
3 Linearisation and equilibria

In this section, we will study mainly the properties of linear systems around fixed points,
as a first step towards the understanding of more complicated behaviours of nonlinear sys-
tems. The local, linear part can be obtained from the full nonlinear counterpart via Taylor
expansion around the fixed points.

3.1 Taylor’s theorem

Suppose x∗ ∈ R
n is a stationary point of ẋ = f(x), that is f(x∗) = 0. If z = x− x∗ is small,

we can use Taylor’s Theorem to expand f(x) around x∗, that is,

ẋ = ż = f(x) = f(x∗ + z) =
�

�
�f(x∗) +Df(x∗)z +O(|z|2) = Df(x∗)z +O(|z|2).

Here Df(x∗) is the n × n Jacobian matrix with entries [Df(x)]ij = ∂ fi

∂ xj
(x). The ’big-O’

notation means that if a function g(z) = O(|z|2) then |g(z)|
|z|2 < C, for some C < ∞, on a

neighbourhood of z = 0. If z is small then we can hope to ignore the small O(|z|2) terms
and consider the linearisation about x∗: ż = Az with A = Df(x∗) or Aij = ∂fi

∂xj
(x∗) .

Example 3.1. Consider the system
(
ẋ
ẏ

)
= f(x, y) =

(
5
2
x− 1

2
y + 2x2 + 1

2
y2

−x+ 2y + 4xy

)
, (3.1)

for which (0, 0) is a stationary point. Since

Df(x, y) =

(
5
2

+ 4x −1
2

+ y
−1 + 4y 2 + 4x

)
,

the system can be approximated by
(
ẋ
ẏ

)
= A

(
x
y

)
, where A = Df(0, 0) =

(
5
2

−1
2

−1 2

)
.

which could have been read off directly from the linear part of the equation (3.1).

Key questions in the next few subsections

1. How can we characterize solutions of linear equations ẋ = Ax?

2. (Harder) How/when does information about the linearisation provide useful local in-
formation about the original (nonlinear) problem?

Example 3.2. Consider the system
(
ẋ
ẏ

)
=

(
1 − ax2 + y

bx

)
. (3.2)

We start with the stationary points, by looking for zeros of the right hand side of the system:
the second equation implies that x = 0; substituting it back into the first equation, we get
y = −1. Therefore, the only stationary point is (0,−1).
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3.1 Taylor’s theorem

From f(x, y) =

(
1 − ax2 + y

bx

)
, Df(x, y) =

(
−2ax 1
b 0

)
and Df(0,−1) =

(
0 1
b 0

)
. The

linearisation in coordinates

(
x
y

)
=

(
0
−1

)
+

(
u
v

)
is

(
u̇
v̇

)
=

(
0 1
b 0

)(
u
v

)
or

u̇ = v, v̇ = bu.

This linsear system can be solved by eliminating v (or alternatively using matrix exponential):
ü = v̇ = bu, or ü− bu = 0. Using elementary methods in ODEs, if b > 0 the solutions are

u = Ae
√

bt +Be−
√

bt with v = u̇ =
√
b(Ae

√
bt −Be−

√
bt),

for constants A and B determined from the initial condition. Most solutions are unbounded
(with general A and B). But the special solution with A = 0 converges to the origin.

If b < 0 then

u = A cos
√

|b|t+B sin
√

|b|t and v =
√

|b|
(
− A sin

√
|b|t+B cos

√
|b|t
)

i.e. solutions of the linearisation oscillate in time.
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Figure 3.1: The phase portrait for two systems: (left figure) ẋ = 1−x2 + y, ẏ = x and (right
figure) ẋ = 1 − x2 + y, ẏ = −x, with common fixed point (0,−1).

Question: When does this linear analysis give accurate information about the behaviour
of the full nonlinear problem? It will turn out that the behaviour if b > 0 is a good sense of
the general behaviour (locally) whilst this may not be the case if b < 0. For instance, the
trajectories of the system ẋ = 1 − x2 + y, ẏ = −x − x2 around the fixed point (0,−1) are
spirals.

For the above system ẋ = 1 − ax2 + y, ẏ = bx, you can show that

V (x, y) = (2a2x2 − 2a+ b− 2ay) exp(2ay/b)

is conserved under the full system (3.2), and the trajectories are governed by V (x, y) = C
for different constants C.
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3.2 Linear systems

3.2 Linear systems

Suppose x(t) satisfies the linear ODEs ẋ = Ax, where A is a constant n × n matrix and
x ∈ R

n. If A has distinct eigenvalues λi with corresponding eigenvectors ei, then the general
solution is a superposition of the eigenmodes:

x(t) =
∑

Cke
λktek

where the Ck are constants determined from the initial condition x(0) =
∑
Ckek. This shows

that eigenvalues and eigenvectors of A will be crucial to the understanding of the dynamics.

The eigen-pairs are also closely related to a particular coordinate transformation that
simplifies the dynamics: x = [e1 e2 · · · en]y, or y = Ux with U = [e1 e2 · · · en]−1, the
inverse of the matrix formed by the eigenvectors. The the ODE for y becomes

ẏ = Uẋ = UAx = UAU−1y,

i.e. y satisfies a linear ODE ẏ = UAU−1y.

The above choice of U = [e1 e2 · · · en]−1 is particular in that UAU−1 is diagonal, and
the system ẏ = UAU−1y is essential n decoupled ODEs:

ẏ1 = λ1y1, ẏ2 = λ2y2, · · · ẏn = λnyn.

With this ‘natural’ choice of transformation y = Ux, the resulting system for y is called the
normal form (depending only on the eigenvalues of A). We will work in the plane R

2 with
real matrix A, though extension to R

n is not hard.

a) eigenvalues real and distinct: Suppose the eigenvalues λ1 and λ2 of A are real and
distinct, then their corresponding eigenvectors e1, e2 (assumed to be column vectors)
are real and linearly independent. With the matrix U = [e1, e2]

−1, we get

AU−1 = A[e1 e2] = [Ae1 Ae2] = [λ1e1 λ2e2] = [e1 e2]

[
λ1

λ2

]
= U−1diag(λ1, λ2).

Left multiplying both sides with U , we have UAU−1 = diag(λ1, λ2) as expected.

As we shall see shortly, this transformation into normal form also makes it easier to
understand the structure of the solutions, which depends on the signs of λ1 and λ2.

a i) λ1 < λ2 < 0: stable node In this case the linearisation in the normal form coordinates
yt = (u, v) is

u̇ = λ1u, v̇ = λ2v

with solutions
u = u0e

λ1t, v = v0e
λ2t.

Thus (u, v) → (0, 0) as t → ∞ and both coordinate axis (u = 0 and v = 0) are
invariant.

Moreover, if u0, v0 6= 0 (i.e. off the coordinate axes)

u

u0
= eλ1t = (eλ2t)

λ1
λ2 ;

v

v0
= eλ2t
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3.2 Linear systems

and so
u

u0
= (

v

v0
)

λ1
λ2 ,

λ1

λ2
> 1, (3.3)

or equivalently uv−λ1/λ2 is a constant for points on the same trajectory. These are
generalized parabolas, tangential to the v-axis at (u, v) = (0, 0).

u

v

e1e2

Figure 3.2: Stable node in transformed (u, v)-coordinates and in the original (x1, x2)-
coordinates.

This is called a stable node. In the original coordinates the u-axis corresponds to e1
and the v-axis to the e2 direction (you can see this from the transformation y = Ux),
so the phase portrait is as shown in Figure 3.2.

Thus in the original coordinates, lines corresponding to eigenvectors are invariant.
Moreover almost all trajectories are tangential to e2 at (0, 0), i.e. tangential to eigen-
vector of eigenvalue with smallest modulus.

u

v

e1e2

Figure 3.3: Unstable node in transformed (u, v)-coordinates and in the original (x1, x2)-
coordinates.

a ii) λ1 > λ2 > 0: unstable node The phase portrait can be obtained using the same tech-
niques as in the previous section. Indeed the manipulations are the same and the gen-
eralized parabola is also the same as changing the signs of both eigenvalues does not
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3.2 Linear systems

change the sign of their ratio. Another way of seeing the direct correspondence with
the previous case is by reversing time. Set τ = −t so

d

dt
=

dτ

dt

d

dτ
= − d

dτ

and so if
d

d t
u = λ1u,

d

d t
v = λ2v

then
d

dτ
u = −λ1u,

d

dτ
v = −λ2v

which is the same as in case ai). Thus all we need to do is to change the direction
of time, i.e. the arrows on the phase portraits to get the new phase portrait. This is
called an unstable node, as shown in Figure 3.3.

a iii) λ1 < 0 < λ2: saddle The analysis is as before but now u
u0

= ( v
v0

)
λ1
λ2 is a generalized

hyperbola as λ1/λ2 < 0, as shown in Figure 3.4.

u

v

e1

e2

Figure 3.4: Saddle node in transformed (u, v)-coordinates and in the original (x1, x2)-
coordinates.

b) Complex conjugate eigenvalues ρ± iω, ω 6= 0. The eigenvectors z± are complex, and
satisfy

Az± = (ρ± iω)z±. (3.4)

But we prefer to work with real quantities, and the first step is to take the real and
imaginary parts of both sides of (3.4) (only with z+),

A(Rez+ + iImz+) = (ρ+ iω)(Rez+ + iImz+),

or equivalently

ARez+ = ρRez+ − ωImz+, AImz+ = ρImz+ + ωRez+.

To proceed, we take real and imaginary parts of the above eigenvector z± (remember
that the real parts of z± are the same, and the imaginary parts only differ in their
signs), forming the matrix

U = [Rez+ , Imz+]−1 or U−1 = [Rez+ , Imz+] .
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3.2 Linear systems

Then

AU−1 = [A Rez+, A Imz+]

= [Re(Az+) , Im(Az+)] , ( as A is real)

= [ρRe(z+) − ωIm(z+), ρIm(z+) + ωIm(z+)]

= [Rez+, Imz−]

(
ρ ω
−ω ρ

)
.

Thus we end up with (
ρ ω
−ω ρ

)
= UAU−1,

where

(
ρ ω
−ω ρ

)
is the complex normal form.

In the new coordinates y = (u, v)t = Ux, the system becomes u̇ = ρu + ωv, v̇ =
−ωu + ρv. It is much easier to look at this system in the polar coordinates u =
r cos θ, v = r sin θ. Differentiating this new transform gives

u̇ = ṙ cos θ − rθ̇ sin θ = ρr cos θ + ωr sin θ

v̇ = ṙ sin θ + rθ̇ cos θ = −ωr cos θ + ρr sin θ.

To eliminate θ̇ to obtain an equation for ṙ, multiply the first of these by cos θ and the
second by sin θ and add to get

ṙ = ρr, i.e. r = r0e
ρt. (3.5)

Similarly to get the equation for θ̇, multiply the first by sin θ and the second by cos θ
and take the difference:

θ̇ = −ω i.e. θ = θ0 − ωt,

which represents a clockwise rotation at constant angular velocity if ω > 0. Using
this to eliminate t from the equation for r shows that trajectories lie on spiral r =
r0e

ρ(θ−θ0)/w.

u

v

x1

x2

Figure 3.5: Unstable focus in transformed (u, v)-coordinates and in the original (x1, x2)-
coordinates.
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3.2 Linear systems

b i) ρ > 0: unstable focus. In this case (3.5) shows that solutions grow with time so tra-
jectories spiral out of the origin. This is called a unstable focus clockwise if ω > 0
(counter-clockwise if ω < 0). In the original coordinates, the phase portrait is a dis-
torted spiral. To determine the direction of spiralling, we can consider the sign of ẋ2

on a horizontal line (where x2 = 0) through the stationary point or the sign of ẋ1 on
a vertical line through the stationary point. If more detail is required the nullclines
(see c(ii) below) indicate where solutions are flat or vertical as they move around the
stationary point. This is called an unstable focus (see Figure 3.5).

u

v

x1

x2

Figure 3.6: Stable focus in transformed (u, v)-coordinates and in the original (x1, x2)-
coordinates.

b ii) ρ < 0 : stable focus In this case the θ behaviour is the same as in the previous case
but the radial velocity is towards zero. Solutions tend to the origin spiralling clockwise
(if ω > 0) as shown in Figure 3.6. In the original coordinates the solutions spiral
inwards, with the direction given by consideration of the sign of ẋ2 (or ẋ1) on the
horizontal line (resp. vertical line) through the stationary point. If more detail is
required the nullclines (see c(ii) below) indicate where solutions are flat or vertical as
they move around the stationary point. This is called a stable focus.

b iii) ρ = 0: centre If ρ = 0 then ṙ = 0 and so r is constant – solutions lie on circles in the
transformed (u, v)-coordinates with θ changing at a constant rate, i.e. if r0 6= 0 then
solutions are periodic with period 2π

|ω| . This is called a centre, see Figure 3.7.

Clearly if nonlinear terms are added then ṙ may no longer vanish, so we do not expect
this type of behaviour to persist in typical nonlinear systems.

c) Repeated real roots λ 6= 0. If the characteristic equation has two repeated roots λ =
λ1 = λ2, then by Cayley-Hamiltonian Theorem (a matrix satisfies its own characteristic
equation) (A − λI)2 = 0. Depending on the number of eigenvectors to the equation
(A− λI)e = 0, we have two cases (the equivalent two cases are A = λI and A 6= λI).

c i) Repeated real roots λ 6= 0: star. Suppose there are two (linearly independent) eigen-
vectors e1 and e2 to the equation (A− λI)e = 0, then

A[e1, e2] = [λe1, λe2] = λ[e1, e2].
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3.2 Linear systems

u

v

x1

x2

Figure 3.7: Centre in transformed (u, v)-coordinates and in the original (x1, x2)-coordinates.

Since [e1, e2] is non-singular, we can right multiply [e1, e2]
−1 to the previous equation to

get

A = λI =

(
λ 0
0 λ

)
,

i.e. A is diagonal in any basis! Then using (3.3) with λ1 = λ2,
x
x0

= y
y0

and so solutions
lie on straight lines through the origin as shown in Figure 3.8. This is called a stable
star if λ < 0 (so solutions tend to the origin) and an unstable star if λ > 0 (so solutions
grow).

x1

x2

Stable star (λ < 0)

x1

x2

Unstable star (λ > 0)

Figure 3.8: Stable stars and unstable stars

c ii): repeated roots λ 6= 0: degenerate node. Suppose that there is only one eigen-
value e1 to the eigenvalue λ (although it is repeated), then we can find another vector
e2 such that (A − λI)e2 = e1, or Ae2 = λe2 + e1. Let U−1 = [e1; e2], the matrix with
columns are the two vectors defined above. Then

AU−1 = [Ae1, Ae2] = [λe1, λe2 + e1] = [e1, e2]

(
λ 1
0 λ

)
.

Hence we get the (
λ 1
0 λ

)
= UAU−1,

where the matrix

(
λ 1
0 λ

)
is the normal form for this case of repeated roots.

26



3.2 Linear systems

In the transformed coordinates (u, v) defined as above,

u̇ = λu+ v, v̇ = λv. (3.6)

The second equation is easily solved to give v = v0e
λt. Substituting this into the first

equation gives u̇ = λu+ v0e
λt. Using the integrating factor e−λt, we get

d

d t
(ue−λt) = v0.

The integration of both sides lead to ue−λt − u0 = v0t or u = u0e
λt + v0te

λt. It is
hard to analyse solutions directly from (3.6). The phase portrait is given in Figure 3.9.
They divide phase space into four regions according to the different combinations of
the signs of u̇ and v̇. Bu considering the behaviour in each of these regions, we arrive
at the phase portrait sketched. Of course, a rigorous justification takes more work, but
this is enough to give a basic idea of the behaviour. The phase portrait of Figure 3.9 is
an unstable degenerate node. For the case λ < 0 (a stable degenerate node), although
the solution eventually converges to the origin, it may take a long excursion to finally
move towards it.

v = −λu

Figure 3.9: Phase portrait for u̇ = λu+ v, v̇ = λv with degenerate node (λ > 0).

Direction of rotation for foci and centres

The sign of ω in the normal form can always be chosen to be positive, but this might use
a transformation that reverses the orientation of the plane, i.e. counter-clockwise rotation
can be transformed into clockwise rotation. To determine the actual direction in an example
either calculate the nullclines and the direction of the flow across the nullclines, or (and this
is often easier) consider the direction of the flow on coordinate axes.

Example 3.3. Suppose that

ẋ = −x− 4y, ẏ = x− y

so the Jacobian matrix is (
−1 −4
1 −1

)
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3.2 Linear systems

with characteristic equation (s+1)2 + 4 = 0 so the eigenvalues are −1 ± i2. The origin is
therefore a stable node, but in which way does it rotate?

Set x = 0 (the y-axis) and consider how solutions move across this line. On x = 0
ẋ = −4y and so if y > 0 then the motion is from right to left (as ẋ < 0) and if y < 0 (so
ẋ > 0) the motion is from left to right. Thus the motion is counter-clockwise.

It is often useful to indicate this on a diagram to make sure the figure is drawn appro-
priately.

tr(A)

det(A)

Figure 3.10: Different behaviours of the system ẋ = Ax, depending on the determinant and
the trace of A.

Summary on the relation between the signs of eigenvalues and the behaviour of
the underlying linear system

Given ẋ = Ax, x ∈ R
2. Find the eigenvalues of A to characterise all the behaviours of the

solution summarised as below.

real, distinct: both positive: unstable node, almost all trajectories tangential to eigenvec-
tor of eigenvalue with smaller modulus at (0, 0)

both negative: unstable node, almost all trajectories tangential to eigenvector of eigen-
value with smaller modulus at (0, 0)

one negative one positive: saddle with both eigenvectors invariant

complex conjugate pair: positive real parts: unstable focus

negative real parts: stable focus

zero real parts: centre
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3.3 Planar ODEs

other special cases: equal (real) eigenvalues with two eigenvectors: star

equal (real) eigenvalues with only one eigenvectors: degenerate node otherwise, almost
all trajectories tangential to eigenvector at (0, 0).

Since the behaviours of the solutions, or equivalently of the roots depend only on the
determinant and the trace of A, they can be equally summarised as in Figure 3.10, where
the parabola is the curve 4detA = (trA)2.

3.3 Planar ODEs

Recall that if x = a is a stationary point then we use x = a + y, |y| ≪ 1 to change the
coordinate to y, such that

ẏ = Df(a)y +O(|y|2)
ad linearisation is ẏ = Ay, A = Df(a) (Jacobian matrix of partial derivatives).

It turns out that nodes, foci and degenerate nodes retain their basic properties under small
nonlinear perturbations, so this makes it possible to obtain approximate phase portraits for
some systems (ignoring periodic orbits for the moment).

Example 3.4 (ODEs for competitive populations). Imagine a colony of rabbits (r) and
sheep (s) with r, s ≥ 0 denoting the population size in normalized coordinates so that one
unit represents many animals and we are justified in approximating the population size as a
continuous variable. A model of the birth/death rates is

ṙ = r(3 − r − s), rabbits

ṡ = s(4 − 2r − s), sheep

where s, r ≥ 0.

We can sketch the phase portrait in three stages: first find the stationary points, then
determine their types and the local phase portrait assuming the linear approximation is
valid, and then put this information together to create a consistent global phase portrait.

Stationary Points: ṙ = 0 if r = 0 or r+ s = 3 whilst ṡ = 0 if s = 0 or 2r + s = 4. Hence
the stationary points are

r = 0, s = 0, (0, 0)

r = 0, s = 4, (0, 4)

s = 0, r = 3, (3, 0)

together with the solution of the simultaneous equations

r + s = 3, 2r + s = 4

if they exist. Solving gives a fourth stationary point, r = 1 and s = 2, i.e. (1, 2).

Note that the r-axis and the s-axis are invariant.
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3.3 Planar ODEs

(0, 0) (0, 4) (3, 0) (1, 2)

Figure 3.11: Local phase portraits near each of the stationary points.

Linearisation:

Df(x) =

(
3 − 2r − s −r

−2s 4 − 2r − 2s

)

At (0, 0) :

Df(0, 0) =

(
3 0
0 4

)

The eigenvalues are 3 and 4 with eigenvectors

(
1
0

)
and

(
0
1

)
respectively, so it is an unstable

node, with almost all solutions tangential to the r-axis and the local solution is as sketched
in Figure 3.11).

At (0, 4) :

Df(0, 4) =

(
−1 0
−8 −4

)

The eigenvalues are −1,−4 so it is a stable node. The eigenvectors are e−1 =

(
3
−8

)
and

(
0
1

)
respectively, so almost all solutions are tangential to e−1 at the stationary point. See

Figure 3.11.

At (3, 0) :

Df(3, 0) =

(
−3 −3
0 −2

)

so the eigenvalues are −3 with eigenvector

(
1
0

)
and −2 with eigenvector e2

(
−3
1

)
. So it is

a stable node and almost all solutions are tangential to e2 at the stationary point.

At (1, 2) :

Df(1, 2) =

(
−1 −1
−4 −2

)

so the characteristic equation is (s+ 1)(s+ 2) − 4 = 0 or s2 + 3s− 2 = 0, i.e. s± = −3±
√

17
2

.

Since s+ > 0 and s− < 0 is a saddle and the eigenvectors are e± =

(
−1

s± + 1

)
, so e+ slopes

downwards and e− slopes upwards.
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3.3 Planar ODEs

(0, 4)

(0, 0) (3, 0)

(1, 2)

Figure 3.12: Consistent global phase portrait in r, s ≥ 0. Note the role of the separatrices
in separating regions of initial conditions tending to each of the two stable nodes.

Putting the information together suggests the global phase portrait of Figure 3.12. The
important features are the separatrices which separates solutions tending to (0, 4) from those
approaching (3, 0).and the tangential approach to approximate stationary points.

Example 3.5 (ODEs for mutualistic interactions). Imagine a colony of bees (b) and flower
(f) with b, f ≥ 0 denoting the population size in normalized coordinates so that one unit
represents many animals and we are justified in approximating the population size as a
continuous variable. Bees fly from flower to flower gathering nectar for food, and the flowers
also benefit from the bees for pollination. This is a typical example of mutualistic interaction.
A model for their population is

ḃ = (3 − 3b+ f)b, ḟ = (1 + b− f)f. (3.7)

All the stationary points are (0, 0), (0, 1), (1, 0), (2, 3). By evaluating the Jacobian

Df(b, f) =

(
3 − 6b+ f b

f 1 + b− 2f

)

we have the following classification:

(0,0): unstable node

(1,0): saddle node

(0,1): saddle node

(2,3): stable node

Basically, the stability/instability of any stationary point can be implied from the lin-
earised system, when no eigenvalue has zero real part. These points are called hyperbolic
fixed points. Otherwise, fixed points with zero real part in their eigenvalues (like centres)
are called non-hyperbolic fixed point. The behaviours near these stationary points are more
difficult to study: while all orbits around centres are periodic, there could be no periodic
solutions when nonlinear higher order terms are added.
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3.4 Stability and Lyapunov functions

3.4 Stability and Lyapunov functions

We have seen that if Reλi < 0 for all eigenvalues λi of A, solutions of linear system ẋ = Ax
converge to the origin. In fact, if A can be diagonised with the eigenpairs (λi, ei), then the
solution can be written as

x(t) =
n∑

i=1

cie
λitei,

while the prefactor eλit goes to zero as t goes to infinity. Is this true of the corresponding
nonlinear systems near the stationary point, when the solution can not be obtained in explicit
form? This is part of a much more general question about stability of stationary points, so
first let us introduce some definitions. The main questions to be answered in this subsection
are:

(1) How do stability results for linear systems carry over to nonlinear systems locally?
(2) How about the boundedness or stability of solutions for ẋ = f(x), x ∈ R

n.

Definition 3.1 (Asymptotic stability). A stationary point x∗ of an autonomous system
ẋ = f(x) is asymptotically stable iff there exists an open neighbourhood U of x∗ such that
ϕt(x0) → x∗ as t→ ∞ for all x0 ∈ U .

If all eigenvalues λi are negative, then the solution starting at any x0 converges to the
origin. If A = diag(λ1, λ2, · · · , λn) is diagonal, this asymptotical stability can also be shown
alternatively by considering the (squared) distance V (x) = |x|2 between the solution x(t)
and the origin. Since

d

dt
V (x) = 2x · ẋ = 2

n∑

i=1

λix
2
i ≤ 0,

the square distance |x(t)|2 is strictly decreasing, until x(t) reaches the origin. This means
that V (x(t)) = |x(t)|2 converges to zero .

x∗

x0
U

x∗

x0

U

V

Figure 3.13: (a) Asymptotic stability; (b) Lyapunov stability.

This means that if a solution starts sufficiently close to x∗, its solution eventually becomes
arbitrary close to x∗. But it does not imply the solution stays within U for all t > 0.

Definition 3.2 (Lyapunov stability). A stationary point x∗ of an autonomous ODE is
Lyapunov stable iff for every open neighbourhood U of x∗ there exists an open neighbourhood
W ⊂ U such that x0 ∈W implies ϕt(x0) ∈ U for all t ≥ 0.
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3.4 Stability and Lyapunov functions

In other words solutions stay close to x∗ if they start close enough to x∗. Note that
Lyapunov stability does not imply asymptotic stability (think of a linear centre). We have
been thinking about linearisation, which motivates our final definition.

Definition 3.3 (Linear stability). A stationary point x∗ of an autonomous ODE is linearly
stable iff the real parts of every eigenvalue of Df(x∗) is negative.

For linear systems ẋ = Ax, if the eigenvalues of A have negative real parts then |x(t)| → 0
as t → ∞, i.e. solutions are asymptotically stable (we have shown this in the special case
of distinct eigenvalues). We will take a geometric view of stability (see the textbook by
Meiss for a more analytic treatment). The geometric approach is via motivating example for
showing solutions are bounded (often an important first step in physics).

The proof of the lemma uses some results from calculus. First recall the chain rule for
the derivative of a function of a function. In one dimension

d

dt
V (x(t)) =

dV (x(t))

dx

dx(t)

dt

and in higher dimensions (x(t) ∈ R
n)

d

dt
V (x(t)) = ∇V (x(t)) · dx(t)

dt
= ∇V (x) · ẋ.

So if x satisfies the differential equation ẋ = f(x) then

d

dt
V (x(t)) = ∇V (x) · f(x).

Lemma 3.1 (Bounding Lemma). Consider ẋ = f(x), x ∈ R
n, f smooth. Suppose there

exists a compact set U ⊂ R
n, ǫ > 0 and a continuously differentiable function V : U → R

such that

(a) V (x) ≥ 0 in R
n\U

(b) U ⊂ Sc = {V (x) ≤ c} for all c ≥ c0 > 0.

(c) Sc is compact and Sc ⊂ Sc′ if c < c′

(d) V̇ (x) < −ε for all x ∈ R
n\U .

then for all x0 ∈ R
n there exists t0 > 0 such that ϕt(x0) ∈ Sc0 for all t ≥ t0.

Proof. We first show that x(t) enters Sc0 at some time, even initially x0 is not in Sc0 . If
x0 /∈ Sc0 then V̇ < −ε and V (x0) > c0, so

V (ϕt(x0)) < V (x0) − ε t

and so there exists t0 <
V (x0)−c0

ε
such that

V (ϕt0(x0)) = c0, i.e. ϕt0(x0) ∈ Sc0.

Once x(t) is in Sc0 , we show that it stays in Sc0 . To make this argument formally, suppose
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3.4 Stability and Lyapunov functions

U

Sc0

x0

ϕ(x0, t
∗ + δ)

ϕ(x0, t
∗)

Figure 3.14: What if ϕt(x0) leaves Sc0?

ϕt∗(x0) ∈ ∂Sc0 and for δ > 0 sufficiently small ϕt(x0) /∈ Sc0 , for any t ∈ (t∗, t∗ + δ) (see
Figure 3.14). Then V (ϕt∗+δ(x0)) > c0 = V (ϕt∗(x0)) and V̇ (ϕt(x0)) < −ǫ for any t ∈
(t∗, t∗ + δ). Then

0 < V (ϕt∗+δ(x0)) − V (ϕt∗(x0)) =

∫ t∗+δ

t∗

d

dt
V (ϕt(x0))dt <

∫ t∗+δ

t∗
(−ǫ)dt = −δǫ.

So we get a contradiction.

Example 3.6 ( Lorenz Equations). The Lorenz equations are three coupled ODEs intro-
duced as a simple model of the weather. They are one of the earliest examples which appeared
to behave chaotically. The equations are

ẋ = σ(y − x), ẏ = rx− y − xz, ż = −bz + xy

with σ, r, b ≥ 0. We wish to show that all solutions are bounded.

Need to ’create’ a positive function V (x, y, z) with the properties of the lemma. The
obvious thing to do is to choose quadratic function, slightly less obvious is which quadratic
function. The following approach is not optimal but works!

Set
V (x, y, z) = Ax2 +By2 + C(z − 2r)2

and we want to choose the positive constants A,B,C to satisfy the lemma. So

1

2
V̇ = Axẋ+Byẏ + Cż(z − 2r)

= Aσx(y − x) +By(rx− y − xz) + C(−bz + xy)(z − 2r)

where we have used the ODE to replace ẋ, ẏ, and ż. We want V̇ < 0 for large enough x, y and
z, so the ‘difficult’ terms are cross multiplications like xy and xyz (good terms are quadratic
terms, with negative coefficients). Choose the constants to remove them i.e.

B − C = 0 (xyz terms vanish )
Aσ +Br − 2Cr = 0 (xy terms vanish)

So set B = C and Aσ = Br, e.g. A = r, B = C = σ (we have one degree of freedom to
choose these constants: A = r/σ,B = C = 1 works as well), then

V (x, y, z) = σrx2 + σy2 + σ(z − 2r)2
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3.4 Stability and Lyapunov functions

and

1

2
V̇ (x, y, z) = −σrx2 − σy2 − σ(bz2 − 2rbz)= −σrx2 − σy2 − σb(z − r)2 + σbr2.

Notice it is (z − r)2 on the right hand side, instead of (z − 2r)2 as in V .

The specific form of V̇ /2 also tells us which set to look at. So provided that (x, y, z) lies
outside the set

Ũ =
{
(x, y, z)|σrx2 + y2 + σb(z − r)2 ≤ br2

}
(an ellipsoid)

then V̇ < 0. It is possible to modify the Bounding Lemma to deal with this, but the actual
conditions of the bounding lemma require V̇ < −ǫ < 0. Thus we choose U a little larger:
pick ǫ > 0 and set

U = {(x, y, z)|σrx2 + σy2 + σb(z − r)2 ≤ σbr2 + ǫ}

and so in R
3\U

V̇ = −rσx2 − σy2 − σb(z − r) + σbr2 ≤ −2ǫ < −ǫ.
Now just choose c0 sufficiently large that

Sc0 = {(x, y, z)|rx2 + σy2 + σb(z − 2r)2 ≤ c0}

(another ellipsoid) contains U .

Remark. We can relate V̇ to V in a differential inequality, to induce some information about
the behaviour of V . More precisely, the above expression for V̇ implies that

V̇ (x, y, z) = −2rσx2 − 2σy2 − σb(z − 2r)2 − σbz2 + 4σbr2 ≤ −µV (x, y, z) + 4σbr2.

with µ = min(2σ, 2, b). The advantage here is that we can “solve” this differential inequality.
Since

d

dt

(
eµtV (x, y, z)

)
= eµt

(
V̇ + µV

)
≤ 4σbr2eµt.

Integrating both sides for time from zero to t, then

eµtV (x, y, z) − V (x0, y0, z0) ≤ 4σbr2

∫ t

0

eµτdτ =
4σbr2

µ
(eµt − 1).

That is

V (x, y, t) ≤ e−µtV (x0, y0, z0) +
4σbr2

µ

(
1 − e−µt

)
≤ e−µtV (x0, y0, z0) +

4σbr2

µ
,

which is bounded for any t ≥ 0. We can estimate the time when the trajectories enter the
set (different from the above one)

Ū =

{
(x, y, z)|V (x, y, z) ≤ 4σbr2

µ
+ ǫ

}
,

that is t ≥ 1
µ

log ǫ
V (x0,y0,z0)

.
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U

Bǫ(x
∗)

Bδ(x
∗)

x∗

Figure 3.15: Regions defined in proof.

Remark. The function V above is not unique, and we can choose alternative ones (along
with many others) like

V (x, y, z) = x2 + y2 + (z − r − σ)2.

Then

dV

dt
= −2σx2 − 2y2 − b(z − r − σ)2 − bz2 + b(r + σ)2 ≤ −αV + b(r + σ)2,

where α = min(2σ, 2, b). Then we can choose the set to be

Ũ =

{
(x, y, z) | x2 + y2 + (z − σ − r)2 ≤ b(r + σ)

α

}
,

or relax the right hand side by changing it to b(r + σ)2/α+ ǫ.

The same basic idea works for stationary points.

Definition 3.4 (Lyapunov functions). A function V : U → R is called a Lyapunov function
on U ⊆ R

n iff it is continuously differentiable, V (x) ≥ 0 on U and V̇ ≤ 0 on U .

Theorem 3.2 (Lyapunov’s Stability Theorem). Suppose x∗ ∈ R
n is a stationary point of

ẋ = f(x) with f smooth. Let U be an open neighbourhood of x∗ and suppose there exists a
Lyapunov function V : U → R such that V (x) > 0 on U \ {x∗} and V (x∗) = 0. Then x∗ is
a Lyapunov stable. If in addition V̇ < 0 in U \ {x∗} then x∗ is asymptotically stable.

Proof. Choose ε > 0 small enough so that {x | |x − x∗| ≤ ε} lies entirely in U , and let
c0 = min

|x−x∗|=ε
V (x) which exists as |x− x∗| = ε is compact (closed and bounded), and c0 > 0

as x∗ /∈ {x | |x − x∗| = ε}. Let Bε(x
∗) = {x | |x − x∗| < ε}. Now V is continuous, and

V (x∗) = 0, so there exists δ > 0 such that for all x ∈ Bδ(x
∗), V (x) < 1

2
c0.

Consider x0 ∈ Bδ(x
∗). Since V̇ ≤ 0 in U , V (ϕt(x0)) ≤ V (x0) < 1

2
c0 for all t such

that ϕt(x0) ∈ U , and hence V (ϕt(x0)) <
1
2
c0 < c0, the minimum on |x − x∗| = ε. Hence

ϕt(x0) ∈ Bε(x
∗) for all t > 0.

Suppose in addition that V̇ < 0 if x ∈ U\{x∗}, (note that V̇ (x∗) = 0 since x∗ is
stationary). Then if x0 ∈ Bδ(x

∗) as before, V (ϕt(x0)) is strictly decreasing and hence tends
to a limit V̄ = limt→∞ V (ϕt(x0)). At the limit V̇ = 0 hence the limit must be x∗.
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3.4 Stability and Lyapunov functions

Example 3.7. Consider the Lorenz equations with 0 < r < 1.

ẋ = σ(y − x); ẏ = rx− y − xz; ż = −bz + xy

with σ, b ≥ 0 and 0 < r < 1. Try a Lyapunov function of the form

V (x, y, z) = Ax2 +By2 + Cz2,

with 1
2
V̇ = Aσx(y − x) + By(rx− y − xz) + Cz(−bz + xy). Choose B = C to remove the

xyz terms:
1

2
V̇ = Aσ(−x2 + xy) +B(rxy − y2 − bz2)

We deal with the xy terms to ensure V̇ is negative, by choosing A and B appropriately
(matching the square!). Set B = σ, A = r so all terms together

1

2
V̇ = rσ(−x2 + 2xy) − σy2 − σbz2

= rσ(−(x− y)2) − (σ − rσ)y2 − σbz2

= −rσ(x− y)2 − σ(1 − r)y2 − σbz2

< 0 if (x, y, z) 6= (0, 0, 0)

if 0 < r < 1. Hence the origin is asymptotically stable when 0 < r < 1.

Example 3.8. Let us consider a degenerate node with repeated eigenvalues λ = −2:

ẋ = −2x+ y, ẏ = −2y.

Set V (x, y) = x2 +By2 and B is chosen later. Then

1

2
V̇ = x(−2x+ y) +By(−2y) = −2x2 + xy − 2By2 = −2(x− 1

4
y)2 +

1

8
y2 − 2By2.

So for any B > 1
16

the function is a Lyapunov function and the origin is asymptotically
stable.

In many practical examples, the stationary point x∗ can still be asymptotic stable, when
the condition V̇ < 0 in U ⊂ {x∗} in Theorem 3.2 can be relaxed to V̇ ≤ 0, provided that
x∗ is the only fixed point.

Theorem 3.3 (LaSalle’s Invariance Principle). Suppose that V : U ⊂ R
n → R is a Lyapunov

function for the system ẋ = f(x). If the set {x ∈ U | V̇ (x) = 0} contains only one fixed
point x∗, then x∗ is asymptotically stable.

Example 3.9. Consider the equation ẍ+µẋ+ω2x = 0 descibing the motion of a harmonic
oscillator with friction (µ > 0), or equivalently ẋ = y, ẏ = −µy − ω2x. If we choose
V (x, y) = ω2x2 + y2, then V̇ = −2µy2 ≤ 0. Since (0, 0) is the only fixed point in the set
{(x, y) mod V̇ (x, y) = 0} = {(x, y) | y = 0}, by Lasalle’s invariance principle, the origin is
asymptotically stable. In other words, the harmonic oscillator will eventially stop moving.
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3.5 Linearisation and nonlinear terms

3.5 Linearisation and nonlinear terms

The previous result shows that if Re(λ) < 0 and the eigenvalues are distinct, then a linearly
stable fixed point is locally stable when nonlinear terms are added back in. This is an
example of a range of persistence results for behaviour.

Example 3.10. The linearised system of the full nonlinear system

ẋ = −x, ẏ = y + x2

is ẋ = −x, ẏ = y, with two eigenvalues ±1. The phase portrait for this saddle system should
be well known now, but there are two special straight lines deserving more attention: the x-
axis and and the y-axis. If the initial condition (x0, y0) is on the x-axis (that is y0 = 0), then
the solution (x(t), y(t)) converges to the origin, as time t goes to infinity. This linear space is
called the stable manifold, denoted as Es. Although the solution with initial condition away
from the x-axis goes not infinity, as time t goes to positive infinity, initial condition (x0, y0)
resides on the y-axis has the special property that its solution converges to the origin as
time t goes to negative infinity. The y-axis is called unstable manifold (which is the stable
manifold when time is reversed), denoted as Eu.

Es

Eu

Es

Eu

W s

W uW s

W u

ẋ = −x, ẏ = y ẋ = −x, ẏ = y + x2

Figure 3.16: Invariant manifolds W s and W u for the linearised system and full nonlinear
system in Example 3.10.

Back to the nonlinear system, the correponding phase portrait is deformed from that of
the linearised system. There are also special curves, the stable manifold W s and the unstable
manifodl W u, whose solution converges to the origin, as time t goes to positive infinity and
negative infinity, respectively. In general, W s (or W u) is no longer straight line, but it is
tangent to Es (or Eu) at the origin.

In fact, in this example, we can find the equations for W s and W u. Obviously, W u is
the y-axis: if x0 = 0, then the ODE ẋ = −x implies x(t) = x0e

−t ≡ 0, and y(t) = y0e
t → 0

as t→ −∞. The stable manifold is W s = {(x, y) | y = −x2/3}. If (x0, y0) is on W s, that is
y0 = −x2

0/3, then x(t) = x0e
−t and y satisfies the linear ODE

ẏ = y + x2
0e

−2t.

From the fact that
d

dt

(
e−ty

)
= e−t(ẏ − y) = x2

0e
−3t, we get

e−ty(t) = y0 +

∫ t

0

x2
0e

−3τdτ = y0 +
x2

0

3

(
1 − e−3t

)
=

(
y0 +

x2
0

3

)
− x2

0

3
e−3t = −x

2
0

3
e−3t.
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Since the solution (x, y) =
(
x0e

−t,−x2
0

3
e−2t

)
stays on W s and converges to the origin (as t

goes to positive infinity), W s is a stable manifold.

Remark. Here the word manifold is used for a smooth geometric curve or surface: if the
manifold is one dimension, it is a smooth curve (inluding straight lines); if the manifold is
two dimension, it is a smooth surface (including planes). But normally we do not know the
dimension of the curve or the surface in advance, so it is better to use the generic name
manifold instead of the more common curve or surface.

This above relationship between full system and its linearised system is summarised in
the following theorem, provided that none of the eigenvalue has zero real part.

Theorem 3.4 (Stable Manifold Theorem). Suppose ẋ = Ax+O(x2) and A has no eigenval-
ues with Re(λ) = 0 (x = 0 is called a hyperbolic stationary point in this case). Then after
a change of coordinates the system is

ẋ1 = A+x1 +O(|x|2), ẋ2 = A−x2 +O(|x|2)

where A+ has Re(λ) > 0, A− has Re(λ) < 0. Moreover there are invariant manifolds W u

and W s with
W u = {x ∈ U | ϕt(x) → 0 as t→ −∞}

and
W s = {x ∈ U | ϕt(x) → 0 as t→ ∞} .

which are of of the same dimension as x1 (resp. x2) and tangential to x2 = 0 (resp. x1 = 0)
at the origin.

This implies the persistence of saddle structure near a stationary point when the nonlinear
terms are added back into the linearisation. The correponding changes in the phase portraits
or the deformation of the stable/unstable manifolds are best discribed using language from
topology (think about the deformation of a coffee mug into a donut). The persistence between
structure are called topologically conjugate or topologically equivalent, but we will omit this
complicated topological language and keep a mental picture instead, as in the following
theorem.

Theorem 3.5 (Hartman–Grobmann). If ẋ = Ax+O(x2) and A has no eigenvalue with zero
real part, then the behaviour near the neighbourhood of the origin is topologically equivalent
to the linear system ẋ = Ax.

Example 3.11. Now consider the system ẋ = y, ẏ = x2 + x and its linearised system

ẋ = y, ẏ = x. The trajectories, governed by
dy

dx
=
x2 + x

y
(which is separable), are given by

x3

3
+
x2 − y2

2
= C. The stable manifold W s concides with the unstable manifold W u, and is

x3

3
+
x2 − y2

2
= 0.

If A has eigenvalue with zero real part, then the situation is much more complicated, as
we can see from the following two examples.
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−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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0
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Figure 3.17: The phase portrait for ẋ = y, ẏ = x2 + x in Example 3.11.

Example 3.12. Consider the system ẋ = x, ẏ = y2, which you can solve the individual
equations separately (they are de-coupled from each other). The lienarized system (near the
origin) ẋ = x, ẏ = 0 has only horizontal phase curves. For a related system ẋ = y2, ẏ = x
(you can also solve this explicitly).

If there is zero eigenvalue in the linearised system, their local behaviours of the full
nonlinear system near the fixed point are different, as we can see from Figure 3.18 and 3.19.

x

y

ẋ = x, ẏ = y2

x

y

ẋ = x, ẏ = 0

Figure 3.18: Phase portraits for the system ẋ = x, ẏ = y2 with zero eigenvalues at the origin.

Exercise. Find the solution to the system

ẋ = x, ẏ = y2

and
ẋ = y2, ẏ = x

whose phase portraits are given in Figure 3.18 and 3.19.

The situation is even worse if f(x) = O(|x|2), because the linearised system ẋ = 0
does not tell anything about the behaviour of the system near the origin. You can see two
examples in Figure 3.20. Information can still be obtained in certain cases, by looking at
the trajectories, or by transforming into polar coordinates.
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x

y

ẋ = y2, ẏ = x

x

y

ẋ = 0, ẏ = x

Figure 3.19: Phase portraits for the system ẋ = y2, ẏ = x with zero eigenvalues at the origin.

Example 3.13. Consider the system ẋ = −xy, ẏ = x2 + y2, whose phase portrait is given in
Figure 3.20(left figure). The trajectory, governed by the ODE dy

dx
= −x2+y2

xy
is homogeneous.

By the change of variable y = zx, the ODE becomes dz
dx

= −2z2+1
z
x, which is separable. The

solution is given by x4(2z2 + 1) = C and the trajectories are given by 2x2y2 + x4 = C.

x

y

x

y

Figure 3.20: Phase portraits for systems with zero linear parts at the origin: Left: ẋ =
−xy, ẏ = x2 + y2; Right: ẋ = x2, ẏ = y(2x− y).

3.6 Maps

Besides continuous dynamical systems using differential equations, discrete dynamical sys-
tems defined by maps are also popular in modelling (Fibonacci number for the population
of animals), taking the form xn+1 = f(xn) with x ∈ R

k and f : R
k → R

k. These systems
are easier to deal with numerically, but more difficult analytically (precisely because of the
discrete phase space). If there are parameters in the map, we write

xn+1 = f(xn, µ),

with µ ∈ R
m, f : R

k×R
m → R

k. Given an initial condition x0, the trajectory is the sequence

(x0, x1, x2, . . . ),

i.e, a discrete set of points in phase space R
n.
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We often write

xn = f(xn−1) = f(f(xn−2)) = f(f(· · · (f(︸ ︷︷ ︸
n times

x0)) · · · )) = f ◦ f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n times

(x0),

where fn means the nth iteration of f , which is NOT [f(x0)]
n, the n-th power of f(x0).

Similar to their continuous counterparts, we are mainly interested in the fixed points and
periodic orbits of maps to understand their local behaviours, as a starting point for more
complicated situations. A fixed point of the discrete dynamical system xn+1 = f(xn) is a
solution of

x = f(x).

Periodic orbits are defined similarly: they satisfy

xn+p = xn for all n ≥ 0,

and p is called the period. Any point in the periodic orbit with period p is just a fixed point
of f p, that is,

x = f p(x) = f ◦ f ◦ · · · f︸ ︷︷ ︸
p times

(x)

another algebraic equation! A period-p orbit is usually listed as a sequence of p points
(x∗1, x

∗
2, · · · , x∗p) such that

x∗2 = f(x∗1), x∗3 = f(x∗2), · · · , x∗1 = f(x∗p),

while each of the point x∗k satisfies x = f p(x). Because of the periodicity, the period-p orbit
(x∗2, x

∗
3, · · · , x∗p, x∗1) is the same as (x∗1, x

∗
2, · · · , x∗p), and we only need to choose one orbit out

of the p equivalent ones.

As with ODEs, we are interested in qualitative properies like special solutions and their
stabilities, invariant sets, long term behaviours and the dependence of these properties on
parameters.

Example 3.14. Consider the simplest linear map xn+1 = axn + b. If a = 1, then xn =
xn−1 + b = · · · = x0 + nb and there is no fixed point, unless b = 0. Otherwise if a 6= 1, the
only fixed point is x∗ = b/(1 − a). From the fact that

xn − x∗ = axn−1 + b− b

1 − a
= axn−1 −

ab

1 − a
= a (xn−1 − x∗) ,

we get xn − x∗ = an(x0 − x∗) and

xn = x∗ + an(x0 − x∗) = anx0 +
1 − an

1 − a
b.

It is also easy to check that, if a 6= 1, there is no non-trivial period-2 orbits (check it!)—any
period-2 orbit (x1, x2) satisfies x1 = x2 = x∗.

Example 3.15 (Compound interest). Let Pn be the principal at n-th month with initial
principal P0, monthly interest rate r and monthly payment M , then Pn satisfies the relation

Pn+1 = (1 + r)Pn −M.

From the previous example, we get (with a = 1 + r, b = −M)

Pn = (1 + r)nP0 −
M

r

(
(1 + r)n − 1

)
.

42



3.6 Maps

Example 3.16 (Circle map). In unimodal map, we are only interested in the fractional part
of the numbers, which can be identified by taking the integer part out by mod 1 operation.
For example, 1.1 = −0.9 = 0.1(mod 1). The simplest unimodal maps is

xn+1 = mxn + b (mod 1),

where m is usually an integer (so that you get the same xn+1 if xn is replaced by xn + ℓ
for any integer ℓ). Consider the map xn+1 = 3xn(mod1), then any fixed point x∗ satisfies
x∗ = 3x∗ + ℓ for some integer ℓ, or x∗ = ℓ/2. Therefore, x∗ = 0 or x∗ = 1/2 (any other ℓ
leads to either fixed point).

Any period-2 orbits (x∗1, x
∗
2) satisfies

x∗2 = 3x∗1 + ℓ1, x∗1 = 3x∗2 + ℓ2

or x∗1 = 9x∗1 + ℓ (with ℓ = 3ℓ1 + ℓ2, another integer). Therefore, x∗1 = ℓ/8, ℓ = 0, 1, · · · , 7. If
x∗1 = 0 or x∗ = 4/8 = 1/2, then x∗2 = 3x∗1 = x∗1 and the corresponding period-2 orbits are
actually fixed point. Otherwise, we get three non-trivial period-two orbits

(
1

8
,
3

8

)
,

(
1

4
,
3

4

)
,

(
5

8
,
7

8

)
,

where
(

3
8
, 1

8

)
is taken as the same periodic orbit as

(
1
8
, 3

8

)
(similarly for other two).

Remark. For a given continuous dynamical system (i.e., the ODE ẋ = f(x)), we can define
an discrete dynamical system in the following ways shown in Figure 3.21. For any given
time interval T > 0, we can take xn = x(nT ), the solution of the ODE at t = nT . Then
the sequence (x0, x1, x2, · · · ) is a dynamical system. Alternatively, we can define the discrete
points at the intersection of x(t) ∈ R

n with a n− 1 dimensional surface, called return maps
or Poincaré maps.

0 T 2T 3T 4T t

x(t)

x0 = x(0)

x1 = x(T )

x2 = x(2T )

x3 = x(3T ) x4 = x(4T )

x0

x1

x2 x3
x4

x(t)

Figure 3.21: Two ways to get discrete dynamical systems from continuous ones, either by
xn = x(nT ) or the return map.

Maps also appear in the numerical approximations of ODEs. For example, if we want
to consider the solution of ẋ = x(1 − x) at time t = 0, h, 2h, · · · (h is called the time step,
which is usually small) and denote xn ≈ x(nh), then by Taylor expansion,

xn+1 = x(nh + h) = x(nh) + hx′(nh) +
h2

2!
x′′(nh) + · · · = xn + h(1 − xn)xn +O(h2).

Therefore, to the leading order, we get the discrete map xn+1 = xn + hxn(1 − xn).
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Similarly, for discrete dynamical system governed by xn+1 = f(xn), a set Λ ⊆ R
n is

invariant iff x0 ∈ Λ implies xn ∈ Λ for all n ≥ 0. In fact, to show Λ is invariant, we only
need to show that, if xn ∈ Λ, then xn+1 ∈ Λ.

Example 3.17 (Logistic map). The logistic map xn+1 = µxn(1−xn) is the simplest discrete
dynamical system exhibiting chaotic behaviours (for some parameters of µ). We will study
in detail how these behaviours and the associated bifurcations depend on the parameter µ.
We can show that the interval Λ = [0, 1] is invariant when µ ∈ [0, 4]. In fact, for xn ∈ [0, 1]
and µ ∈ [0, 4], then xn+1 = µxn(1 − xn) ≥ 0 and

xn+1 = µ(xn − x2
n) = µ

[
1

4
−
(
xn − 1

2

)2
]
≤ µ

4
≤ 1.

Example 3.18 (2D system). Consider the system

xn+1 = xn f(yn), yn+1 = g(xn, yn).

The line x = 0 is invariant (xn = 0 =⇒ xn+1 = 0), and on x = 0, yn+1 = g(0, yn).

Linear Maps: The local behaviours of discrete maps can also be inferred from linearisation
near fixed points. Let x∗ be a fixed point of xn+1 = f(xn) with x∗ = f(x∗). If x is close to
x∗ such that yn = xn − x∗ is small, then

yn+1 = xn+1 − x∗ = f(xn) − f(x∗) ≈ Df(x∗)(x− x∗) = Df(x∗)yn.

Therefore, the linearised equation is

yn+1 = Ayn,

with the constant matrix A = Df(x∗). The solution can be written as

yn = Any0.

If the matrix can be diagonalised as A = SΛS−1 (the columns of S are eigenvectors of A),
then An = SΛnS−1. The change of variable zn = S−1yn leads to the normal form

zn+1 = S−1yn+1 = S−1Ayn = S−1AS(S−1zn) = Λzn,

where the matrix power Λn in the solution zn = Λnz0 can be calculated easily. For example,

Λ =




λ1

λ2

. . .

λm


 7→ Λn =




λn
1

λn
2

. . .

λn
m




and

Λ =

(
λ 1
0 λ

)
7→ Λn =

(
λn (n+ 1)λn−1

0 λn

)
.

44



3.6 Maps

The general solution of xn+1 = Axn when A has m distinct eigenvalues λm with eigenvectors
em is

xn =

m∑

j=1

cjλ
n
j ej .

Here the coefficients cj are determined from the initial condition (n = 0 in the previous
equation)

x0 =

m∑

j=1

cjej .

We can start with the simplest case to motivate the criteria of stability. For linear ODES,
the canonical example is the scalar ODE ẋ = λx with solution x(t) = x0e

λt. Therefore, the
stability of the ODE is determined by exp(λt) as t goes to infinity, or equivalently the
boundary Reλ = 0. Similarly, if we look at the simplest map xn+1 = λxn, then xn = λnx0.
The stability is determined by λn as n goes to infinity, or equivalently the boundary |λ| = 1
(|λ| < 1 implies stability in the corresponding eigenspace). Now we can proceed for general
cases in general dimensions.

Example 3.19 (Saddle). In Normal Form coordinates, the map is
(
xn+1

yn+1

)
=

(
λ1 0
0 λ2

)(
xn

yn

)
with |λ1| < 1 < |λ2|.

These two components xn+1 = λ1xn, yn+1 = λ2yn can be solved explicitly, to give

xn = λn
1x0, yn = λn

2y0.

We can take modulus on the solutions,

|xn|
|x0|

= |λ1|n,
|xn|
|x0|

= |λ1|n.

That is, the solution (xn, yn) lies on the generalised hyperbola
{

(x, y)

∣∣∣∣∣

∣∣∣∣
x

x0

∣∣∣∣ =

∣∣∣∣
y

y0

∣∣∣∣
ln |λ1|/ ln |λ2|

}
.

The motion of these hyperbolas is discrete; an orbit hops along the relevant curve or curves
as shown in Figure 3.22. If an eigenvalue is negative then the orbit of a point will oscillate
between negative and positive values in that eigen-direction as indicated in Figure 3.22(b).

Example 3.20 (Focus). The map in normal form is
(
xn+1

yn+1

)
=

(
ρ −ω
ω ρ

)(
xn

yn

)
.

The geometric interpretation is clearer if we write the coefficient matrix as

(
ρ −ω
ω ρ

)
=
√
ρ2 + ω2




ρ√
ρ2+ω2

− ω√
ρ2+ω2

ω√
ρ2+ω2

ρ√
ρ2+ω2


 = λ︸︷︷︸

dilation

(
cos θ − sin θ
sin θ cos θ

)

︸ ︷︷ ︸
rotation by θ

45



3.6 Maps

x0

x1

x2

x0
x1

x2

x3

Figure 3.22: Saddles for discrete time equations (a) 0 < λ1 < 1 < λ2; (b) −1 < λ1 < 0,
λ2 > 1.

where λ =
√
ρ2 + ω2 and θ = tan−1(ω/ρ). If we define zn = xn + iyn, then in complex

notation

zn+1 = xn+1 + iyn+1 = λ
[
(xn cos θ − yn sin θ) + i(xn sin θ + yn cos θ)

]

= λ
(
cos θ + i sin θ

)
(xn + iyn) = λeiθzn.

Therefore, the solution can be written as zn = λneinθz0, or equivalently

xn = λn(x0 cosnθ − y0 sinnθ), yn = λn(x0 sinnθ + y0 cos nθ).

Therefore, the solution (xn, yn) converges to the origin if and only if λ =
√
ρ2 + ω2 < 1.
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