The Invertible Matrix Theorem - Proofs

Joshua H Dawes
The University of Manchester
School of Computer Science
School of Mathematics

May 1, 2014

1 The Invertible Matrix Theorem

In this collection of proofs, I will go through each relevant characterisation of an Invertible (non-singular) matrix and give its proof.

Some statements that follow too closely to others are ommitted.

Let A be an $n \times n$ matrix. The following statements are logically equivalent and, therefore, form the Invertible Matrix Theorem.

1. A is invertible.

Proof. Trivial, as for A to be invertible, \exists a matrix B such that $AB = BA = I_n$.

2. A is row equivalent to the identity matrix I_n.

Proof. If A is row equivalent to the identity matrix, $\exists E_p, E_{p-1}, \ldots, E_1$ such that

$$(E_pE_{p-1}\ldots E_1)A = I_n$$

So, as the E_i are invertible, we write

$$(E_pE_{p-1}\ldots E_1)^{-1}(E_pE_{p-1}\ldots E_1)A = A = (E_pE_{p-1}\ldots E_1)^{-1}I_n$$

So

$$A^{-1} = ((E_pE_{p-1}\ldots E_1)^{-1})^{-1}I_n$$

So

$$A^{-1} = (E_pE_{p-1}\ldots E_1)I_n$$

So, if A is row equivalent to I_n, its inverse A^{-1} exists.

This proof is why we can use the *Double Matrix* method to find the inverse of an invertible matrix. That method relies on us reducing A to the identity matrix by applying the inverse of the row transforms that transform I_n into A, hence transforming I_n into A^{-1}.
3. \(A \) has \(n \) pivot positions.

Proof. Trivial - as the inverse of a matrix is unique (see the small proof below), then \(A\vec{x} = \vec{b} \iff \vec{x} = A^{-1}\vec{b} \), so \(\forall \vec{b} \in \mathbb{R}^n, \exists \) a unique solution \(\vec{x} \) such that \(A\vec{x} = \vec{b} \). As \(n \) pivot positions means there must be a unique solution (there can be no free variables), we have \(\vec{x} = A^{-1}\vec{b} \), where \(A^{-1} \) is unique.

The Inverse of a Matrix is Unique.

Proof. Let \(B \) and \(C \) be inverses of \(A \). Then

\[I_n = BA = CA \]

and

\[I_n = AB = AC \]

Now, \(AB = AC \iff BAB = BAC \Rightarrow IB = IC \iff B = C \).
So \(B = C = A^{-1} \), so the inverse of a matrix is unique.

4. \(A\vec{x} = \vec{0} \) has only the trivial solution.

Proof. This is a direct and immediate consequence of the previous point. The invertibility of a matrix means that its associated matrix equation \(A\vec{x} = \vec{b} \) has a unique solution \(\vec{x} \) for every \(\vec{b} \in \mathbb{R}^n \), and so its associated homogeneous matrix equation has a unique solution. As every homogeneous equation of this form must have the trivial solution, this unique solution must be the trivial solution and so, if a matrix is invertible, its homogeneous matrix equation has only the trivial solution.

5. The columns of \(A \) form a linearly independent set.

Proof. If a set is linearly indepedent, then the only weights for which its vectors can be made to equal zero collectively are all zero. If the columns of \(A \) are linearly independent, and \(A\vec{x} \) gives a linear combination of the columns of \(A \) with the weights given by \(\vec{x} \), then \(\vec{x} = \vec{0} \) and so the matrix equation associated with the matrix \(A \) has only the trivial solution, hence \(A\vec{x} = \vec{0} \iff \vec{x} = \vec{0} \).
By the previous characterisation of an invertible matrix, linear independence among columns guarantees invertibility, that is the existence of \(A^{-1} \).

6. The linear transformation \(\vec{x} \to A\vec{x} \) is injective/one-to-one.
Proof. Let \(\vec{x} \in \mathbb{R}^n \) and let \(T : \mathbb{R}^n \rightarrow \mathbb{R}^n \), defined by

\[
T(\vec{x}) = A\vec{x}
\]

where \(A \) is the standard matrix of the linear transformation \(T \). Saying \(T \) is injective is equivalent to saying that, \(\forall \vec{b} \in \mathbb{R}^n, \exists \) some unique \(\vec{x} \) such that \(T(\vec{x}) = A\vec{x} = \vec{b} \), hence is equivalent to saying that the matrix equation \(A\vec{x} = \vec{b} \) has a unique solution for each \(\vec{b} \in \mathbb{R}^n \). If there is a unique solution to \(A\vec{x} = \vec{b} \) for each \(\vec{b} \), then we have already established that the matrix \(A \) is invertible.

More interestingly, the injectivity of \(T \) means that \(T \) is also invertible as a linear transformation. Specifically, the standard matrix of \(T^{-1} \) is \(A^{-1} \), hence defined \(T^{-1} : \mathbb{R}^n \rightarrow \mathbb{R}^n \) by

\[
T^{-1}(\vec{x}) = A^{-1}\vec{x}
\]

And,

\[
T(T^{-1}(\vec{x})) = A(A^{-1}\vec{x}) = I_n \vec{x} = \vec{x}
\]

Hence, the identity transformation, written here as \(T(T^{-1}(\vec{x})) \), has the standard matrix \(I_n \).

7. The matrix \(A^T \) is invertible.

Proof. We assume that \(A \) is invertible, that is

\[
AA^{-1} = I_n
\]

So, as the identity matrix is its own transpose, that is \(I_n = I_n^T \) (this is true of any symmetric/diagonal matrix), we write

\[
I_n^T = (AA^{-1})^T = (A^{-1})^T A^T = I_n
\]

Hence, when \(A \) is invertible, \(A^T \) is also invertible.

A key point from this proof is that, for any matrix’s transpose to be invertible, the transpose of the transpose (the original matrix) must be invertible.

8. The columns of \(A \) form a basis for \(\mathbb{R}^n \).

Proof. A basis, by definition, is a set that generates a subspace - hence the set must be linearly independent and must span the subspace it is a basis of.

A square matrix has \(n \) columns, therefore its columns may be seen as a set of \(n \) vectors. If the matrix is invertible, its columns are linearly independent (by previous proofs) and, as there are \(n \) vectors taken from \(n \) columns, we automatically have a basis.

9. The column space \(\text{Col}\{A\} \) of \(A \) spans \(\mathbb{R}^n \).

Proof. A direct consequence of the previous characterisation - \(\text{Col}\{A\} \) is the set of all possible linear combinations of the columns of the matrix as vectors. If the columns form a basis, then \(\text{Col}\{A\} = \text{Span}\{\vec{a}_i, \ldots, \vec{a}_n\} \), where the \(\vec{a}_i \) are the columns of \(A \).
10. The dimension of the column space of A, $\dim \text{Col}(A)$, is equal to n.

Proof. The dimension of a subspace is the number of vectors required to form a basis of that subspace. As we have previously proven that n vectors are enough to form a basis, then the dimension of the column space of A is n.

Additionally, if the null space $\text{Nul}(A)$ is the set of all solutions to the homogeneous equation $A\vec{v} = \vec{0}$, then $\text{Nul}(A) = \{\vec{0}\}$ - as we have previous proven that the only solution to the homogeneous equation of an invertible matrix is the trivial one, hence we do not need any vectors to form a basis of the null space of an invertible matrix. Also, the dimension of an invertible matrix’s null space is zero, $\dim \text{Nul}(A) = 0$.

\[\square\]

11. Zero is not an eigenvalue of A.

Proof. An eigenvalue of A is some $\lambda \in \mathbb{R}$ such that $A\vec{v} = \lambda \vec{v}$ for some non-zero $\vec{v} \in \mathbb{R}^n$. If any of the λ_i (eigenvalues of the matrix) is equal to zero, say λ_k, then we have $A\vec{v} = \lambda_k \vec{v} = 0$, so $A\vec{v} = 0$, where $\vec{v} \neq \vec{0}$. This means that we cannot consider the trivial solution of the homogeneous equation $A\vec{v} = 0$, and so there must exist some non-trivial solution to the homogeneous equation, hence the matrix A is not invertible.

Therefore, A is invertible if and only if $\nexists \lambda_i$ with $\lambda_i = 0$.

\[\square\]

12. $\det(A) \neq 0$

Proof. Suppose $\det(A) = 0$ and A^{-1} exists such that $AA^{-1} = I_n$.

Then, $\det(I_n) = \det(AA^{-1}) = \det(A) \det(A^{-1}) = \det(A) \det(A)^{-1} = \frac{\det(A)}{\det(A)} = 0$

0 is indeterminate, and certainly $\frac{0}{0} \neq 1 = \det(I_n)$, so we have a contradiction and $\det(A) \neq 0$ if A is invertible.

\[\square\]

13. The orthogonal complement of the column space of A is equal to the zero subspace, $\{\vec{0}\}$.

Proof. If the matrix A is invertible, its column space spans and is therefore equal to \mathbb{R}^n, so the set of all vectors that are orthogonal to every vector in this subspace (the orthogonal complement), is the set $\{\vec{0}\}$ as $\forall \vec{v} \in \mathbb{R}^n, \vec{0} \cdot \vec{v} = 0$, so the zero vector $\vec{0}$ is orthogonal to every vector (including itself).

A direct consequence of this is that the orthogonal complement of the null space $\text{Nul}(A)^\perp = \mathbb{R}^n$, because $\text{Nul}(A) = \{\vec{0}\}$, and every vector $\vec{v} \in \mathbb{R}^n$ has $\vec{v} \cdot \vec{0} = 0$.

\[\square\]

14. The row space of A spans \mathbb{R}^n.

Proof. The column space of a matrix A, $\text{Col}(A)$, spans \mathbb{R}^n if A is invertible, as the columns of A for a basis for \mathbb{R}^n. As A^T is also invertible (as we proved earlier), $\text{Col}(A^T) = \text{Row}(A)$, so as $\text{Col}(A^T) = \mathbb{R}^n$, $\text{Row}(A) = \mathbb{R}^n$.

\[\square\]