
6 Maps and their bifurcation

6.1 Fixed points and periodic orbits of maps

Recall that a discrete time system (or map) is defined by a difference equation

xn+1 = fµ(xn), xn ∈ R
n,

with parameter(s) µ (the subscript µ may be omitted if no confusion arises). Similar to
continuous dynamical system, simple solutions include:

i) Fixed Points: xn+1 = xn, that is solutions of x∗ = f(x∗).

ii) Periodic orbits: (x0, . . . , xp−1) with xk = f(xk−1), k = 1, . . . , p− 1 and x0 = f(xp−1).
Therefore,

xk = f p(xk) = f(· · · (f(xk)) · · · )︸ ︷︷ ︸
p iterations

, k = 0, 1, 2, · · · , p− 1.

That is, periodic points are fixed points of an iterate f p of the map. We usually work
with smallest period.

The stability of fixed points or periodic orbits can also be studied via linearisation. If xn

is close to the fixed point, let yn = xn − x∗, then

yn = xn − x∗ = f(xn−1) − f(x∗) ≈ (xn−1 − x∗)f ′(x∗) = f ′(x∗)yn−1,

and yn ≈ [f ′(x∗)]ny0. Therefore, a fixed point x∗ is linearly stable if |f ′(x∗)| < 1.

For a periodic orbit with period p, the condition for the fixed points is

|(f p)′(xk)| < 1 k = 0, 1, 2, · · ·p− 1.

If fact, we only need to check one k, since (f p)′(x0) = (f p)′(x1) = · · · = (f p)′(xp−1). Using
the chain rule (try the case of p = 2 and p = 3 to see how it works),

d

dx
f p(xk) = f ′(f(· · ·f(xk) · · · )︸ ︷︷ ︸

p−1 iterations

)f ′(f(· · · f(xk) · · · )︸ ︷︷ ︸
p−2 iterations

) · · ·f ′(xk)

= f ′(xk+p−1)f
′(xk+p−2) · · ·f ′(xk)

= f ′(xk−1)f
′(xk−2) · · ·f ′(xk)

= f ′(x0)f
′(x1) · · · f ′(xp−1). (6.1)

So there is only one condition for the linear stability of a periodic orbit:
∏p−1

k=0 |f ′(xk)| < 1.

The concept of invariant set can also be defined for maps, but is less used than that for
the continuous dynamical systems.

Example 6.1. Let λ be any non-zero constant. Then the parabola P = {(x, y) | y = x2}
is an invariant set for the map xn+1 = λxn, yn+1 = λ2yn. In fact, if (xn, yn) ∈ P , then
yn = x2

n and
yn+1 = λ2yn = λ2x2

n = (λxn)2 = x2
n+1.

That is (xn+1, yn+1) ∈ P as well. Therefore, the parabola P is invariant.
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6.1 Fixed points and periodic orbits of maps

Because of the points xn are discrete in space, special graphic tools (other than the phase
portrait) are used. First, fixed points for the one dimensional map xn+1 = f(xn) can be
viewed as the intersection of the straight line y = x and the curve y = f(x). If f ′(x∗) is
positive at the fixed point x∗, the stability can also be determined graphically, by comparing
f ′(x∗) with the slope of y = x (see Figure 6.1).
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Figure 6.1: Left figure: graphic representation of the fixed points at the intersection between
the straight line y = x and the curve y = f(x). Right figure: cobweb diagram showing the
iteration of the map xn+1 = f(xn).

The iteration of the trajectory x0, x1, · · · can be viewed from the cobweb diagram (right
figure in Figure 6.1): (1) the vertical line x = xn intersect the curve y = f(x) at (xn, f(xn)) =
(xn, xn+1); (2) the horizontal line through (xn, xn+1) intersect the line y = x at (xn+1, f(xn+1);
(3) then the vertical line through (xn+1, xn+1) becomes x = xn+1 and the whole process can
be continued again.
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Figure 6.2: The behaviour near a fixed point in terms of the cobweb diagram

The behaviour of the map xn+1 = fµ(xn) near a fixed point can be understood using
the cobweb diagram as shown in Figure 6.2. While the stability (inward towards the fixed
point x∗ or not) is determined by whether |f ′

µ(x
∗)| is greater than unit, the sign of f ′

µ(x
∗)

determines whether the diagram looks like stairs (f ′
µ(x∗) > 0) or spirals (f ′

µ(x
∗) < 0).
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6.2 Bifurcation of maps

6.2 Bifurcation of maps

Similarly, as the parameter µ in the map xn+1 = fµ(xn) varies, bifurcation could occur at the
fixed point x∗ = fµ(x∗) if |f ′

µ(x∗)| passes one. To compare with the continuous dynamical
systems ẋ = fµ(x), we can consider the analogous discrete maps xn+1 = xn +fµ(xn) (instead
of xn+1 = fµ(xn), such that the fixed points in both cases coincide, that is fµ(x

∗) = 0 and
the bifurcation diagrams are exactly the same.
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Figure 6.3: Saddle-node (tangential) bifurcation.

Saddle-node (tangential) bifurcation for xn+1 = µ+ xn − x2
n: If µ > 0, there are two

fixed points x∗± = ±µ1/2 (two intersection points between the curve y = x and y = µ+x−x2);
the fixed point x∗+ = µ1/2 is stable but x∗− = −µ1/2 is not stable. If µ < 0, there is no
fixed point. Because bifurcation occurs when the straight line y = x touches the parabola
y = µ + x − x2 tangentially at µ = 0, this saddle-node bifurcation is also called tangential
bifurcation (see Figure 6.3).

Transcritical bifurcation for xn+1 = (1 + µ)xn − x2
n: There are always two fixed points

x∗ = 0 and x∗ = µ. The fixed point x∗ = 0 is stable for µ < 0, but becomes unstable for
µ > 0, while the other fixed point x∗ = µ is stable.

µ > 0

µ = 0

µ < 0
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Figure 6.4: Transcritical bifurcation.

Supercritical pitchfork bifurcation for xn+1 = (1 + µ)xn − x3
n: When µ < 0, there

is only one fixed point x∗ = 0, which is stable. When µ > 0, there are three fixed points;
x∗ = ±µ1/2 are stable, but x∗ = 0 unstable.
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6.3 Logistic map

µ < 0 µ = 0 µ > 0

x∗ = 0

x∗ =
√

µ

x∗ = −
√

µ

Figure 6.5: Pitchfork bifurcation.

Remark. Although the bifurcation diagrams of the three bifurcations look the same as those
for the continuous differential equations, the situation for discrete maps is more complicated:

(a) The bifurcation are valid only locally for discrete maps. Take the map xn+1 = 1+xn−x2
n

(µ = 1) and the initial condition x0 = 10 (or any initial such that x0 is large), then
xn → −∞ as n goes to infinity, different from the stable fixed point x∗ = µ1/2 = 1. But
for the continuous dynamical system ẋ = 1−x2, x(t) always converges to x∗ = µ1/2 = 1,
if x0 is large.

(b) Another bifurcation could happen along the stable fixed point, as µ further increases
or decreases. The Jacobian of the map xn+1 = µ + xn − x2 at the stable fixed point
x∗ = µ1/2 is

f ′
µ(x∗) = 1 − 2x∗ = 1 − 2µ1/2.

Then as µ > 1, f ′
µ(x

∗) < −1, which becomes unstable (a period-doubling bifurcation
happens as we show below).

For continuous dynamical systems, Hopf bifurcation is common when stable spiral be-
comes unstable spiral (real parts of the eigenvalue becomes positive), and periodic solution
appears. For maps, the analogous situation is period-two bifurcation: the original fixed
point becomes unstable, and a period-two orbit appear. This will be examined in the next
subsection, for the special logistic map.

6.3 Logistic map

The logistic map is the simplest quadratic family of maps

fµ(x) = µx(1 − x), µ ≥ 0,

in which chaotic behaviours can arise. In the context of population dynamics, the two
terms µx and −µx2 in this map can be interpreted as reproduction and starvation (density-
dependent mortality) respectively.

If this map is invariant on the interval [0, 1], then µ ∈ [0, 4], since we only have to
make sure maxx∈[0,1] fµ(x) = fµ(1/2) = µ/4 ≤ 1. The behaviour of the map for small and
moderately large µ can be explained by examining the stability of the fixed points and the
periodic orbits.
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6.3 Logistic map

Fixed Points: x∗ = µx∗(1 − x∗). So x∗ = 0 or x∗ = (µ− 1)/µ provided µ ≥ 1.

Linear Stability: First f ′
µ(x) = µ − 2xµ. If 0 ≤ µ < 1, the fixed point x∗ = 0 is stable

since |f ′
µ(0)| = µ < 1, and the fixed point x∗ = (µ−1)/µ is not in the range [0, 1]. As µ ≥ 1,

the fixed point x∗ = 0 becomes unstable. But x∗ = (µ− 1)/µ ∈ (0, 1) become stable, as long
as

|f ′
µ

(
(µ− 1)/µ

)
| = |2 − µ| < 1,

or 1 < µ < 3. Because the fixed points x∗ = 0 and x∗ = (µ − 1)/µ exchange stability at
µ = 1, this is a transcritical bifurcation.
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Figure 6.6: The fixed point x∗ = (µ − 1)/µ becomes unstable as µ > 3, and a period-two
orbit emerges (the iteration for µ = 3.35 is plotted here).

Period-doubling bifurcation: As µ passes 3, f ′
µ

(
(µ−1)/µ

)
passes −1 and x∗ = (µ−1)/µ

becomes unstable (see Figure 6.6 for sample iterations at µ = 3.35). A period-two orbit
(x∗+, x

∗
−) appears, such that

x∗+ = fµ(x
∗
−), x∗− = fµ(x

∗
+).

In other words, both x∗+ and x∗− are fixed points of x = fµ(fµ(x)), but not fixed points of
x = fµ(x). This is called period-doubling bifurcation, signified by fµ∗(x∗) = −1 at µ∗ = 3.

Since
x− fµ

(
fµ(x)

)
= x(µx− µ+ 1)(µ2x2 − (µ2 + µ)x+ µ+ 1),

all fixed points of x = fµ

(
fµ(x)

)
are

x∗ = 0, x∗ =
µ− 1

µ
, x∗± =

µ+ 1 ±
√

(µ− 3)(µ+ 1)

2µ
.

The first two are inherited from x∗ = fµ(x∗), and the last two form the period two orbits,
solving the quadratic equation µ2x2 − (µ2 + µ)x + µ + 1 = 0. A more involved calculation
shows that the this period-two orbit loses its stability, when the modulus

d

dx
fµ

(
fµ(x)

)∣∣∣∣
x∗
±

= f ′
µ

(
fµ(x)

)
f ′

µ(x)
∣∣∣
x∗
±

= f ′
µ(x∗+)f ′

µ(x∗−)
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6.3 Logistic map

is greater than unit. First from

x∗+ + x∗− =
µ+ 1

µ
, x∗+x

∗
− =

µ+ 1

µ2
,

the Jacobian d
dx
fµ

(
fµ(x)

)∣∣
x∗
±

can be simplified as

f ′
µ(x∗+)f ′

µ(x∗−) = µ2(1 − 2x∗−)(1 − 2x∗+) = µ2
(
1 − 2(x∗+ + x∗−) + 4x∗−x

∗
+

)
= 4 + 2µ− µ2.

By solving d
dx
fµ

(
fµ(x)

)∣∣
x∗
±

= ±1, we get µ = −1 or µ = 3 for d
dx
fµ

(
fµ(x)

)∣∣
x∗
±

= 1 and

µ = 1 ±
√

6 for d
dx
fµ

(
fµ(x)

)∣∣
x∗
±

= −1. We do not need to check the negative values of

µ = −1 or µ = 1 −
√

6; in fact the fixed points x∗± exists only for µ ≥ 3. Therefore, the

only possible bifurcation is at µ∗ = 1 +
√

6 ≈ 3.449, with d
dx
fµ∗

(
fµ∗(x)

)∣∣
x∗
±

= −1. The value

−1 suggests another period-doubling bifurcation for x = fµ(fµ(x)), leading to period-four
orbits, which are fixed points of x = fµ(fµ(fµ(fµ(x)))).
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Figure 6.7: Bifurcation diagram for the logistic map, when µ is not too close to 4.

In fact there is an infinite cascade of ‘period-doubling’ bifurcations:

µ1 = 3 period 1 → 2

µ2 = 1 +
√

6 period 2 → 4

...

µn period 2n−1 → 2n.

Moreover, µn has a finite limit (about 3.56995), when the period-doubling cascade ends and
chaotic behaviours start. There is also a universal Feigenbaum constant defined as the limit
of ratio between the lengths of two successive bifurcation intervals, i.e,

lim
n→∞

µn−1 − µn

µ− µn+1
≈ 4.669

Many other maps exhibit similar (period-doubling) bifurcations, and the above limiting ratio
is independent of the details of the map.
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6.4 Bifurcation of two-dimensional maps

Remark. Although the bifurcation diagrams for both pitchfork and period-doubling bifur-
cation look similar, the behaviours of the fixed points are totally different: new “fixed
points” for period-doubling bifurcation are actually fixed points of x = fµ(fµ(x)) instead
of x = fµ(x).

6.4 Bifurcation of two-dimensional maps

The same approach can be used to study the bifurcation of two-dimensional maps, by looking
at when the change in the parameter leads to eigenvalues of the Jacobian matrix with unit
modulus.

Example 6.2. Consider the map

xn+1 = µyn + xn − x2
n, yn+1 = xn,

where |µ| is small. The fixed point (x∗, y∗) satisfies the equations x = µx + x − x2, y = x.
That is, there are two fixed points

(x∗1, y
∗
1) = (0, 0), (x∗2, y

∗
2) = (µ, µ).

From the Jacobian matrix

J(x, y) =

( ∂
∂x

(µy + x− x2) ∂
∂y

(µy + x− x2)
∂
∂x
x ∂

∂y
x

)
=

(
1 − 2x µ

1 0

)
,

we get

J(x∗1, y
∗
1) =

(
1 µ
1 0

)
, J(x∗2, y

∗
2) =

(
1 − 2µ µ

1 0

)
.

At the fixed point (x∗1, x
∗
2), the two eigenvalues are governed by

det
(
λI − J(x∗1, y

∗
1)
)

= det

(
λ− 1 −µ
−1 λ

)
= λ2 − λ− µ = 0.

That is

λ±1 =
1 ±√

1 + 4µ

2
.

As µ passes zero, λ+
1 pass 1 and this fixed point (x∗1, y

∗
1) becomes unstable.

At the fixed point (x∗2, y
∗
2), the two eigenvalues are governed by

det
(
λI − J(x∗2, y

∗
2)
)

= det

(
λ− 1 + 2µ −µ

−1 λ

)
= λ2 − (1 − 2µ)λ− µ = 0.

That is,

λ±2 =
1 − 2µ±

√
(1 − 2µ)2 + 4µ

2
=

1 − 2µ±
√

1 + 4µ2

2
.

In this case, λ−2 is close to zero (|λ+
2 | is far away from unit) and can not trigger any instability.

If µ is small and negative,
√

1 + 4µ2 >
√

1 + 4µ+ 4µ2 = 1 + 2µ

83



6.5 Other concepts: intermittancy, Lyapunov exponent and the route to chaos

and

λ+
2 =

1 − 2µ+
√

1 + 4µ2

2
>

1 − 2µ+ (1 + 2µ)

2
= 1.

As a result, the fixed point (x∗2, y
∗
2) is unstable. On the other hand, if µ becomes positive

(and small),
√

1 + 4µ2 <
√

1 + 4µ+ 4µ2 = 1 + 2µ and

λ+
2 =

1 − 2µ+
√

1 + 4µ2

2
<

1 − 2µ+ (1 + 2µ)

2
= 1.

Therefore, the stability of the two fixed points (x∗1, y
∗
1) and (x∗2, y

∗
2) are exchanged, indicating

the transcritical bifurcation at µ = 0.
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Figure 6.8: The eigenvalues of the Jacobian matrix near the two fixed points (0, 0) and (µ, µ).

The bifurcation is also clear from Figure 6.8. For µ ∈ (−1/4, 0), |λ±1 | < 1 and the fixed
point (x∗1, y

∗
1) = (0, 0) is stable. The other fixed point (x∗2, y

∗
2) = (µ, µ) is stable for µ > 0,

but becomes unstable again when λ−2 = −1, or µ = 2/3. A period-doubling bifurcation
occurs her (associated with eigenvalue −1).

6.5 Other concepts: intermittancy, Lyapunov exponent and the

route to chaos

There are other important concepts motivated from maps, like

• Complex iterations from fractals (Julia sets)

• Chaos and its characterisation (sensitive dependence on initial data, existence of “strange
attractor”, . . .)

• Intermittancy (jumping between nearly periodic and chaotic motions) in chaotic regime

• Lypunov exponents (rate of separation of close trajectories)

These concepts will be briefly mentioned (you will see them more in books for popular
audience), but will not appear in the final exam.
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