ2c





1
1
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+2σ2





1
0



ζ





.

To derive, lθ and λθ in Theorem 6 from (42), we first consider the GAR statistic:

GAR(1) = Nf̄N(1)
′V̂ff (1)

−1f̄N (1)

Using (D.8), it follows that

GAR(1)
d−→ (ψ +

c2

4
σ2

(
1

1

)
)′Vff (1)

−1(ψ +
c2

4
σ2

(
1

1

)
) = χ2

2(lθ)

with lθ =
c2σ2

16

(
1
1

)′
Vff (1)

−1
(
1
1

)
and also stated in (42). Since

D̂N(1) = q̄N (1)− V̂qf (1)V̂ff (1)
−1f̄N (1),

and q̄N (1) = Op(N
−1/4) and f̄N (1) = Op(N

−1/2), the limit behavior of D̂N (1) is identical to that of
q̄N (1) which is stated in (D.10). The non-centrality parameters of the non-central χ2(1) asymptotic
distributions of the KLM and LM statistics under local alternatives therefore coincide:

λθ =
c2σ2

16

(
1
1

)′
Vff (1)

−1
(

1
1/2

) [(
1

1/2

)′
Vff (1)

−1
(

1
1/2

)]−1 (
1

1/2

)
Vff (1)

−1/2
(
1
1

)
.
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